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ABSTRACT

A problematic feature of many human cancers is
a lack of understanding of mechanisms controlling
organ-specific patterns of metastasis, despite recent
progress in identifying many mutations and tran-
scriptional programs shown to confer this potential.
To address this gap, we developed a methodology
that enables different aspects of the metastatic pro-
cess to be comprehensively characterized at a clonal
resolution. Our approach exploits the application
of a computational pipeline to analyze and visu-
alize clonal data obtained from transplant exper-
iments in which a cellular DNA barcoding strat-
egy is used to distinguish the separate clonal con-
tributions of two or more competing cell popu-

lations. To illustrate the power of this methodol-
ogy, we demonstrate its ability to discriminate the
metastatic behavior in immunodeficient mice of a
well-established human metastatic cancer cell line
and its co-transplanted LRRC15 knockdown deriva-
tive. We also show how the use of machine learning
to quantify clone-initiating cell (CIC) numbers and
their subsequent metastatic progeny generated in
different sites can reveal previously unknown rela-
tionships between different cellular genotypes and
their initial sites of implantation with their subse-
quent respective dissemination patterns. These find-
ings underscore the potential of such combined ge-
nomic and computational methodologies to identify
new clonally-relevant drivers of site-specific patterns
of metastasis.
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GRAPHICAL ABSTRACT

INTRODUCTION

Metastases are the primary cause of cancer fatality, and a
primary aim of adjuvant systemic treatments is to eliminate
cancer at metastatic sites (1,2). However, the complex pro-
cesses that determine the metastatic behavior of individual
cells within human tumors and their ability to invade and
proliferate in heterotopic sites remain poorly understood.
Indeed, it seems that the relevant factors may differ signif-
icantly within as well as between patients, confounding the
effectiveness of current precision therapy approaches (1).
Thus, much interest is focused on developing new methods
to analyze the metastatic process at a clonal level across dif-
ferent target organ sites to facilitate the identification and
causes of their differential behavior and ultimate therapeu-
tic vulnerabilities.

Cellular DNA barcoding is emerging as a powerful next-
generation sequencing (NGS)-based technology for track-
ing clonal growth properties displayed in vivo and in vitro
wherein the genome of single cells are uniquely labelled with
semi-random nucleic acid sequences which serves as bar-
codes (3–9). Several ‘proof-of-concept’ studies have already
shown the ability of this technology to delineate at a clonal
level, the heterogeneity of normal stem cell (5,10–12) and
cancer cell growth properties (3,4,13–18) and resistance of
the latter to defined therapeutics (7,8,13,14,19). However, a
lack of standardized analytical and visualization tools, and
methods for reporting DNA-barcoded cell data continue
to pose significant challenges to the widespread use of this
methodology (5,10,12,20,21).

To develop a methodology for clonal investigation of
metastatic spread, we chose a human epithelial carcinoma
cell line, OVCAR5, established from the ascitic fluid of
an untreated patient with progressive ovarian adenocarci-
noma, as a transplantable metastatic cancer model (22).
OVCAR5 cells overexpress claudin-4 and carry a homozy-
gous G12V mutation in the KRAS oncogene that are key
to the aggressive growth properties they display in vitro
and in xenograft models (23,24). We therefore chose this
model to assess the capacity of DNA-barcoded cells to
provide informative ‘competitive clone-initiating cell (CIC)’
data under conditions anticipated to alter metastatic activ-

ity. Given a recent report that expression of type-1 trans-
membrane LRRC15 in primary tumors is associated with
an increased frequency of bowel and omental metastasis
(23), we designed and analyzed the results of competitive
transplant experiments in which OVCAR5 cells with high
endogenous expression of LRRC15 were paired with OV-
CAR5 cells in which LRRC15 had been suppressed. The
results demonstrate the utility of this methodology to quan-
tify the metastatic spread of xenografts of malignant hu-
man cells at clonal resolution and the related effects of their
genetic perturbation on their clonal patterns of growth at
two different sites of injection and their consequent sites of
metastasis.

MATERIALS AND METHODS

OVCAR5 cancer cell line derivatives

OVCAR5 cells were obtained from Fox Chase Cancer Cen-
ter, Philadelphia and were maintained using RPMI-1640
media supplemented with 10% FBS and 1% penicillin–
streptomycin. LRRC15 knockdown was performed in the
OVCAR5 cells with shLRRC15 (Sigma-Aldrich) target-
ing the 3′UTR [Sequence: GCTATGAAAGAGAGAAGG
AAA] using standard transfection guidelines and reagents.
Whole cell lysates of OVCAR5-shControl and OVCAR5-
shLRRC15 cell lines were subjected to western blot anal-
ysis against LRRC15 (ab150376) and GAPDH (sc-47724)
antibodies. The blots were visualized using fluorophore-
conjugated secondary antibodies (LICOR) and scanned by
LI-COR OdysseyFc Imaging System (Nebraska, USA).

Cellular DNA barcoding

OVCAR5-shControl and OVCAR5-shLRRC15 cell lines
were barcoded by lentiviral infection with EGFP index 1.4
and Ruby3 index 1.2 libraries respectively using 0.8 �g/ml
polybrene. After a 24-h incubation, the virus containing
medium was removed and cells were cultured for an addi-
tional 24-h in fresh medium. To ensure that the majority of
cells were labeled with a single barcode per cell, for lentiviral
infection we used a predetermined dilution of virus (1:500–
1:1000) corresponding to infectivity rate <37% based on
Poisson statistical modelling. The cells were dissociated us-
ing 0.05% trypsin and sorted using stringent gating pro-
cedures. The barcoded OVCAR5-shControl (also referred
to as LRRC15+) and OVCAR5-shLRRC15 (LRRC15–)
cells were sorted and mixed in equal numbers (up to 1
million cells) in PBS, loaded on cell injection pipettes and
placed on ice until injection. A small portion of sorted cells
were verified for purity by FACS analysis. Further, 500–
1500 sorted cells were also plated into 6-well plates in 2D
clonogeneic assay. After 10 days, colonies were fixed with
cold methanol/acetone (1:1) and stained with Giemsa stain.
The clonogenic frequency was enumerated and the colony
was imaged using Cytation 5 imager and colony area mea-
sured using Biotek’s Gen5 software.

Ovarian and oviductal xenotransplantation

The oviductal and ovarian xenotransplant studies in female
NSG mice were specifically approved for the study by the
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Mayo Clinic Institutional Animal Care and Use Commit-
tee (IACUC, Protocol # A00004713-19). Surgery was per-
formed on one mouse at a time. Mouse weight was mea-
sured to properly dose intraperitoneal ketamine and xy-
lazine. Following anesthesia induction, fur was removed,
and two incisions were made:(i) between last rib and hip and
(ii) between dorsal side and abdomen. The fat pad linked
to the ovary and oviduct was exposed using a stereomicro-
scope and ovarian fat pad was grabbed and held outside the
abdominal cavity in order to minimize the contact with re-
productive tract and avoid luteolysis.

Oviductal xenotransplantation. Under the stereomicro-
scope, the ampulla portion of the oviduct (identifiable as
a highly coiled structure) was placed horizontally on the
surgical platform and a small transversal cut nearly three
fourth of the circumference on the distal part of ampulla
was made using a micro-scissor. The glass needle was slowly
inserted through the cut site in the direction of uterus and
cell suspension in trypan blue buffer was injected. Few air
bubbles were also injected to indicate successful injection.

Ovarian transplantation. The characteristic reddish ovary
was held using forceps. Subsequently, a cell injection pipette
was inserted into the bursa of ovary and cells were injected.
After removal of the pipette, compression exerted by for-
ceps prevented fluid regurgitation or leakage into the peri-
toneal cavity. The ovary and oviduct were returned to the
abdominal cavity and muscle and skin was closed using ab-
sorbable sutures. Ibuprofen (40 mg/kg, 0.2 mg/ml of water)
was given as analgesic in drinking water 48 h before and af-
ter the surgical procedure.

Bioluminescence imaging

The tumor growth and volume were non-invasively moni-
tored using Xenogen IVIS optical imaging system. Briefly,
animals were anesthetized using 2% isoflurane in an in-
duction chamber and injected with 0.2 ml (150 mg/kg) of
luciferin substrate through intraperitoneal route using 25-
gauge needles. Subsequently, the animals were placed on a
pre-warmed stage in IVIS imaging chamber and 2% isoflu-
rane anesthesia was maintained during the course of proce-
dure via nose cone. Living Image® Software from Xenogen
was used for image acquisition. The animals were returned
to respective cages following the procedure and observed for
recovery.

Preparation of ‘spike in’ controls

A small library of 17 known barcode (Sanger sequenced)
plasmids of index 1.6 was created and individual plas-
mids were quantified using Nanophotometer. The copy
number/ng of plasmid DNA was calculated from the size
the of plasmid (11.1 kb); ∼1.25 ng of plasmid DNA cor-
responds to 1.04 × 108 copies. Subsequently, each plasmid
was serially diluted and combined to obtain a plasmid pool
with 1–10,000 copies for sequencing reactions.

Barcode amplification

At the endpoint, primary tumor and other organs were
harvested and snap frozen. Genomic DNA was extracted

from the frozen tissues (10 mg) with a MasterPure Com-
plete DNA and RNA purification Kit (Lucigen). We used
Q5® High-Fidelity 2X Master Mix (NEB) to amplify the
barcode sequence for NGS by introducing Illumina adap-
tors and 5-bp-long index sequences. The sampling of suffi-
cient template coverage was ensured by parallel PCR reac-
tions. For each PCR reaction, 1 �g of genomic DNA was
spiked with ‘spike in’ controls and used as a template. La-
beling each sample with 1 of the 20 unique sample indexes
(referred to as index 2) enabled us to multiplex and sequence
up to 20 samples at once.

NGS barcode sequencing

Completed libraries were spiked with 10% commercially
prepared PhiX library (Illumina) to increase base diversity
for improved sequencing quality. Samples were sequenced
at one sample per lane to generate ∼85–95 million total
reads per sample. The single read flow cells were sequenced
as 100 base single end reads on an Illumina HiSeq 2500 us-
ing TruSeq Rapid SBS sequencing kit version 1 and HCS
version 2.0.12.0 data collection software. Base-calling is
performed using Illumina’s RTA version 1.17.21.3.

Barcode data processing and threshold determination

In the preprocessing step, the barcode sequences were ex-
tracted from the raw FASTQ files based on the sequences
of library index (index 1) and sample index (index 2) at ei-
ther ends of the amplicon. The number of sequences sharing
the same unique barcode were then counted and barcodes
from the same library with no more than 2 mismatched base
pairs were merged as these likely arose due to sequencing
errors (5,11). A barcode count table was generated with re-
spect to all identified clones with unique index 1, index 2
and barcode sequence combination. Raw counts were then
normalized to fractional read values (FRVs) by dividing
the raw clone counts by the total sample size: FRV = raw
Counts/total raw counts in sample.

The CIC Calculator filtered the noise using the dedi-
cated spike-in index 1.6 (GTCA) library in each sample as
a ground truth. To do so, the true positive rate (TPR) and
false positive rate (FPR) were calculated as below.

T PR = # Spikein clusters a f ter f ilter ing
# total spikein clusters

,

F PR = # NonSpikein clusters a f ter f ilter ing
# total NonSpikein clusters

(1)

The fractional read value (FRV) threshold was then de-
termined based on the optimal accuracy from the receiver
operating characteristic (ROC) curves. This was done either
using the local spike-in controls (those from each individ-
ual sample) or based on a pool of spike-in controls from all
samples (global). For our downstream analyses, the global
setting was used. Small barcode clones with FRV lower than
the threshold were filtered out. Next a linear fit was per-
formed between the log10(FRVs) of the spike-in controls
and the known input copy numbers (ignoring single copy
inputs). The resulting fit was then used to convert FRVs into
absolute cell counts which could be used in subsequent anal-
yses.
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Analyses of clonal patterns

All unique clones appearing above detection threshold were
first identified for each mouse and all sites with detected
values for each identified. As we know that all remaining
sites these clones were below the threshold of detection, and
many identical values can interfere with various tests, we
interpolated values for each unique clone at below thresh-
old sites. To do so we fit a left-censored Poisson distribu-
tion to each site for each mouse based on observed clones
at that site. Lambda values between 0 and 100 were tested
in increments of 0.1 and the value selected which minimized
the sum of squared error. From this lambda value, we could
then infer the expected frequency of cells at below threshold
values. Clones were then assigned random cell numbers be-
low thresholds with the probability based on the Poisson
fit (i.e. filled in the below threshold values of the best-fit
Poisson distribution). For those sites that lacked sequencing
data due to a failure to amplify the barcode, we once again
know that they must have below threshold levels. As no dis-
tribution could be fit, a uniform random distribution was
used to assign below threshold values in these cases. Miss-
ing data for which tissues had not been collected were left as
missing. These interpolated cell number matrices were used
for subsequent analyses. Notably, this interpolation did not
alter the relative relationships between clones (as assessed
by their 2D patterns following dimensionality reduction),
but simply eliminated technical artifacts in subsequent anal-
yses caused by repeated 0 measurements. All analyses and
statistics for this and following sections were performed in
R (version 3.6.1).

To determine whether there was a relationship in how
CIC types distribute across different metastatic sites, we first
calculated pairwise Spearman’s correlations between sites
for each mouse based on the detected cell numbers of each
clone at each metastatic site. These correlations thus rep-
resent an overview of the similarity of clonal outputs for
each clone between the sites. These matrices were then con-
verted to distance matrices based on the cosine theorem:
d = √

2(1 − ρ). As an initial measure of whether these mice
showed similar patterns (and thus it was reasonable to com-
bine distance matrices), we performed a congruence among
distance matrices test using the R package ‘ape’ (version
5.4.1). We next took a mean of the distance matrices across
mice ignoring missing values to get the average pattern of re-
lationships. This was also done for only ovarian injections,
and for oviductal mice only, including only those sites which
were measured in all mice in that set. Each of these methods
was used to perform a classical multi-dimensional scaling
(MDS). In order to obtain a measure of the biological vari-
ability of these patterns, we first calculated a principal com-
ponent analysis (PCA) on the mean distance matrix (ap-
proximately equivalent MDS). The PCAs were then used
to embed the matrices from each individual mouse into the
same PCA space.

Given the apparent association of blood and ascites to
specific metastatic sites, we next set out to estimate the
relative importance of blood and ascites to the establish-
ment of metastases in each site. For this, we analyzed the
fit of a series of different multivariate linear regression
models. In each case, a model was designed to predict

one site given the cell numbers in Blood, Ascites, and
the Primary Tumor as predictors: asinh( si te

10 ) = 0 + β1 ∗
asinh( Blood

10 ) + β2asinh( Ascites
10 ) + β3asinh( Primar y Tumour

10 ).
Clones with missing measurements in any predictor or
in the site being predicted were excluded from that given
model. Adjusted R2 and p-values were calculated for each
fit, and a false-discovery rate was then calculated across all
models/predictors to correct for multiple testing.

In order to identify common patterns of metastatic
spread we next performed a clustering analysis on the over-
all dataset. This was done in several stages. First, we re-
moved all clones which had less than 10 cells detected at
all sites and assigned these to a low (‘L’) cluster. From the
remaining clones, we randomly sampled 100 of these from
each mouse and calculated a pair-wise Pearson’s correla-
tion between the asinh(cell #/10) of each cell. Where mea-
surements were missing, the correlation was calculated be-
tween those cells including only the values measured in both
clones (ie. pair-wise complete measurements). A k-nearest
neighbor (KNN) graph was then constructed based with
a maximum of 10 nearest neighbors per cell and including
edges only if the Pearson’s correlation was 0.9 or greater us-
ing the R packages ‘igraph’ (version 1.2.6). The Leiden clus-
tering algorithm (25) was then run on the KNN graph with
a resolution parameter of 0.5 to generate an initial set of
clusters using the R package ‘leiden’ (version 0.3.6). Mean
values for each site were then calculated for each cluster and
cells which were not part of the initial clustering assigned
to their most correlated cluster mean (pair-wise complete
Pearson’s correlation of the asinh(cell #/10)) if that most
correlated cluster was at least 0.7. If not, these cells were
left unassigned. Next, all clusters that were only detected
in a single mouse and those with 10 clones or less were re-
moved to eliminate possible artifacts. Finally, to minimize
over-clustering, clusters with cluster means with a Pearson’s
correlation of 0.7 or more were merged. This resulted in a
total of 17 clusters, a cluster of clones which were border-
line detectable in all sites, and 295 unassigned clones. As
a visual assessment of cluster relationships and cluster so-
lution success, dimensionality reduction was performed on
a distance matrix calculated from the pair-wise complete
Pearson’s correlation matrix of asinh(cell #/10) between all
clones (converted as: d = √

2(1 − r )). This was done both
by classical MDS, as well as by UMAP using the R package
‘umap’ (version 0.2.7.0).

To identify the effects of LRRC15 and injection site
on clone numbers both overall and for each cluster, a se-
ries of Aligned Rank Transform (ART) 2-factor ANOVAs
were performed (26) using the R package ‘ARTool’ (version
0.10.8). In all cases, clone number was used as response,
while genotype (LRRC15+ vs LRRC15–) and injection site
(ovarian vs oviductal) and the possible interaction between
them used as predictors. For comparisons of clone numbers
across clusters, P-values were multiple testing corrected by
false discovery rate (FDR).

As blood was not measured in most oviductal mice
but was a very strong predictor of engraftment at distant
metastatic sites, we performed an elastic net (EN) logistic
regression to predict whether a clone would be present in
the blood or not. This model used asinh (cell #/10) for all
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sites measured in all mice (other than blood and ascites)
as predictors for the binary variable of detectable or not
in blood. To implement this model, we first split the data
into training and validation sets, with 70% of the clones
present in the blood from each of the ovarian mice included
in the training set, and double that number of clones which
were not present in the blood from those mice. This over-
representation of blood clones was done to ensure that a
sufficient number of positives were included in the train-
ing data and prevent specificity (as most clones were not in
blood) from being the driving force of the scoring. The re-
maining 30% of blood clones and the remaining non-blood
clones were kept back as a validation set. We then per-
formed hyperparameter fitting with a fixed alpha value of
0.5 (to balance between model sparsity and grouping) with
varying lambda and gamma regularization penalties using
5-fold cross validation with area under the receiver-operator
curve (AUC) as the scoring parameter using the R package
‘glmnet’ (version 4.0.2). Overall prediction accuracy, sensi-
tivity, and specificity was then scored on a per-mouse basis
in the training and validation sets. Another model was then
generated to predict whether a clone was present in ascites
or not. In this case, the training set included 70% of clones
present in ascites from the ovarian mice and an equal num-
ber (as ascites clones were more frequent than blood) which
were not present in ascites. Hyperparameter optimization,
training and validation was then performed as was done for
blood.

CIC calculator

The CIC calculator was implemented with R and Python
languages.

RESULTS

Multiplexed DNA barcoding libraries with spike-in barcodes

To generate a technology that would enable the clonal track-
ing of concurrently generated progeny of multiple sources
of tumor populations, we first introduced into a MNDU3
plasmid lentivector, a red-shifted firefly luciferase (Luc)
fused to the cDNA of either mRuby3 or EGFP, via a ‘self-
cleaving’ P2A linker peptide sequence. A scaffold to fa-
cilitate insertion of an individual non-coding 37 bp semi-
random barcode from a previously described plasmid li-
brary (10) was then inserted downstream of the Luc-2A-
FP cassette. To expand the DNA barcode library reper-
toire, we added a unique 4 bp library index (referred as in-
dex 1.1, 1.2, 1.3, 1.4 or 1.5; Supplementary Figure S1A)
to the 5′ end of the barcode sequences and adapted the
forward and reverse primer binding sequences to our de-
sign (adopted from (7)) for PCR-based amplification of
the barcode sequences and NGS library preparation of la-
belled cells. In this study, we assigned the library indexes 1.2
and 1.4 to OVCAR5-shLRRC15 (referred to as LRRC15–)
and OVCAR5-shControl (LRRC15+) cell lines respectively
(Figure 1A).

The possible theoretical estimate of unique barcodes in
the 25 libraries thus created is 4×106. Transformed bacte-
rial cell plating yielded values from 1 to 3 × 106 with a me-
dian diversity of 2 × 106 (Supplementary Figure S1B) and

barcodes isolated from 250 individual bacterial clones con-
firmed no sequence redundancy (data not shown). Titers of
concentrated lentiviral supernatants ranged between 4 and
28 × 1012 (median of 21×1012) transduction units/ml (Sup-
plementary Figure S1B). To control variables associated
with NGS analysis of test preparations and to set a thresh-
old for data filtering, we also created a 1.6 indexed plasmid
library of 17 known and Sanger sequence validated bar-
codes (Supplementary Figure S2A). These plasmids were
then mixed at precise copy numbers to serve as internal cali-
bration controls. This ‘spike in’ control barcode library was
added to each sample at the time of starting the prepara-
tion of every test PCR-based amplicon sequencing library
(Supplementary Figure S2B). At the time of amplification,
a unique sample index was added per sample (index 2.1 to
index 2.20). This approach enabled 20 test samples to be
multiplexed for sequencing on an Illumina HiSeq 2500 se-
quencer (Supplementary Figure S2B), to decrease sequenc-
ing costs.

Design of the clone-initiating cell (CIC) calculator

The flow chart of the CIC calculator is shown in Figure
1B. Briefly, indexes were first identified from each read,
unique barcodes from each library were identified and
counted, and barcodes from the same library with ≤2 mis-
matches were pooled (5,11) to identify the yield counts
per unique index (∼500K unique barcodes/flow cell). In
practice, we found low frequency repeated reads (<10) ac-
counted for only 0.5% of the total labelled cells (total read
counts). Receiver-operator characteristics (ROC) based on
the known ‘spike-in’ controls were then used to filter out
such likely technical artifacts (Figure 1C). As predicted by
Poisson sampling, the reads obtained for the known bar-
code copy numbers in the spike-in samples gave a log-linear
relationship except for the single copy inputs (Figure 1D).
Removal of the latter gave an improved correlation with
known barcodes, and sensitivity (Figure 1E, Supplementary
Table S1).

This CIC Calculator also takes advantage of two differ-
ent steps for thresholding clone sizes: one at the level of the
sample, and a separate one at the global level of clone anal-
ysis across all samples being analyzed (see flowchart, Fig-
ure 1B). The local sample thresholding calculates the clone
size threshold using only the spike-in in the specific sam-
ple of interest, which is more accurate and specific to the
sample. The global sample thresholding, in contrast, pools
all spike-in control barcodes across separate groups of sam-
ples, to obtain a shared threshold for all samples. This is
particularly useful for generating ROC curves if individual
samples fail for technical reasons. The two strategies can be
set by the user before execution.

Overall growth of OVCAR5 LRRC15+ and LRRC15- cells
in vitro and in co-transplanted mice

To test the utility of the above barcode system, we chose
to apply it to compare the growth of a well-studied hu-
man ovarian cancer cell line (OVCAR5) in competition
with a derivative we engineered that we anticipated would
reduce its metastatic activity in transplanted immunodefi-
cient mice. For the latter we chose to knockdown LRRC15,
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Figure 1. Barcoded competitive clone-Initiating cell (BC-CIC) assay and clone-initiating cell (CIC) calculator. (A) experimental design for BC-CIC assay.
LRRC15+ and LRRC15- were tagged with EGFP index 1.4 and Ruby3 index 1.2 libraries and FACS sorted. The FACS sorted cells were mixed in equal
numbers and co-transplanted at oviductal or ovarian sites in NSG mice. Mice were monitored for tumor development till study endpoint. At necropsy pri-
mary tumor and tissues/organs were harvested and DNA was extracted. Multiplexed sequencing libraries were prepared with ‘spike-in’ control barcodes by
PCR and subjected to NGS. The data was analyzed using CIC Calculator. (B) flow chart showing the data deconvolution steps following NGS sequencing.
(C) receiver operator characteristics (ROC) based on the known ‘spike-in’ controls were used to filter out artifacts. (D) plot showing log-linear relationship
between the known copy numbers (1–10,000) in the spike-in control barcodes and sequencing reads. (E) removal of single-copy spike-ins improved the R2
values.
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as its expression has been strongly associated with bowel
metastases in ovarian cancer patients (23,24). The two
shRNA LRRC15 knockdown constructs namely shRNA-
1 and shRNA-2 when transduced in OVCAR5 cell line led
to suppression of LRRC15 protein levels compared to a
non-targeting shRNA control or parental cells (Supplemen-
tary Figure S3Ai-ii). We used shRNA-1 transduced cells (re-
ferred as LRRC15–) as a genetic model of LRRC15 sup-
pression. In vitro colony-forming assays of FACS-purified
LRRC15+ and LRRC15– cells isolated 48 hours post-
transduction showed no effect of LRRC15 knockdown on
their immediate colony-forming efficiency, although the
colonies derived from the LRRC15- cells were noticeably
smaller than the LRRC15+ control cells (Supplementary
Figure S3B–E). We then compared the tumorigenic ac-
tivity of the co-injected LRRC15+ and LRRC15– cells
<2 h post-FACS purification (ratio 1:1) into ∼8 week old
NOD/SCID/IL2r�−/− (NSG) mice either under the ovar-
ian bursa (ovary, 0.06–1.25 × 106 total cells into each of
10 mice) or within the ampullary oviducts (oviduct, 0.10–
1.25 × 106 total cells into each of 10 mice) (Supplementary
Table S2) (27). All animals survived the surgical procedure
and bioluminescence imaging showed 100% tumor take at
both injection sites (Supplementary Figure S4A) and con-
firmed at necropsy.

Both groups of NSG mice co-injected LRRC15+ and
LRRC15– cells either oviductally or directly into the ovary
developed distended abdomens, reduced ambulatory ac-
tivity and body weight with evidence at autopsy at 7–8
weeks post-injection of bulky disease (median survival of
48 days for both groups (Supplementary Figure S4B, C).
The groups also showed similar bioluminescence signals
(Supplementary Figure S4D), tumor (Supplementary Fig-
ure S4E), and organ weights (Supplementary Figure S4F–
M). Gel electrophoresis analysis of PCR products of ge-
nomic DNA from primary tumors, omental metastatic tu-
mors, ascites, blood and other organs confirmed the pres-
ence of widespread metastases in both groups (data not
shown). All ovarian and oviductal injected mice showed
multiple macro-metastases (Supplementary Figure S5).

Detection of different CIC distributions of co-transplanted
LRRC15+ and LRRC15– cells

We next asked whether the spectrum of separately an-
alyzed CICs in similarly combined equal transplants of
LRRC15+ and LRRC15– cells would also be similar or
different. Genomic DNA was then isolated from various
anatomical sites including the primary tumors from all 20
transplanted mice. We proceeded with barcode sequencing
of various sites in a subset of mice (seven ovary and five
oviduct transplants). Amplicon libraries from barcode sig-
nal ‘positive’ sites, independently verified by gel analysis
(data not shown), were prepared with ‘spike in control bar-
codes’, multiplexed and sequenced. Clones were then iden-
tified and analyzed using the CIC Calculator strategy (Fig-
ure 1B). The results showed a highly significant decrease
in clonal contribution of the LRRC15- cells at both pri-
mary injection sites (Figure 2A), as well as at their various
metastatic sites (Figure 2B–E). For example, the mean num-
ber of LRRC15+ CIC in primary sites (ovary) was 89.5 ±

3.23, as compared to 7.80 ± 1.21 for the LRRC15- cells
(P < 0.0005 paired student t-test, Figure 2D). The data
also showed sporadic incidences of LRRC15– CIC num-
bers higher than LRRC15+ CIC in organs such as bowel
mets (Figure 6B). Similarly, for the oviduct injection group,
the calculated clone sizes (corrected for total tissue/organ
weights) identified large differences in the largest clones pro-
duced by the LRRC15– and LRRC15+ cells (Supplemen-
tary Figure S6). For example, in mouse #48, the largest
clone produced from a LRRC15– cell contained 45,000 cells
in contrast to a clone of 1.2 × 106 LRRC15+ cells found in a
kidney of the same mouse (Supplementary Table S3). Taken
together, the size as well as the CIC numbers dominating
the primary and metastatic sites of tumor growth demon-
strated a superior fitness of CICs dependent on LRRC15
expression (Supplementary Figure S6, Table S3).

The CIC Calculator was also used to generate radial
chord diagrams, also called Morbus–Mandala (MM) plots.
These provide a visual comprehensive description of the
multiple individual clonal trajectories detected, the inter-
relationships revealed in their respective metastatic behav-
ior, and hence the complex relationship patterns exhibited
by different CICs (Figure 3). The examples shown here il-
lustrate both CICs from multiple or individual experiments
conducted in a ‘single’ mouse as well as system-wide activ-
ities of individual clones (Figure 3A, B). To simplify anal-
ysis of the different metastatic behaviors represented in the
MM plots, we categorized each CIC according to the ac-
tivity it displayed as follows: (i) CICs of indeterminate po-
tential (clones detected only in the primary site), (ii) CICs
of mono-metastatic potential (clones detected in only one
metastatic site as well as the primary site); (iii) CICs of pluri-
metastatic potential (clones detected in more than one, but
not in all metastatic sites) and (iv) CICs of pan-metastatic
potential (clones detected in all metastatic sites). Examples
of clones representing each of these categories are shown in
Figure 4A and their complete distributions in Figure 4B–
D and Supplementary Table S4. These distributions high-
light the predominance of LRRC15+ clones in the dissem-
inating disease, but with notable inter-mouse differences in
metastatic behavior of clones emanating from the two pri-
mary sites tested (Supplementary Figures S7 and S8).

Identification of unique and complex patterns of LRRC15+
and LRRC15– CIC dissemination and growth

Interestingly, in contrast to the lack of a difference in
the overall metastatic distribution of either LRRC15+ or
LRRC15- clones, the representation of specific clones in
the different sites examined showed reproducible differences
and these were consistent between both primary injection
sites (Congruence Among Distance Matrices [CADM] test
P = 0.001, Figure 5A and B, Supplementary Figure S9A
and B). These patterns included one group that appeared
generally confined to organs within the peritoneal cavity
(i.e. adjacent kidney, contralateral ovary, and omentum,
with ascites), and another group of distal sites (i.e. salivary
gland, brain, and heart, with blood), and others that we
classified as intermediate (i.e. lung, spleen, liver, contralat-
eral kidney) (Figure 5A and B). Importantly, these relation-
ships were highly consistent across individual mice as indi-
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Figure 2. CIC numbers across sites are influenced by LRRC15 gene. (A) total CIC per mouse split by LRRC15 status in both groups. (B) percentage of
metastatic and non-metastatic CICs per mouse split in both groups. CIC clones were calculated based on clone counts. Groups in panel A and B were
compared using one-way ANOVA and Tukey test, **P < 0.005 and ****P < 0.0001. (C) CIC numbers across sites in both groups. (D) CIC numbers in
each site in oviductal co-injected group. (E) CIC numbers in each site in ovarian co-injected group. LRRC15– and LRRC15+ groups were compared using
paired two-tailed t-test, *P < 0.05, **P < 0.005, ***P < 0.0005 and ****P < 0.0001. See also, Supplementary Figure S5.
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Figure 3. Morbus Mandala (MM) plots pictorially depict system-wide metastasis. (A) a representative MM plot depicting system-wide metastasis of CICs
in mouse#49 co-injected with barcoded LRRC15+ and LRRC15- cells in oviductal site. (B) a similar representative MM plot of CICs in mouse #58
co-injected in ovarian site. See also, Supplementary Figures S6 and S7.

cated by the CADM test (Figure 5B, Supplementary Figure
S9C and D).

Since clone frequencies in the blood were positively cor-
related with distal metastases, with a similar correlation be-
tween their presence in ascites and peritoneal sites, we hy-
pothesized that these patterns might be indicative of distinct
mechanisms of metastasis. To quantify the relationship be-
tween blood and ascites to each of their preferred metastatic
sites, we constructed a series of linear models using clone
abundance in the two paired sites and also the primary
tumor as an outgroup to predict spread likelihood to the
non-associated metastatic site. This showed distal sites were
strongly and almost exclusively predicted by blood CICs,
and similarly, peritoneal sites were predicted mainly by cor-
responding CICs in the ascites (Figure 5C; Supplementary
Figures S9E and S10; Table S5). In spite of the fact that
cells were injected in right ovary, clone presence in the blood
strongly predicted left (FDR 9.58E–148) than right (FDR
4.17E–69) kidney metastasis likely owing to ovarian venous
drainage variations, i.e. left ovary’s venous drains into the
left renal vein and the right ovary’s venous drainage directly
into the inferior vena cava (Figure 5C; Supplementary Table
S6). Together these data accounted for half of the variability
in metastatic activity observed (r2 in the 0.4–0.6 range).

To determine whether the CIC Calculator could be used
to detect previously inaccessible site-specific patterns of
clonal metastatic activity, we focused on the bowel metas-
tases, associated with lethal bowel obstruction (23), gener-
ated in mouse #61 initially co-injected with 0.12×106 cells
at the ovary site and organs harvested 7 weeks later. MM

plots generated from the CIC detected in the 8 bowel metas-
tases identified in this mouse showed the LRRC15+ clones
in all eight sites were derived from CIC.Pluri cells, whereas
those derived from the co-injected LRRC15– cells reflected
the activity of CIC.Pluri in only one of the eight bowel
sites and CIC.Mono were active in six of these (Figure
6A; Supplementary Figure S11). Moreover, the metastatic
distributions of all the CIC.Pluri clones, irrespective of
their LRRC15 genotypes, were nearly identical (Supple-
mentary Figure S11). In addition, analysis of all the clone
sizes in these eight sites indicated that both LRRC15+ and
LRRC15– clones were equally competitive in most (Figure
6B, C). Overall, these findings indicate how a genetic change
may alter the competitive metastatic growth ability of cells
in site-specific manner.

To obtain a more comprehensive picture of the spec-
trum of metastatic clone behavior of the cells tested in this
study, we next analyzed the metastatic distributions on a
per-clone basis. Cluster analysis identified distinct patterns
(labelled as Clusters I to XVII) of clonal behavior that were
reproducible across similarly injected mice. Visualization
of the identified clusters using multidimensional scaling
(MDS) and uniform manifold approximation and projec-
tion (UMAP) for dimensionality reduction confirmed that
the identified clusters were relatively distinct and compact
(Figure 7A). Notably, CICs behavior patterns ranged from
poorly metastatic (Cluster I) to highly metastatic with high
levels at blood-associated sites but without blood detection
(possibly due to earlier blood-based dissemination (Cluster
X; Figure 7B). Cluster IV type CICs displayed peritoneal
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Figure 4. CIC classes and genetic influence. (A) representative MM plots of CIC.IP, CIC.Mono, CIC.Pluri and CIC.Toti. (B) Table summarizing CIC
classes by clone sizes based on LRRC15 status and injection sites. (C) CIC numbers per class split by LRRC15 status and injection site. Comparison
between LRRC15+ and LRRC15– classes within oviductal and ovarian groups was done using two-way ANOVA and Tukey test, **P < 0.005. (D) Pie
charts showing % of CIC classes. Note: CIC.Toti class was observed only in LRRC15+ CICs in a single ovarian injected mouse.
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Figure 5. Clones detected in blood are associated with metastasis to different organs than those detected in ascites. (A) relative relationships between sites of
tumor growth. Multi-dimensional scaling (MDS) dimensionality reduction based on the mean distance matrix across mice is shown. Site names displayed
at their embedded locations. The closer together sites are displayed on the plot, the more correlated their growth. (B) per-mouse relationships between
sites of tumor growth. The plot shows a PCA embedding based on the averaged distance matrix across mice (approximately equivalent to MDS) followed
by embedding the per-mouse relationships into this space as a measure of how consistent these relationships are across individual animals. As with the
MDS plots in (A), the closer the points, the more similar is their patterns of clonal growth. Injection site is indicated by point shape and site of growth is
indicated by color as shown in the legend. Only sites measured in all mice are shown in this plot. (C) coefficients of are shown for a series of multivariate
linear regression models using clone size detected in the blood, ascites, and primary tumor to predict levels in each other site (all asinh(x/10) transformed
to maintain linearity). Higher coefficients (values on the y-axis) represent a greater predictive power of that site for the overall clone size at the indicated
site. Lines showing 2× the standard error are shown for each coefficient. See also, Supplementary Figures S8 and S9.

spread with significant enrichment for LRRC15+ clones
that had been injected into the oviduct (ART ANOVA FDR
= 0.01 for injection site, 0.004 for LRRC15 status, and
0.004 for the interaction of the two, Figure 7B-C). Clus-
ter VIII CICs with detection in blood and distal sites was
also significantly enriched in similarly injected mice (ART
ANOVA FDR = 0.02, Figure 7B, C, Supplementary Table

S6). Most of the LRRC15– CICs generated relatively small
clones (Figure 7C; ART ANOVA FDR = 0.01). Multiple
patterns characterized by large clonal outputs at a single
metastatic site suggested their origin from an early emigrant
from the primary site (Supplementary Figure S10). A few
notable patterns of clonal metastasis are shown in Figure
6C (see also Supplementary Figure S12, Table S6).
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Figure 6. Clonal analysis of bowel macro-metastases (bowel met) and their system-wide linkages. (A) Representative MM plot of harvested macroscopic
bowel metastasis from mouse #61 depicting LRRC15– and LRRC15+ clones respectively. (B) plot showing number of LRRC15+ and LRRC15– CICs in
bowel mets. (C) Estimated clone sizes across in LRRC15+ and LRRC15– bowel metastasis. See also, Supplementary Figure S10.

Use of machine learning to identify patterns of CIC dissemi-
nation

To investigate the utility of machine learning to predict CIC
dissemination patterns, we used an elastic net (EN) model
to predict on a per clone basis whether or not it would be
detectable in the blood. Following training on a randomly
selected subset of the clones generated in recipients of cells
injected into the oviduct, this model showed an overall per
mouse median prediction accuracy of 0.92, with a sensitiv-
ity of 0.71 and a specificity of 0.95 when tested on the re-
maining clones that had not been included in the training
set (Figure 8A, Supplementary Figure S13A, B). One of the
benefits of an EN model is that the final parameters con-
tributing to each decision are explicit, unlike more power-
ful but less interpretable deep learning approaches. In our
case, the EN model was able to show that the primary in-
dicators of a clone being detectable in the blood were its
presence in the brain and heart (Figure 8B), two of the dis-
tal sites associated with blood from both the bulk (Figure
5), and the Cluster VIII data (Figure 7C). Finally, when ap-
plied across all mice, we observed a significantly lower fre-
quency of clones predicted to be in the blood for recipients
of cells injected into the oviduct as compared to the ovary

(Wilcoxon rank-sum test P = 0.01, Figure 8C). This finding
was further supported by the measured clone numbers in
the cells injected into the ovary compared to the 0 observed
and 0 predicted in the cells injected in the single oviduct
mouse for which blood measurements were made (Supple-
mentary Figure S13B). This suggests that injection into the
ovary may have conferred a greater ability to execute blood-
mediated metastasis.

We also trained an EN model to predict whether a
clone would be detectable in ascites (Supplementary Fig-
ure S13C). However, this model proved less accurate with
a median accuracy of 0.82, and a sensitivity of 0.40, and
specificity of 0.86 in the corresponding validation set (Sup-
plementary Figure S13D). This decreased accuracy could
have been caused by an earlier ascites-mediated spread than
would be detected by an end-point measure. Predictions in
this case could also be impacted by the fact that blood-
borne cells have the potential to reach many more sites via
different routes, and hence decrease the prediction accu-
racy. Nevertheless, the model was still able to show that
omental metastasis and the local kidney represented the pri-
mary predictors of ascites detection (Supplementary Figure
S13E). While no significant differences were observed in as-
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Figure 7. Common patterns of clonal growth exist and are influenced by injection site and LRRC15 status. (A) dimensionality reduction by MDS (left)
and UMAP (middle) based on the pair-wise distance transformed Pearson’s correlations between all clones. Injection sites are indicated by point shape,
and cluster membership is indicated by point color as indicated in the legend (right). (B) clonal engraftment patterns are shown for selected clusters. Lines
connect cell numbers detected for each clone between sites. Missing values for a given clone are shown as gaps between adjacent line segments. Clone
numbers are asinh(cell #/10) transformed with the linear numbers indicated. The total number of clones which were part of a cluster, and the number of
mice with at least one clone that was a member of that cluster for each injection site are shown in the top left. The cluster identifier for each is shown in
the top right. (C) the percentage of detectable clones which are part of selected clusters is shown for each mouse separated by injection site and LRRC15
status (‘–’ = LRRC15 shRNA, ‘+’ = LRRC15 wild-type). See Supplementary Figures S11 and S12 for engraftment patterns and injection site/LRRC15
comparisons for remaining clusters.

cites by injection site at the time of measurement (Wilcoxon
rank sum test P = 1, Figure 8D), the predicted ascites
clones were significantly higher in the primary tumors aris-
ing from cells injected into the oviduct (Wilcoxon rank sum
test P = 0.01, Supplementary Figure S13F), an observa-
tion in keeping with the observed enrichment of Cluster IV
(peritoneally-confined) tumors derived from cells injected
into the oviduct (Figure 7D).

Perhaps the most interesting results from the EN mod-
els come from a comparison of their coefficients. Omen-
tal metastasis was a counter predictor of blood detection
(Figure 8B), while brain and heart countered predicted as-
cites spread (Supplementary Figure S13E). As these were in
both cases the primary positive predictors for the other type
(brain and heart predicted blood, gut predicted ascites), this
finding implies that ascites and blood likely represent inde-
pendent routes of metastasis.

DISCUSSION

We report here several new features of metastatic dissemi-
nation properties made possible by the combined use of cel-
lular DNA barcoding to track clonal growth of competing
malignant transplant populations and a computational ap-
proach to derive complex relationships between the clonal
composition and patterns of dissemination of cells in both
the primary and metastatic lesions produced. The new fea-
tures of the barcoding methodology used include a sim-
plified illustration of system-wide complex spatial linkages
of clones using MM plots and two self-reinforcing meth-
ods to characterize clone dissemination patterns. One of
these allowed thousands of CICs to be subclassified into
four general groupings (referred to as CIC.IP, CIC.Mono,
CIC.Pluri and CIC.Toti). The other made use of a combi-
nation of dimensionality reduction and clustering to infer
additional biological explanations for the observed dissem-
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Figure 8. Primary tumors in the oviduct are deficient in blood metastasis than those that arise in the ovary. (A) overall accuracy (left), sensitivity (middle)
and specificity (right) of an elastic net (EN) logistic regression to predict whether a given clone is present (detectable) in blood. The EN model was trained
on 70% of blood detectable clones from each mouse in the ovarian cohort and double that number of non-blood clones with remaining clones kept back
for the validation set. Each point represents the predictions for clones from one mouse. Each plot shows the relevant metric for the training and validation
sets. (B) the coefficients retained for each site in the final EN model for predicting whether a clone will be detectable in blood or not and their magnitude.
Positive numbers indicate a value that is used to predict that a clone is present in blood, while negative numbers indicate sites in which the presence there
means the clone is less likely to be in blood. The negative intercept value represents the threshold of positives needed to indicate a clone is likely present
in blood. (C) percentage of clones per mouse predicted to be detectable in blood by the EN model separated by injection site. (D) percentage of clones per
mouse with measured detection in ascites separated by injection site. See Supplementary Figure S12 for model hyperparameter fitting, measured percentage
of clones detectable in blood for those mice which had measurements, and an EN predictive model for detection in ascites.

ination patterns. We also demonstrate how the CIC Calcu-
lator output data can be integrated with a suite of comple-
mentary statistical and machine learning approaches that
use CIC numbers, frequencies, and system-wide clone size
distributions to infer clone classes, and their system-wide
metastatic properties. We expect the sample indexing and
multiplexing approach described here will enable inclusion
of a more extensive range to understand how clones exploit
different tissue environments. Further adoption of these an-
alytical tools should facilitate comparison of findings from
independently generated clonal barcode studies.

Notwithstanding the limitation of using a pair of isogenic
cell lines, our statistical methods to analyze the growth pat-
terns of thousands of clones generated in multiple mice in-
jected with the same initial pair of genetically matched cells
revealed 17 different clonal patterns of system-wide metas-
tases. These findings suggest some support for historic evi-
dence of intrinsically determined preferred metastatic envi-
ronments originally derived from studies of clonally marked
malignant mouse cells (28,29).

The hematogenous metastasis, an important mode of
ovarian cancer metastasis (30), is an understudied area.
Our barcode approach not only detected clones in blood
and blood accessible organ sites, but our analysis demon-
strated distinct clonal behaviors that exploit peritoneal
and hematogenous routes for OVCAR5 cell metastasis. Al-
though the coefficient was higher for blood in some or-
gans like liver, spleen and contralateral (L) kidney, ascites
also showed a significant predictive ability, suggesting that
both routes can contribute to metastasis at these sites. Given
the main trend of an increasing contribution of blood and
decreasing contribution of ascites with distance from the
primary tumor site, we believe the most parsimonious ex-
planation is that both mechanisms can directly seed these
sites, however, this by no means rules out a multi-step
metastasis process. The additional extensive of diversity
metastatic spread observed here is also likely to reflect the
origin of the parental OVCAR5 cell line obtained from the
ascites of an untreated ovarian cancer patient (22). A study
using gene expression compositional assignment (GECA)
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statistical method identified commonly used ovarian cell
line OVCAR5 as non-ovarian, being gastrointestinal in ori-
gin (31). The lack of information regarding the primary gas-
trointestinal cancer in the ascites donor precluded the study
from clinically confirming the findings of GECA method.
The problem of primary gastrointestinal cancers metasta-
sizing to the ovary and being misclassified as ovarian pri-
mary cancers and contributing to further disease hetero-
geneity is legendary (32), therefore, it is prudent to be cau-
tious while attributing the metastatic patterns observed us-
ing the barcoding technology to the tissue origin of OV-
CAR5.

In the present study we investigated the influence of
LRRC15 genotype on CIC fitness. LRRC15 was previously
identified as frequently elevated in omental metastatic le-
sions in comparison to unmatched ovarian serous carci-
noma (23). We have shown its involvement in regulating
cell-cell and cell-matrix interactions and conferring an inva-
sive mesenchymal-like phenotype increasing risk for ovar-
ian metastasis (24). LRRC15 gene is poorly expressed in
normal tissues and frequently upregulated in multiple can-
cer types including mesenchymal-derived tumors, provid-
ing target specificity and efficacy with low toxicity (33).
We acknowledge that the shRNA approach used here may
not have sufficiently silenced in all LRRC15- CIC but the
scale of clonal analysis offered unprecedented resolution in
growth and dissemination differences between LRRC15–
versus LRRC15+ CICs.

It is noteworthy that our results also suggest that two dis-
tinct routes of metastasis reflect clonally distinct sets of cells
that are released as ascites into the local peritoneal cavity,
in contrast to those that penetrate the vasculature and then
reach distal organs via the circulation. This exclusivity may
be affected by microenvironmental factors but was also in-
fluenced by LRRC15 expression. It is therefore interesting
to speculate that the blood and ascites content of malignant
ovarian cells in patients might be similar predictors of prob-
able sites of metastasis. A similarly interesting association
of metastatic properties was seen when LRRC15 genotypes
were compared. In this case the LRRC15+ cells produced
metastatic clones in many organs whereas the LRRC15–
cells metastases were largely restricted to the bowel, a pat-
tern consistent with cells metastasizing as oligoclonal clus-
ters reported previously (34).

The surgical implant sites were chosen here to mimic
the competitive generation of primary ovarian tumors from
paired cells differing only in the LRRC15 expression and
hence enable a comparison of their subsequent ability to
metastasize to different sites. This strategy was thus de-
signed to potentially minimize aberrant growth responses
obtained with transplants of single cell types injected in sat-
urating numbers (5). The lack of an immune system in the
immunodeficient mice used here to analyze the clonal pat-
terns of system-wide metastatic activity of a model of hu-
man ovarian cancer remains a confounding variable in in-
terpreting the significance of the results obtained. Neverthe-
less, they provide a baseline for adapting this approach to
test the clonal growth, metastatic and drug response behav-
ior of transplantable tumor cells from ovarian cancer pa-
tients.

In breast cancer research, barcoding approach has iden-
tified tumor cell clonal spread via circulation to lung (4,13).

A limitation of the DNA barcoding studies is the inabil-
ity to isolate clones at single cell resolution and trace
their molecular states which could be accomplished by
integrating barcoding technology with scRNA sequenc-
ing. Recent studies have provided proof-of-concept use
of ‘expressed’ DNA barcodes in detecting clones in bulk
(35) or single cell RNA sequences (36). Further improve-
ments in these cellular barcoding technologies will help
understand tumor cell metastasis and ultimately control
their fate. Moreover, the presently described competitive
DNA barcoded transplant protocol and the computational
framework to assist quantitative investigation of system-
wide cancer metastasis at clonal resolution should facil-
itate further development of many such models in the
future.
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