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Abstract

The specific concentrations of amoxicillin and penicillin V in non-target feed for food-producing
animals, below which there would not be an effect on the emergence of, and/or selection for,
resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial
concentrations in feed which have an effect in terms of growth promotion/increased yield were
assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment,
associated data gaps and uncertainties, are presented in a separate document. To address
antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model
developed specifically for the assessment was applied. However, due to the lack of data on the
parameters required to calculate the FARSC, it was not possible to conclude the assessment until
further experimental data become available. To address growth promotion, data from scientific
publications obtained from an extensive literature review were used. Levels in feed that showed to
have an effect on growth promotion/increased yield were reported for amoxicillin, whilst for penicillin V
no suitable data for the assessment were available. It was recommended to carry out studies to
generate the data that are required to fill the gaps which prevented the calculation of the FARSC for
these two antimicrobials.
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1. Introduction

The European Commission requested the European Food Safety Authority (EFSA) to assess, in
collaboration with the European Medicines Agency (EMA), (i) the specific concentrations of
antimicrobials resulting from cross-contamination in non-target feed for food-producing animals, below
which there would not be an effect on the emergence of, and/or selection for, resistance in microbial
agents relevant for human and animal health (term of reference 1, ToR1), and (ii) the levels of the
antimicrobials which have a growth promotion/increase yield effect (ToR2). The assessment was
requested to be conducted for 24 antimicrobial active substances specified in the mandate.1

For the different substances (grouped by class if applicable)1, separate scientific opinions included
within the ‘Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target
feed’ series (Scientific Opinions Part 2 - Part 13, EFSA BIOHAZ Panel, 2021b-l – see also the Virtual
Issue; for practical reasons, they will be referred as ‘scientific opinion Part X’ throughout the current
document) were drafted. They present the results of the assessments performed to answer the
following questions: Assessment Question 1 (AQ1), which are the specific antimicrobial concentrations
in non-target feed below which there would not be emergence of, and/or selection for, resistance in
the large intestines/rumen, and AQ2: which are the specific antimicrobial concentrations in feed of
food-producing animals that have an effect in terms of growth promotion/increased yield. The
assessments were performed following the methodology described in Section 2 of the Scientific
Opinion ‘Part 1: Methodology, general data gaps and uncertainties’ (EFSA BIOHAZ Panel 2021a, see
also the Virtual Issue). The present document reports the results of the assessment for the b-lactams:
amoxicillin and penicillin V.

1.1. Background and Terms of Reference as provided by the requestor

The background and ToRs provided by the European Commission for the present document are
reported in Section 1.1 of the Scientific Opinion ‘Part 1: Methodology, general data gaps and
uncertainties’ (see also the Virtual Issue).

1.2. Interpretation of the Terms of Reference

The interpretation of the ToRs, to be followed for the assessment is in Section 1.2 of the Scientific
Opinion ‘Part 1: Methodology, general data gaps and uncertainties’ (see also the Virtual Issue).

1.3. Additional information

1.3.1. Short description of the class/substance

The class of b-lactam antimicrobials is a key group of bactericidal drugs used for treating infections
caused by both Gram-positive and Gram-negative bacteria in human and veterinary medicine (Bush
and Bradford, 2020). The members of the class are classified according to their core ring structures
and include penicillins, cephalosporins, carbapenems and monobactams as well as various b-lactamase
inhibitors that can be used in combination with the antimicrobial. The two b-lactams of relevance here
are penicillin V (phenoxymethylpenicillin, an early discovered penicillin) and amoxicillin (a semisynthetic
derivative of penicillin belonging to the aminopenicillin family). The main chemical characteristic
common to all b-lactams is the presence of a b-lactam ring in their molecular structure. This ring
structure is central to the mechanism of action where the b-lactam binds to penicillin-binding proteins
(PBPs), enzymes that are central in synthesis of the peptidoglycan layer, and thereby inhibits formation
of the cell wall. b-Lactams show a structural similarity with the terminal amino acid of the NAM/NAG
peptide. This similarity allows the antimicrobial binding to the active site of PBPs and a resulting
inhibition of the PBPs and cell wall synthesis.

The narrow spectrum of activity of penicillin, mainly restricted to Gram positive bacteria (e.g.
staphylococci, streptococci) and Gram-negative cocci (e.g. Neisseria spp.) was further constrained by
the extensive emergence of resistance in several of those microorganisms (e.g. staphylococci). With
the addition of the amino group to penicillin, amoxicillin gained the ability to cross porins of

1 Aminoglycosides: apramycin, paromomycin, neomycin, spectinomycin; Amprolium; Beta-lactams: amoxicillin, penicillin V;
Amphenicols: florfenicol, thiamphenicol; Lincosamides: lincomycin; Macrolides: tilmicosin, tylosin, tylvalosin; Pleuromutilins:
tiamulin, valnemulin; Sulfonamides; Polymyxins: colistin; Quinolones: flumequine, oxolinic acid; Tetracyclines: tetracycline,
chlortetracycline, oxytetracycline, doxycycline; Diaminopyrimidines: trimethoprim.
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Gram-negative bacteria, enlarging the penicillin spectrum of activity namely to E. coli and Salmonella
enterica.

The spectrum of activity, minimum inhibitory concentration (MIC) and pharmacokinetic (PK) values
of penicillin and amoxicillin present differences (Bush and Bradford, 2016). Penicillin and amoxicillin will
be addressed separately in the framework of this scientific opinion.

1.3.2. Main use2

Amoxicillin has a very broad application with a bactericidal effect on many Gram-positive and Gram-
negative bacteria. It is therefore also used for a wide range of respiratory, gastrointestinal and
urogenital infections along with treatment of secondary infections following viral infections in pigs, and
respiratory and gastro-intestinal infections in poultry. These include rhinitis and bronchopneumonia
caused by Pasteurella spp., rhinitis caused by Streptococcus spp., bronchopneumonia caused by E. coli
or Gram-positive cocci, infections of the urogenital system with, e.g. E. coli or Proteus spp. In cattle,
treatment of mastitis caused by Gram-positive cocci or E. coli is an indication. In pigs, amoxicillin can
also be used for treatment of Actinobacillus pleuropneumoniae.

Penicillin V is administrated orally. It is a first drug of choice against clostridial infections in poultry
(L€ohren et al., 2008) and it can be used as an in-feed medication for prevention of streptococcal
meningitis in pigs (Johnston et al., 1992).

1.3.3. Main pharmacokinetic data

The bioavailability (i.e. the fraction of the antimicrobials absorbed from the digestive tract to the
plasma) of amoxicillin and penicillin V after oral administration is generally low in mammals. Higher
bioavailability is reported for chickens and turkeys.

Penicillin V

The oral bioavailability of penicillin V is 69% in chicken (EMA/CVMP, 2012).
In fed or fasted pigs, the bioavailability is low with values around 17–19% (Nielsen and Gyrd-

Hansen, 1994). In pre-ruminant calves, the mean oral bioavailability is less than 10% of the 10 mg/kg
dose and equal to 28.8% for the 20 mg/kg dose and 34.5% for the 40 mg/kg dose (Soback et al.,
1987).

In 5- to 12-day-old foals, the bioavailability of penicillin V was described as 16.04 � 1.23% but in
the adult horses, the bioavailability is lower with a value of 1.65 � 0.55% (Baggot et al., 1990).
However, the main limitation of this study is that the intravenous data necessary to calculate the
bioavailability in foals were obtained in adult horses. The bioavailability in foals is potentially
inaccurate.

For ruminants 6-week-old calves fed exclusively hay, silage and concentrates, it was suggested that
penicillin V could be inactivated and degraded in the gastrointestinal tract (Soback et al., 1987). No
quantitative data were provided for this phenomenon.

After absorption, penicillins are mainly excreted unchanged in urine and to a lesser extent in bile.
Metabolism is considered to be of little importance in the elimination of most penicillins (EMA, 2008).

Amoxicillin

The bioavailability of amoxicillin is 60.2% in turkey (Jerzsele et al., 2011) and around 60-64% in
chickens (Anad�on et al., 1996; Abo El-Sooud et al., 2004; Jerzsele et al., 2009).

The mean oral bioavailability of amoxicillin in pigs ranges from 22 to 31% in fed and fasted pigs
(Agersø and Friis, 1998; Reyns et al., 2007; Sun et al., 2021) and is around 30% in calves (Ziv et al.,
1977).

The oral bioavailability of amoxicillin is around 5% to 10% in fasted horses (Wilson et al., 1988;
Ensink et al., 1992) and 36% to 43% in neonatal foals (6–7 day-old) (Baggot et al., 1988). However,
the foals were not their own control as the oral and iv administrations needed to calculate the
bioavailability were performed by two different laboratories in different foals. Thus, the bioavailability
in foals is potentially inaccurate.

2 Antimicrobials are currently used in food-producing animal production for treatment, prevention and/or metaphylaxis of a
large number of infections, and also for growth promotion in non-EU countries. In the EU, in future, use of antimicrobials for
prophylaxis or for metaphylaxis is to be restricted as addressed by Regulation (EU) 2019/6 and use in medicated feed for
prophylaxis is to be prohibited under Regulation (EU) 2019/4.
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No quantitative data on the bioavailability of amoxicillin in ruminant calves were available.
Amoxicillin, like other penicillins, is mainly excreted unchanged in urine and to a lesser extent in bile

(EMA, 2008).
Amoxicillin was apparently inactivated by the gastrointestinal contents of early ruminant (6 weeks

old) calves (Soback et al., 1987). One study also showed that amoxicillin can be degraded in the small
intestine (45% of the initial amount), and that it was mainly due to the action of intestinal tissues
(28% of the initial amount) compared to the action of intestinal juices (15% of the initial amount)
(Chesa-Jim�enez et al., 1994).

1.3.4. Main resistance mechanisms

The effectiveness of all b-lactams relies on their ability to reach the PBP target molecules with the
b-lactam ring intact and an ability to bind to the PBP. The two main mechanisms that can generate
high-level b-lactam resistance involve the synthesis of enzymes that attack and hydrolyse the b-lactam
ring (thereby rendering the antimicrobial unable to bind to the PBPs) and alterations in the PBPs that
prevent binding of the antimicrobial (Fisher and Mobashery, 2016; Bush, 2018). Resistance to penicillin
V and amoxicillin can be conferred by both of these mechanisms.

For the former mechanism, there exists a myriad of different types of enzymes that have different
activities on the different b-lactams. These enzymes are classified into A, B, C and D according to their
amino acid sequence (phylogenetic relatedness) and mode of action of hydrolysis (A, C and D uses a
serine for hydrolysis and B a zinc ion). In addition, they are classified according to their functional role
and to which b-lactam substance they provide resistance (e.g. penicillinases, extended spectrum
b-lactamases, ampC b-lactamases, carbapenamases) (Bush and Jacoby, 2010).

The second major mechanism of b-lactam resistance (including to penicillin V and amoxicillin)
involves altered PBPs that do not bind to the b-lactam drug. A notable example of this type of
resistance includes meticillin resistant S. aureus (MRSA) due to the mecA gene which encodes an
alternative PBP2a that confers resistance to meticillin (Peacock and Paterson, 2015). Similarly, the
pioneering work of Tomasz, Spratt and Hakenbeck showed that penicillin resistance in S. pneumoniae
resulted from horizontal gene transfer (HGT) and recombination of heterologous DNA sequences to
generate mosaic PBPs conferring resistance to b-lactams (Spratt, 1994; Tomasz and Munoz, 1995;
Hakenbeck et al., 2012). HGT and recombination or mutations of PBP5 in E. faecium is also associated
with high level resistance to amoxicillin (Novais et al., 2016). In addition, resistance to b-lactams can
be generated by point mutations in specific PBPs and (Adler et al., 2016), or by induction of PBPs, that
can compensate for the inhibited PBP, observed for mecillinam (Thulin and Andersson, 2019).

Apart from the two major mechanisms described above other mechanisms such as reduced porin
activity/level (Mart�ınez-Mart�ınez et al., 1999) or increased drug efflux (Adler et al., 2016) can generate
low level resistance.

2. Data and methodologies

The data sources and methodology used for this opinion are described in a dedicated document,
the Scientific Opinion ‘Part 1: Methodology, general data gaps and uncertainties’ (see also the Virtual
Issue).

3. Assessment

3.1. Introduction

As indicated in the Scientific Opinion ‘Part 1: Methodology, general data gaps and uncertainties’
(see also the Virtual Issue), exposure to low concentrations of antimicrobials (including sub-minimal
inhibitory concentrations, sub-MIC) may have different effects on bacterial antimicrobial resistance
evolution, properties of bacteria and in animal growth promotion. Some examples including emergence
of, and selection for, antimicrobial resistance, mutagenesis, virulence and/or HGT, etc., for the
antimicrobials under assessment are shown below.

3.1.1. Resistance development/spread due to sub-MIC concentrations of
b-lactams including amoxicillin and penicillin V: examples

In spite of the enormous medical importance of b-lactams, relatively little is known about resistance
development at sub-MIC levels of antimicrobials with regard to rates and mechanisms and, in
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particular, what are the minimal selective concentrations (MSCs) for the different drugs in this
antimicrobial class. Listed below are a number of studies that have examined if and how exposure to
sub-inhibitory levels of different b-lactams influence resistance evolution and properties of the bacteria.
A majority of these studies have been performed with antimicrobial concentrations that are relatively
close MIC values of the strains used. It should be noted that few studies address specifically amoxicillin
and penicillin V but there are similarities between the different antimicrobials within the class of b-
lactams with regard to structure (i.e. common b-lactam ring), mode of action (i.e. binding to PBPs)
and resistance mechanisms (i.e. PBPs modifications, hydrolysis of the b-lactam ring) that justify the
inclusion of reports of some cephalosporins and carbapenems to evaluate the effects of sub-MIC levels
on selection, de novo evolution and transmission.

3.1.1.1. Effects of sub-MIC concentrations on selection for resistance and mutagenesis

• Subculturing of S. pneumoniae in amoxicillin (with/without clavulanate), cefaclor, cefuroxime
and cefuroxime at sub-MIC (1/2 to 1/8 of MIC) led to raised MIC after 17-45 serial passages
(Pankuch et al., 1998).

• Serial passage of S. pneumoniae at sub-MIC levels (exact level not stated in paper) of
amoxicillin (with and without clavulanic acid), imipenem, cefixime, cefatrizine, cefadroxil and
cefuroxime led to substantial increases in resistance after 11–24 serial passages (Carsenti-
Etesse et al., 1995).

• Subculturing of S. pneumoniae in amoxicillin-clavulanate at sub-MIC (1/2 to 1/8 of MIC) led to
MIC rising from 0.015 to 0.125 mg/mL after 24 passages. Growth for 10 generations in the
absence of the antimicrobial reverted the strain to full susceptibility (Davies et al., 1999).

Studies of other b-lactams subclasses also showed sub-MIC resistance development:

• Subculturing of S. pneumoniae in ceftriaxone and cefprozil at sub-MIC (1/2 to 1/8 of MIC) led
to selection for mutants with substantially raised MICs after 10–50 passages. Growth for 10
generations in the absence of antimicrobial reverted the strain to susceptibility (Nagai et al.,
2000).

• Subculturing of P. aeruginosa in azlocillin and ceftazidime at 1/2 MIC led to selection for high-
level resistant mutants (Wu et al., 1999).

• Exposure of S. enterica (var. Typhimurium) to 1/2 MIC of cefotaxime led to an increased ability
of the bacteria to colonise mice (Molina-Quiroz et al., 2015).

• Exposure of MRSA to ceftazidime, ceftriaxone and imipenem for 18 serial passages at sub-MIC
levels (exact level not stated in paper) can result in selection for heterogeneous vancomycin-
intermediate-resistant MRSA (Roch et al., 2014).

• Exposure of E. coli expressing blaOXA-48 on a clinical plasmid at sub-MIC (1/4 of MIC) of
ceftazidime resulted in selection of mutant variants of OXA-48 with only marginally increased
resistance but with strong selectable fitness benefits during competition at sub-MIC levels
(Fr€ohlich et al., 2021).

• Exposure of MRSA to sub-MIC concentrations of oxacillin (1/4 of MIC) can cause an SOS
response and an associated increase in mutation frequency (Plata et al., 2013).

• Exposure of E. coli to sub-MIC levels (1/4 MIC) of ceftazidime can cause induction of the SOS
response and a small increase in mutation frequency to other antimicrobials (Thi et al., 2011).

• Exposure of E. coli to sub-MIC concentrations of ceftazidime (1/2 to 1/20 of MIC) caused a
LexA/RecA-independent induction of the dinB gene and an associated increase in mutation
frequency (P�erez-Capilla et al., 2005).

• Exposure of S. marcesens to sub-MIC (1/2 to 1/4 MIC) of ceftazidime induces transcription of
qnrB, qnrD and smaqnr genes via SOS-dependent regulation, potentially providing low-level
fluoroquinolone resistance (Briales et al., 2012).

3.1.1.2. Effects of sub-MIC concentrations on horizontal gene transfer and virulence

Several studies have shown that antimicrobials, in particular fluoroquinolones, but also b-lactams,
can induce the SOS response and thereby promote emergence of resistance promoting HGT. Listed
below are studies showing that sub-MIC antimicrobial concentrations of b-lactams can also have this
effect.
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• Exposure of S. aureus to sub-MIC levels (exact level not stated in paper) of penicillin, ampicillin
and cloxacillin and ceftriaxone can induce the SOS response and trigger prophage induction
and transfer of a pathogenicity island (Maiques et al., 2006).

• Exposure of E. coli O157:H7 to sub-inhibitory concentrations (1/2 to 1/4 of MIC) of imipenem
can induce Shiga toxin production in an SOS-independent manner (Nassar et al., 2013).

In summary, even though exposure to sub-MIC concentrations (in the range of 1/2 to 1/20 of the
MIC) of various b-lactams can result in the selection for resistant mutants and/or promote resistance
spread and emergence, at present no data exist that allow a determination of MSC for any of the
target antimicrobials, amoxicillin and penicillin V.

3.2. ToR1. Estimation of the antimicrobial levels in non-target feed that
would not result in the selection of resistance: Feed Antimicrobial
Resistance Selection Concentration (FARSC)

As explained in the Methodology Section (2.2.1.3) of the Scientific Opinion ‘Part 1: Methodology,
general data gaps and uncertainties’ (see also the Virtual Issue), the estimation of this value for these
two b-lactams for different animal species, if suitable data were available, would follow a two-step
approach as described below:

The first step would be the calculation of the predicted minimal selective concentration (PMSC) for
amoxicillin and penicillin V as indicated in Table 1. However, no MSC data required to do the
calculations is available for those substances.

Due to the lack of PMSC, no FARSC could be calculated. If PMSC was available, the FARSC
(FARSCintestine and FARSCrumen) corresponding to the maximal concentrations in feed would be
calculated for each species from the equations below (for details, see Section 2.2.1.3.2 of the Scientific
Opinion Part 1; see also the Virtual Issue) by including specific values for penicillin V and amoxicillin.

FARSCintestineðmg=kg feedÞ ¼ PMSC� daily faeces
ð1 − IÞ � ð1 − F þ F � GEÞ � daily feed intake

FARSCrumenðmg=kg feedÞ ¼ PMSC� volume of rumen
ð1 − IÞ � daily feed intake

With daily faeces being the daily fresh faecal output in kg, I the inactive fraction, F the fraction
available, GE the fraction of the antimicrobial that is secreted back into the intestinal tract for
elimination, after initially being absorbed into the bloodstream, and daily feed intake being the daily
dry-matter feed intake expressed in kg.

Penicillin V

Penicillin V is poorly absorbed except in chickens. After absorption, the elimination in the intestines
is negligible. There is no information on the potential binding of penicillin V to intestinal contents.

The values of F, GE and I extracted from literature for the calculations of FARSC are summarised in
Table 2. The set of values (scenario 1) corresponds to the average of published values.

Table 1: Calculation of the amoxicillin and penicillin V predicted minimal selective concentration
(PMSC)

Antimicrobial
(all values in
mg/L)

MICtest MSCtest
MICtest/MSCtest

ratio
MIClowest

Predicted MSC (PMSC) for most
susceptible species

(MIClowest/MICtest/MSCtest)

Amoxicillin NA NA NA 0.004 NA

Penicillin V NA NA NA 0.004 NA

MIC: minimum inhibitory concentration. MSC: minimal selective concentration. MSCtest: MSC experimentally determined.
MIClowest: lowest MIC data amoxicillin and phenoxymethylpenicillin (Penicillin V) calculated based on data from the EUCAST database
as described in Bengtsson-Palme and Larsson (2016), see Methodology Section 2.2.1.3.1.1 in the Scientific Opinion Part 1. EUCAST
database https://mic.eucast.org/search/ last accessed 15 May 2021. NA: not available.
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Amoxicillin

Oral bioavailability of amoxicillin is less than 30% in adult monogastric mammals and around 30%
in calves. The absorption is higher in chickens and turkeys with a bioavailability of around 60%. After
absorption, the elimination in the intestines is negligible. There is no information on the potential
binding of amoxicillin to intestinal contents, but one study demonstrated an inactivation of amoxicillin
in the small intestines of rats.

The values of F, I and GE extracted from literature for the calculations of FARSC are summarised in
Table 3. The first set of values (scenario 1) corresponds to the average of published values while
scenario 2 corresponds to a scenario that would lead to lower FARSC and scenario 3 to a scenario that
would lead to higher FARSC.

Due to the absence of MSC and other PK data the estimation of the FARSC for amoxicillin and
penicillin V was not possible.

3.2.1. Associated data gaps and uncertainties

With regard to the uncertainties and data gaps described in the Scientific Opinion Part 1
(Sections 3.1 and 3.3; see also the Virtual Issue) we identified the following for the b-lactams under
assessment:

i) MSC data: no data for MSCs are available.
ii) Bioavailability: quantitative data are not available for each species. There are no data for adult

ruminants (penicillin V and amoxicillin) and for turkeys (penicillin V). For other species, the
value of bioavailability was sometimes extracted from only one or two studies and the
selected values can thus be inaccurate.

iii) Inactive fraction: there is no information for penicillin V. One study demonstrated an
inactivation of amoxicillin in the small intestines of rats but there are no quantitative data on

Table 2: Pharmacokinetic (PK) values used for the calculation of Feed Antimicrobial Resistance
Selection Concentration (FARSC) of penicillin V for the different animal species

Penicillin V data Scenario #1

Inactive fraction (I) NA

Bioavailability (F) calves 0.1
Bioavailability (F) pigs 0.18

Bioavailability (F) horses 0.02
Bioavailability (F) chickens 0.7

Gastrointestinal elimination (GE) 0

Inactive fraction (I) is the fraction of antimicrobial that would not have any activity on bacteria. Bioavailability (F) is the fraction
of antimicrobial that is absorbed from the digestive tract to the blood. The fraction remaining in the digestive tract and that could
be available for the bacteria is equal to (1 – F). Gastrointestinal elimination (GE) is the fraction of the antimicrobial that is
secreted back into the intestinal tract for elimination, after initially being absorbed into the bloodstream. NA = not available.

Table 3: Pharmacokinetic (PK) values used for the calculation of Feed Antimicrobial Resistance
Selection Concentration (FARSC) of amoxicillin for the different animal species

Florfenicol data Scenario #1 Scenario #2 Scenario #3

Inactive fraction (I) NA – –

Bioavailability (F) pig 0.25 0.15 0.35
Bioavailability (F) poultry 0.6 – –

Bioavailability (F) calves 0.3 – –

Bioavailability (F) turkeys 0.6 – –

Bioavailability (F) horses 0.07 0.05 0.1

Gastrointestinal elimination (GE) 0 0 0

Inactive fraction (I) is the fraction of antimicrobial that would not have any activity on bacteria. Bioavailability (F) is the fraction
of antimicrobial that is absorbed from the digestive tract to the blood. The fraction remaining in the digestive tract and that could
be available for the bacteria is equal to (1 – F). Gastrointestinal elimination (GE) is the fraction of the antimicrobial that is
secreted back into the intestinal tract for elimination, after initially being absorbed into the bloodstream. NA = not available.
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intestinal degradation of amoxicillin in large intestines in target animal species. Few data are
available on the effect of b-lactamases produced in the intestine.

iv) Ruminants: penicillin V and amoxicillin were described as being inactivated and degraded in
the gastrointestinal tract of ruminants but no quantitative data are available

3.2.2. Concluding remarks

Due to the lack of data on the parameters required to calculate the FARSC, it is not possible to
conclude the ToR1 assessment until further experimental data are available.

3.3. ToR2. Specific antimicrobials concentrations in feed which have an
effect in terms of growth promotion/increased yield

3.3.1. Amoxicillin

3.3.1.1. Literature search results

The literature search, conducted according to the methodology described in Section 2.2.2.1 of the
Scientific Opinion Part 1 (see also the Virtual Issue), resulted in 1,161 papers mentioning amoxicillin
and any of the food-producing animal species considered3 and any of the performance parameters
identified as relevant for the assessment of the possible growth-promoting effects of amoxicillin.4 After
removing the reports not matching the eligibility criteria, 22 publications were identified.

3.3.1.2. Evaluation of the studies

The 22 publications identified in the literature search were appraised for suitability for the
assessment of the effects of amoxicillin on growth or yield of food-producing animals; this appraisal
was performed by checking each study against a series of pre-defined exclusion criteria (see
Section 2.2.2.2.1 of the Scientific Opinion Part 1; see also the Virtual Issue).5 A total of 19 publications
were not considered suitable for the assessment because of several shortcomings identified in the
design of the study or in the reporting of the results. The list of excluded publications and their
shortcomings are presented in Appendix A.1 (Table A.1).

The publications considered suitable for the assessment are described and assessed in Section 3.3.1.3.

3.3.1.3. Assessment of the effects of amoxicillin on growth performance and yield

Three publications were considered suitable for the assessment of the effects of amoxicillin on
growth and yield performance in food-producing animals. The effects of the administration of the
antimicrobial on the endpoints described in Section 2.2.2.2.2 of the Scientific Opinion Part 1 (see also
the Virtual Issue) were evaluated. The selected publications and the effects on the relevant endpoints
are described below. The summary of the studies includes the description of the source of amoxicillin
used either as the base or as any specific form/commercial preparation, and the concentration(s)
applied as reported in each study; where a specific compound has been used, the calculation of the
concentration applied to the base substance is provided.

3.3.1.3.1. Studies in poultry

In the study of Abaza et al. (2006), a total of 180-laying hens (32 weeks old) and 24 cockerels
(local Egyptian strain ‘Al-Salam’) were divided into individual cages and allocated to six dietary

3 Ruminants: growing and dairy (cattle, sheep, goats, buffaloes); pigs: weaned, growing and reproductive; equines; rabbits;
poultry: chickens and turkeys for fattening, laying hens, turkeys for breeding, minor avian species (ducks, guinea fowl, geese,
quails, pheasants, ostrich); fish: salmon, trout, other farmed fish (seabass, seabream, carp, other); crustaceans; other animal
species.

4 (i) Intake-related parameters: feed intake, feed/gain ratio, feed efficiency, feed intake/milk yield, feed intake/eggmass; (ii) Weight-
related parameters: body weight, body weight gain; (iii) Carcass-related parameters: carcass weight, carcass yield, carcass
chemical composition, relative weight of the (different sections of) intestine; (iv) Milk or egg production/quality: milk yield, fat/
protein yield, egg production/laying rate, egg weight, egg mass; (v) Digestibility/utilisation of nutrients: utilisation of some
nutrients (e.g. DM, Ca, P), digestibility; (vi) Health-related parameters: reduction of morbidity and/or mortality; (vii) Herd/flock
related parameters; (viii) Other endpoints: e.g. intestinal morphological characteristics (villi height/width), changes in microbiota.

5 The following exclusion criteria were applied: ‘Combination of substances administered to the animals’, ‘Antimicrobial used
different from the one under assessment’, ‘Administration via route different from oral’, ‘Use of the antimicrobial with a
therapeutic scope’, ‘Animals subjected to challenges with pathogens’, ‘Animals in the study sick or not in good health,
Zootechnical parameters not reported’, ‘Insufficient reporting/statistics’, ‘Other (indicate)’.
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treatments. Two were the relevant treatments: a control and a treatment consisting of amoxicillin
0.02% (20 g amoxicillin trihydrate per 100 g of product, Adwia Co., Egypt) at a concentration of
40 mg amoxicillin trihydrate/kg feed (corresponding to 34.8 mg amoxicillin/kg feed); the basal diet was
based on maize-soybean. The study lasted 11 weeks. The number and weight of eggs were recorded
daily while feed intake (FI) was recorded weekly for each hen. Egg mass and feed conversion ratio
(F:G) were also calculated. At the end of the experimental period, blood samples were collected from
four birds from each treatment to determine protein, albumin and cholesterol. The digestibility
coefficients of nutrients were calculated using four cockerels from each treatment. Semen samples
were collected to determine semen-ejaculate volume, motility, sperm abnormalities. Fertility and
hatchability were calculated utilising artificial insemination. The birds treated with amoxicillin showed
higher egg production during the experimental period (49.21 vs 46.69 egg/hen), egg mass (29.71 vs
28.04 g/hen per day) compared to the control group and improved feed to egg mass ratio (4.26 vs
4.61), but lower FI (126.49 vs 128.85 g/day). The digestibility coefficients for dry matter (DM)
(78.09% vs 81.22%), organic matter (77.73% vs 80.84%) and crude fibre (19.87% vs 23.63%) were
reduced in birds receiving amoxicillin. The treated animals showed a reduction in sperm abnormalities
(25.58% vs 29.28%) and dead spermatozoa (13.28% vs 17.81%) and higher sperm motility (81.07%
vs 75.00%). Regarding blood analyses, treated animals showed an increase in total protein (3.86 vs
3.46 mg/100 mL) and albumin (2.52 vs 2.26 mg/100 mL). Dietary amoxicillin trihydrate at a
concentration of 40 mg/kg feed (corresponding to 34.8 mg amoxicillin/kg feed) improved egg
production yield in laying hens and sperm quality in cockerels, but reduced nutrient digestibility (dry
matter, organic matter, crude fibre). As these results are considered contradictory for growth-
promoting effects, overall, no conclusions can be drawn.

In the study of Mohammed et al. (2018), a total of 210 one-day-old male/female chickens for
fattening (Ross 308) were distributed in groups of ten animals and allocated to seven dietary
treatments (30 animals/treatment). Two were the relevant treatments: a control and a treatment
consisting of amoxicillin (unspecified form) at a concentration of 2,000 mg/kg feed. Two-stage regime
of the basal diets (starter 1�21 days and finisher 22�35 days) was used. The study lasted 35 days.
Animal’s weight and cumulative FI were recorded weekly and F:G calculated at the end of the
experiment. The birds treated with amoxicillin showed, compared to the control group, a lower
mortality (7.77% vs 11.11%). Dietary amoxicillin supplementation at 2,000 mg/kg feed did not have a
growth-promoting effect in chickens for fattening.

3.3.1.3.2. Study in fish

In the study of Lee et al. (2017), a total of 360 juvenile Japanese eels (Anguilla japonica, 11.5 g
BW) were distributed in 18 tanks in groups of 20 animals and allocated to six relevant dietary
treatments. Two were the relevant treatments: a control and a treatment consisting of amoxicillin
(unspecified form) at a concentration of 10,000 mg/kg feed. The study lasted 12 weeks. The total
number and weight of fish in each tank were measured for the calculation of weight gain, specific
growth rate (SGR), feed efficiency and survival rate. Blood samples were collected from five fish per
tank to determine aspartate aminotransferase (AST), alanine aminotransferase (ALT), glucose, total
proteins, lysozyme and superoxide dismutase (SOD). Three fish from each tank were sacrificed to
analyse whole-body proximate composition (moisture, protein, ether extract, ash). The fish treated
with amoxicillin showed, compared to the control group, higher relative weight gain (122% vs 108%),
SGR (1.11% vs 1.02%/day), and feed efficiency (68.7% vs 59.6%). Survival rate during the trial was
higher for amoxicillin-treated eels (91.7% vs 81.7%). The treated animals showed a higher body
content of protein (190 vs 163 g/kg) and ash (25.1 vs 19.6 g/kg) and an increase in SOD and
lysozyme activities in blood. Dietary amoxicillin supplementation at 10,000 mg/kg feed showed growth-
promoting effects in juvenile Japanese eels.

3.3.1.4. Discussion

From the studies examined, the test item has been described as (i) ‘amoxicillin trihydrate’ (one
study) or (ii) ‘amoxicillin’ (unspecified form; two studies). Therefore, for the case (ii), an uncertainty on
the exact product used/concentration applied has been identified.

A detailed analysis of the uncertainties for amoxicillin is included in Appendix B (Table B.1) of this
document, and the Section 3.3 of the Scientific Opinion Part 1 (see also the Virtual Issue).

The three studies considered as suitable for the assessment covered two animal categories within
poultry (chickens for fattening and layer hens/cockerels), and one species in aquatic animals (juvenile
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Japanese eels). In the assessed studies, treatments contained groups of animals treated with only one
amoxicillin concentration and did not allow dose-related effects to be assessed.

3.3.1.4.1. Poultry

In the two studies assessed in poultry, amoxicillin was supplemented with the diets of chickens for
fattening (Mohammed et al., 2018) and layer hens-cockerels (Abaza et al., 2006). The dietary addition
of amoxicillin at 2,000 mg/kg feed did not have a growth-promoting effect in chickens for fattening
(Mohammed et al., 2018). The study of Abaza et al. (2006) in layer hens and cockerels did not allow
to reach a conclusion.

3.3.1.4.2. Fish

The study in juvenile Japanese eels (Lee et al., 2017) showed that dietary supplements with
amoxicillin at 10,000 mg/kg feed had a growth-promoting effect.

3.3.1.5. Concluding remarks

It is judged 33�66% certain (‘about as likely as not’) that amoxicillin has growth-promoting/
increase yield effects in juvenile Japanese eels at a concentration of 10,000 mg/kg complete feed (one
study).

No data are available in the scientific literature showing effects of amoxicillin on growth promotion/
increased yield when added (i) to juvenile Japanese eels’ feed at concentrations below 10,000 mg/kg
or (ii) to feed of any other food-producing animal species or categories.

3.3.2. Penicillin V

3.3.2.1. Literature search results

The literature search, conducted according to the methodology described in Section 2.2.2.1 of the
Scientific Opinion Part 1 (see also the Virtual Issue), resulted in 1,619 papers mentioning penicillin plus
any of the food-producing animal species considered,3 and any of the performance parameters
identified as relevant for the assessment of the possible growth promoting effects of penicillin.4,6 After
removing the reports not matching the eligibility criteria, 34 publications were identified.

3.3.2.2. Evaluation of the studies

The 34 publications identified in the literature search were appraised for suitability for the
assessment of the effects of penicillin on growth or yield of food-producing animals; this appraisal was
performed by checking each study against a series of pre-defined exclusion criteria (see
Section 2.2.2.2.1 of the Scientific Opinion Part 1; see also the Virtual Issue).5 A total of 30 publications
were not considered suitable for the assessment because of several shortcomings identified in their
designs or in the reporting of the results. The other four publications were assessed but not further
considered because it was not stated unambiguously if the antimicrobial used was ‘Penicillin V’ – as
requested by the mandate – or any other form of penicillin. The list of excluded publications and their
shortcomings are presented in Appendix A.2 (Table A.2).

3.3.2.3. Concluding remarks

Owing to the lack of suitable data, levels of penicillin V in feed which may have a growth
promotion/production yield effect in any food-producing animal species could not be identified.

4. Conclusions

ToR1: to assess the specific concentrations of antimicrobials resulting from cross-
contamination in non-target feed for food-producing animals, below which there would
not be an effect on the emergence of, and/or selection for, resistance in microbial agents
relevant for human and animal health.

AQ1. Which are the specific concentrations of amoxicillin and penicillin V in non-target feed below
which there would not be emergence of, and/or selection for, resistance in the large intestines/rumen?

6 It was assumed that, since only oral administration of the antimicrobial had been applied, only Penicillin V had been used as
test item in the studies examined.
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• Due to the lack of data on the parameters required to calculate the Feed Antimicrobial
Resistance Selection Concentration (FARSC) corresponding to the concentrations of those
antimicrobials in non-target feed below which there would not be expected to be an effect on
the emergence of, and/or selection for, resistance in microbial agents relevant for human and
animal health, it is not possible to conclude until further experimental data are available

ToR2: to assess which levels of the antimicrobials have a growth promotion/increase
yield effect.

AQ2. Which are the specific concentrations of amoxicillin and penicillin V in feed of food-producing
animals that have an effect in terms of growth promotion/increased yield?

With regard to amoxicillin:

• It is judged 33�66% certain (‘about as likely as not’) that amoxicillin has growth-promoting/
increased yield effects in juvenile Japanese eels at a concentration of 10,000 mg/kg complete
feed (one study).

• No data are available in the scientific literature showing the effect of amoxicillin on growth
promotion/increased yield when added (i) to juvenile Japanese eels’ feed at concentrations
below 10,000 mg/kg or (ii) to feed of any other food-producing animal species or categories.

With regard to penicillin V:

• Owing to the lack of suitable data, levels of penicillin V in feed which may have a growth
promotion/production yield effect in any food-producing animal species could not be identified.

The results from these assessments for the different animal species are summarised in Annex F
(Tables F.1 and F.2) of EFSA BIOHAZ Panel, 2021a - Scientific Opinion ‘Part 1: Methodology, general
data gaps and uncertainties’ (see also the Virtual Issue).

5. Recommendation

To carry out studies to generate the data that are required to fill the gaps which have prevented
calculation of the FARSC for amoxicillin and penicillin V.
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MIC minimum inhibitory concentration
MIClowest minimum inhibitory concentration of the most susceptible species/strain included in the

EUCAST database for a certain antimicrobial used to calculate the PMSC (see below)
MICres minimum inhibitory concentration of the resistant strain
MICsusc minimum inhibitory concentration of the susceptible strain
MICtest minimum inhibitory concentration of the susceptible isolate used in the competition

experiments to calculate the MSC
MSC minimal selective concentration
NAM N-acetylmuramic acid
NAG N-acetylglucosamine
PBPs penicillin-binding proteins
PK pharmacokinetic(s)
PMSC predicted MSC
SGR specific growth rate
SOD superoxide dismutase
ToRs Terms of Reference
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Appendix A – List of excluded publications and their shortcomings

A.1. Amoxicillin

The publications excluded from the assessment of the effects of amoxicillin on growth promotion/increased yield following the criteria defined in
Section 2.2.2.2.1 of the Scientific Opinion Part 1 (see also the Virtual Issue) are summarised in Table A.1.

Table A.1: Publications not relevant for the assessment of the effects of amoxicillin on growth promotion/increased yield and excluding criteria

Author
(year)

Species

Excluding criteria

Combination
of substances
administered

to the
animals

Antimicrobial
used different
from the one

under
assessment

Administration
via route

different from
oral

Use of the
antimicrobial

with a
therapeutic

scope

Animals
subjected to
challenges

with
pathogens

Animals in the
study sick or
not in good

health

Zootechnical
parameters
not reported

Insufficient
reporting/
statistics

Other
(indicate)

Banerjee
et al. (2018)

Poultry X X

Bosi et al.
(2011)

Pigs X

Candotti and
Cossettini
(2010)

Pigs X X(1)

da Costa
et al. (2011)

Poultry X X

Darwish and
Hobbs
(2005)

Fish X X(2)

Eid et al.
(2020)

Poultry X

Jamin et al.
(2012)

Pigs X(3),(4)

Khatun et al.
(2017)

Poultry X(5)

Koutoulis
et al. (2015)

Poultry X X X(1)

Marien et al.
(2006)

Poultry X X
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Author
(year)

Species

Excluding criteria

Combination
of substances
administered

to the
animals

Antimicrobial
used different
from the one

under
assessment

Administration
via route

different from
oral

Use of the
antimicrobial

with a
therapeutic

scope

Animals
subjected to
challenges

with
pathogens

Animals in the
study sick or
not in good

health

Zootechnical
parameters
not reported

Insufficient
reporting/
statistics

Other
(indicate)

Marien et al.
(2007)

Poultry X X

Oliveira et al.
(2018)

Pigs X X

Piva et al.
(2007)

Pigs X X X(1)

Roth et al.
(2019)

Poultry X

Schokker
et al. (2017)

Poultry X

Soler et al.
(2018)

Pig X

Thymann
et al. (2007)

Pig X X(6) X

Verner-
jeffreys et al.
(2004)

Fish X

Wisselink
et al. (2017)

Poultry X

(1): No negative control.
(2): Only survival rate assessed.
(3): Small number of animals (6 per treatment at the end of the trial) to get information on growth performance.
(4): Suckling piglets used as animal models for human infants. The study did not aim at exploring the effect of amoxicillin in animal feeding/nutrition.
(5): No replicates.
(6): The combined treatment was given both in feed and as intramuscular injection.
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A.2. Penicillin V

The publications excluded from the assessment of the effects of penicillin V on growth/production yield following the criteria defined in Section 2.2.2.2.1
of the Scientific Opinion Part 1 (see also the Virtual Issue) are summarised in Table A.2.

Table A.2: Publications not relevant for the assessment of the effects of penicillin V on growth promotion/production yield and excluding criteria

Author (year) Species

Excluding criteria

Combination
of substances
administered
to the animals

Antimicrobial
used different
from the one

under
assessment

Administration
via route

different from
oral

Use of the
antimicrobial

with a
therapeutic

scope

Animals
subjected to
challenges

with
pathogens

Animals in
the study sick
or not in good

health

Zootechnical
parameters
not reported

Insufficient
reporting/
statistics

Other
(indicate)

Antoniou and
Marquardt
(1982)

Poultry X(1)

Blake and Hess
(2013)

Poultry X(1)

Bowen and
Sullivan (1971)

Poultry X

Bridges et al.
(1954)

Pig X(2)

Burnell et al.
(1988)

Pig X

Cho et al.
(2006)

Pig X X

Cornelison
et al. (2006)

Poultry X(3)

Creech and
Couch (1957)

Poultry X(4)

Harper et al.
(1983)

Pig X X

Hathaway et al.
(1996)

Pig X

Hathaway et al.
(1999)

Pig X X
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Author (year) Species

Excluding criteria

Combination
of substances
administered
to the animals

Antimicrobial
used different
from the one

under
assessment

Administration
via route

different from
oral

Use of the
antimicrobial

with a
therapeutic

scope

Animals
subjected to
challenges

with
pathogens

Animals in
the study sick
or not in good

health

Zootechnical
parameters
not reported

Insufficient
reporting/
statistics

Other
(indicate)

Hathaway et al.
(2003)

Pig X

Holme and
Robinson
(1965)

Pig X(5)

Hu and
McDougald
(2002)

Poultry X X

Ilori (1984) Pig X X(5)

Jiraphocakul
et al. (1990)

Poultry X

Jukes and
Jukes (1973)

Several X(6)

Karimi et al.
(2010)

Poultry X(3)

King (1966) Rabbit X(7)

Li et al. (2019) Ruminant X
NCR-89 (1984) Pig X X

Nyachoti et al.
(2012)

Pig X X X X

Oplinger et al.
(2015)

Fish X X(8) X

Pimentel and
Cook (1988)

Poultry X(1)

Powley et al.
(1981)

Pig X

Radecki et al.
(1988)

Pig X

Rollins et al.
(1976)

Pig X X
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Author (year) Species

Excluding criteria

Combination
of substances
administered
to the animals

Antimicrobial
used different
from the one

under
assessment

Administration
via route

different from
oral

Use of the
antimicrobial

with a
therapeutic

scope

Animals
subjected to
challenges

with
pathogens

Animals in
the study sick
or not in good

health

Zootechnical
parameters
not reported

Insufficient
reporting/
statistics

Other
(indicate)

Roura et al.
(1992)

Poultry X X

Stutz and
Lawton (1984)

Poultry X(1)

Swinkels et al.
(1988)

Pig X

Thaler et al.
(1989)

Pig X X(9)

Unno et al.
(2015)

Pig X X(9)

Veum et al.
(1980)

Pig X

Wallgren et al.
(1999)

Pig X X

(1): The product tested is not unambiguously described as ‘Penicillin V’.
(2): Old study (1954). Small number of animals tested (7/group), no description of statistical methods, insufficient reporting.
(3): The study was conducted with Penicillin G.
(4): Old study (1957). No mention of statistical methods or of statistical significance of findings.
(5): While p values are given, there is no mention of the statistical method used.
(6): An old (1973), albeit well-done for its time, review on toxicological and allergenic hazards to humans and animals related to low levels of antimicrobials. The focus is given to aureobomycin

and tetracyclines rather than to penicillin.
(7): Old study (1966) mainly focused on changes in organ weight; the body weight was recorded each 15 days, but no record of feed intake was taken.
(8): Exposure of salmon eggs through water.
(9): The study focused on sequencing the microbiota.
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Appendix B – Table of uncertainties

Uncertainties associated to the Growth promotion assessment

Table B.1: Potential sources of uncertainty identified in the levels of amoxicillin in feed which have growth promotion/increase yield effect and
assessment of the impact that these uncertainties could have on the conclusion

Source of the
uncertainty

Nature or cause of uncertainty
Impact of the uncertainty on the conclusion on the level(s)
which have growth promotion/increase yield effect

Form(s) of
antimicrobial used

The specific form of the antimicrobial used in the study (as the ‘(free) base’
substance, its salts or specific products/formulations containing the base
substance) has not been clearly described in several publications. In
summarising the results, the concentrations have been reported as for ‘base’
substance when the form of the antimicrobial is not specified (conservative
assumption).

Underestimation of the concentration which may have shown
growth-promoting effect.

Evidence
synthesis and
integration

As described in Section 2.2.3 of the Scientific Opinion Part 1 (see also the Virtual
Issue), the low number of studies retrieved prevented evidence synthesis.

Underestimation/Overestimation
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