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Activity in midbrain dopamine neurons modulates the release of dopamine

in terminal structures including the striatum, and controls reward-depen-

dent valuation and choice. This fluctuating release of dopamine is thought

to encode reward prediction error (RPE) signals and other value-related

information crucial to decision-making, and such models have been used

to track prediction error signals in the striatum as encoded by BOLD signals.

However, until recently there have been no comparisons of BOLD responses

and dopamine responses except for one clear correlation of these two signals

in rodents. No such comparisons have been made in humans. Here, we

report on the connection between the RPE-related BOLD signal recorded

in one group of subjects carrying out an investment task, and the corre-

sponding dopamine signal recorded directly using fast-scan cyclic

voltammetry in a separate group of Parkinson’s disease patients undergoing

DBS surgery while performing the same task. The data display some corre-

spondence between the signal types; however, there is not a one-to-one

relationship. Further work is necessary to quantify the relationship between

dopamine release, the BOLD signal and the computational models that have

guided our understanding of both at the level of the striatum.

This article is part of the themed issue ‘Interpreting BOLD: a dialogue

between cognitive and cellular neuroscience’.
1. Introduction
The reward prediction error (RPE) hypothesis—that phasic activity in midbrain

dopamine neurons reflects a prediction error—has gained wide acceptance

[1–4]. Presumably, this prediction error is reflected downstream in fluctuations

in dopamine levels in the striatum, which receives dopamine neuron projec-

tions. The RPE hypothesis for dopamine has been tested using BOLD

responses in human subjects during simple conditioning tasks [5–8]. BOLD

activations in the human striatum were consistent with the computational

RPE hypothesis. However, findings such as this only established that a slow-

to-peak composite signal (BOLD) demonstrated dynamics during learning con-

sistent with the RPE hypothesis. Knutson and co-workers [9] have shown a link

between BOLD responses in nucleus accumbens and agonism of postsynaptic

dopamine receptors (D1 receptors) suggesting a neural site and type of behav-

ioural paradigms where BOLD responses could act as a proxy for dopamine

drive through this structure. In addition, there is evidence that dopamine

modulates medium spiny neurons through activation of D1 and D2 receptors

[10,11]; findings consistent with dopamine drive and modulation of striatal

neurons. With that in mind, there are also reports that dopamine-mediated

reward signals decrease BOLD signals in visual cortex [12] where dopamine

has also been reported to induce a dissociation between local neural activity
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Figure 1. Task design and visual display. (a) Timeline of the task. When an
investment is submitted the investment bar turns grey. Approximately 1.0 s
after submitting, the next snippet of the market is displayed. Approximately
0.8 s after that the investment bar turns red, and the next investment can be
submitted. (b) Visual display. Figure shows the bar (middle) in the red state
(investment can be lodged). On the left is the current portfolio value; on the
right is the previous outcome. The market trace is in yellow, and shows the
result after two previous investment rounds.
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and BOLD [13]. On balance, there is not yet a straightforward

accounting of how dopamine acts to modulate BOLD. Thus,

the precise relationship between the midbrain dopamine

neuron spiking, transmitter release in the striatum and the

BOLD signal remains unclear. This situation has recently

been changed slightly.

First, advances in electrochemistry (fast-scan cyclic vol-

tammetry (FSCV)), for example in rodents [14–17], non-

human primates [18–20] and humans [21,22]), when paired

with modern inference techniques, have allowed the stable

recording of sub-second transients in dopamine. These exper-

iments have confirmed in limited contexts that the spikes in

midbrain dopamine neurons representing RPEs translate to

corresponding fluctuations in dopamine concentrations [16]

(See [23] for one data-driven model of the conversion of

spikes to dopamine release).

Secondly, Ferenzci et al. [24] have made an important

advance in our understanding of the link between dopamine

and BOLD. These investigators used optogenetic techniques

in rats to establish direct correspondence between (stimu-

lated) spiking midbrain dopamine neurons and measured

BOLD signals in striatum. These two advances show that in

rodents there is a direct correspondence between spiking

midbrain neurons and striatal dopamine (DA) release (from

DA measurements in rodent striatum), as well as a direct cor-

respondence between spiking midbrain neurons and BOLD

signal in striatum. While the mechanism between DA release

and the BOLD signal in striatum is not fully understood,

these advances suggest a direct correspondence between

dopamine release in striatum and the BOLD signal.

In [22], Kishida et al. extended the FSCV technique to

humans to measure striatal DA. The participants were

Parkinson’s patients who underwent surgery for deep brain

stimulation (DBS) electrode implantation while playing a

sequential investment game. This investment game has pre-

viously been coupled with BOLD imaging to investigate

neural correlates of computational parameters related to the

game [25]. These two datasets present a unique opportunity

to make a small step forward in understanding the relation-

ship between BOLD and dopamine release in striatum

during a decision-making task.
2. Material and methods
For complete details on the BOLD experiment, see [25]; for full

details on the FSCV experiment, see [22].

(a) Participants, BOLD experiment
In total, 54 participants were recruited and research conducted

under a protocol approved by the institutional review board at

Baylor College of Medicine. The participants provided written

consent for the task procedures. The cohort included 31 males

and 23 females, aged 19–54.

(b) Participants, fast-scan cyclic voltammetry
experiment

Participants (n ¼ 17) provided written consent to a protocol

approved by the institutional review boards at Wake Forest Uni-

versity Health Sciences and Virginia Tech. The participants were

approached for participation in this study after they were

approved as candidates for DBS electrode implantation for treat-

ment of Parkinson’s disease. They were informed prior to written
consent that if they participated that (i) there would be an

additional probe—a carbon-fibre microelectrode, and (ii) the pro-

cedure would last up to 30 min longer. The cohort included

16 males and 1 female, aged 42–76.

(c) Behavioural task, BOLD experiment
Subjects participated in an investment task in the MRI scanner in

which they repeatedly decided what percentage of their assets to

risk in ‘markets’ (10 markets in all, 20 decisions per market) rep-

resented by traces taken from actual markets. More precisely,

after participants were endowed with $100, and saw an initial

trace of the market (a total of 10 periods), they used a button

box to move a bar on the screen to the percentage of their port-

folio in the market desired (0–100% in increments of 10%; see

figure 1a for timeline). To lodge their decision they pressed one

of two buttons on a button box controlled by the other hand.

The next segment of the market then appeared (a screen pro-

jected onto a mirror in the scanner), and the current portfolio

amount and per cent gained or lost was displayed on the

screen (figure 1b). The process was then repeated for a total of

20 decisions for each market. Subjects also participated in a

‘Not Live’ condition in which 10 additional markets were dis-

played, but subjects made a visual discrimination. The Not

Live markets were alternated with ‘Live’ markets. A total of

200 decisions were made in the Live markets. Participants were

paid their final portfolio value in US$.

(d) Behavioural task, fast-scan cyclic voltammetry
experiment

The behavioural task for the FSCV experiment was almost iden-

tical to the task for the BOLD experiment. Here, the participants

played only six markets (one participant completed only five

markets; also, the markets were similar to but not the same as

the markets in the BOLD experiment), and also did not partici-

pate in the Not Live condition. Additionally, these participants
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saw a computer screen directly, and were paid based on their

final portfolio value. The hand contralateral to the implantation

hemisphere manipulated the button box for moving up or

down; the hand ipsilateral to the implantation hemisphere

submitted the investments using the other button box.

(e) Procedures, fast-scan cyclic voltammetry experiment
At the beginning of the surgical procedure, as is standard, a

Cosman-Roberts-Wells (CRW) stereotactic frame is fastened to

the patient’s head. Then a volumetric computed tomography

(CT) scan is aligned with pre-operative MRI scans. These scans

in turn are then aligned to reference scans in the Cranial Vault

dataset and atlas [26] using an algorithm on the Wayport

Navigator workstation. At this point, the trajectory of the stimulat-

ing electrode is selected. The final target of the electrode is either

the subthalamic nucleus or the internal segment of the globus pal-

lidus, depending on clinical recommendations; as such, the

electrode trajectory may pass through the caudate or the putamen.

Before the stimulating electrode is placed, a microelectrode is used

to map anatomical boundaries using functional (electrophysio-

logical) properties of the tissue. These recordings and the

neuroanatomical images are used to determine the optimal DBS-

electrode placement. It is during this stage of the procedure that

the carbon-fibre microelectrode is inserted. The recording is taken

in the caudate or putamen (see the electronic supplementary

material for details). The microelectrode passes through one of

five possible microelectrode trajectories defined by the ‘Ben-Gun’

array, and never goes deeper than the microelectrode used for

DBS-electrode placement. Once the carbon-fibre microelectrode is

in place, a 400 V/s triangular voltage waveform is applied to the

electrode (20.6 V to þ1.4 V to 20.6 V in 10 ms), with a 6.67 ms

period (potential held at 20.6 V) between applications (60 Hz for

the signal), for 10 min. During this time, the patient is reminded

about the play of the game and is reinstructed about the use of

the handheld button boxes. After the 10 min equilibration protocol,

the experimental protocol is started. The same triangular waveform

is applied as before, but the wait time between applications is

lengthened to 90 ms, so that the actual signal is acquired at 10 Hz.

( f ) Carbon-fibre microelectrode and data acquisition
(see [22], for full details)

The carbon-fibre microelectrode was fabricated in-house [21,22].

The carbon-fibre sensor extends approximately 120 mm beyond

the polyimide coated fused-silica capillary tubing, which

houses a platinum–iridium wire and forms the working

electrode. The reference electrode is housed within the micro-

electrode guide tube, which is identical in construction to the

microelectrode guide tubes used for functional mapping

during the clinical procedure. The carbon-fibre microelectrode

assembly was then connected using shielded cables to a mobile

electrochemical recording station, which was comprised of a

head stage (CV-7B/EC, Axon Instruments), an amplifier (700B,

Axon Instruments), an analogue-to-digital converter (Digidata

1440A, Axon Instruments) and a laptop (MacBook Pro, Apple).

The 1440A also collected the button box output, the output of

a photodiode on the patient’s screen and an additional signal,

a square waveform at 1 Hz generated by a Tektronix AFG320

Arbitrary Function Generator, split and sent to the 1440A as

well as the behavioural recording system. The current from the

electrode was recorded at a frequency of 100 KHz.

(g) Behavioural recording system
A second laptop (MacBook Pro, Apple) ran in-house software,

NEMO, that controlled the behavioural paradigm. The view on

the computer screen was exported to a monitor placed in view
of the patient. The output of the behavioural stream was synched

to the physiological data in two ways: each screen change was

accompanied by a small white box on the lower left side of the

screen, which was detected by photodiode and relayed to the

1440A; the 1 Hz square wave described above was split and

sent to the 1440A and the behavioural recording system.

(h) Analysis, fast-scan cyclic voltammetry experiment
Summary. Our approach is to record in vitro the current output of

numerous carbon-fibre training electrodes in known, controlled,

DA concentrations, and then use cross-validated penalized

linear regression to train a model for estimating the in vivo DA

concentrations from the in vivo current recordings.

(i) Details, data for model training
(1) Probe selection. Probe selection is used to identify which

calibration datasets will be included in the model-fitting

procedure. The ideal calibration dataset would be one that was

generated in conditions that exactly match the recording environ-

ment and on electrodes that are an exact match in construction

and electrochemical properties. This is not possible to achieve

in any circumstance as even the exact electrode that was used

during surgery undergoes changes during the recording. Empiri-

cally, we have found that fitting a model using a single

calibration dataset from one electrode to make predictions on

another electrode can result in significant error in the resulting

predictions. However, if the shape of the voltammogram of the

electrode used to generate the calibration dataset is similar to

the target probe’s voltammogram shape, then the error in the

resulting model is reduced substantially. In the near-ideal case,

subsampling a calibration dataset for hold-out test samples that

do not enter into the model-fitting procedure results in excellent

minimal prediction error [22] (figure 2c,d ). In order to decrease

the bias—any one electrode may introduce into the resulting con-

centration prediction model—we train our models using

calibration datasets pooled from multiple electrodes.

Each calibration set (one from each electrode) contains vari-

ations in the voltammogram responses that are characteristic to

the controlled changes in dopamine concentration and changes

in pH, but also subtle variations due to minor differences in elec-

trode construction (e.g. carbon-fibre length, electrical connections

and so on). To determine which of the electrodes from our data-

base of calibration sets we will include, we perform a ‘probe

clustering procedure’ to identify which of the calibration datasets

best match the gross response profile of the target (or test) elec-

trode. To do this, we use one exemplar voltammogram from

each electrode. The exemplar from the patient data is collected

from the midpoint of the experiment and the exemplar from

the calibration datasets are each taken from a recording in 1�
phosphate buffered saline (PBS). The rationale for this is to try

to capture the overall voltammogram shape and amplitude that

best match the exemplar from the target probe. We then cluster

the non-background voltammogram exemplars and choose

those that cluster with the target probe’s voltammogram as the

calibration set that will be used in the model-fitting procedure.

In vitro, we observe excellent performance in minimizing the con-

centration prediction error on tests on multiple electrodes not

used in the calibration and model-fitting procedure, suggesting

we have obtained generalized models for making good estimates

of dopamine concentration in vivo.

(2) Data from training probes. The carbon micro-fibre electrode

and reference electrode were placed in a glass-capillary flow cell

initially filled with 1� PBS. Powdered dopamine hydrochloride

(Sigma-Aldrich) was dissolved in HCl, then further diluted to

desired concentrations using 1� PBS. This liquid was then

injected while FSCV data were recorded in vitro at 100 kHZ

using the same voltage sweep used in vivo. The data collection
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Figure 2. BOLD and DA responses to positive and negative market returns. (a)
BOLD response ( per cent signal change). Green trace, response to positive
market return (N¼ 5854); red trace, response to negative market return (N¼
4946). A star represents difference significant at p , .05, FWER corrected (over
time points 4, 6 and 8 s – see methods), two-tailed. (b) DA response (z-score).
Green trace, response to positive market return (N¼ 1129); red trace, response
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sequences consisted of 2 min segments, with the concentration of

DA changed in steps during the first 10 s of the segment. Data

from multiple probes were grouped by subsampling the data

according to a normal distributions N(m, s) characterized by a

concentration mean m with standard deviation s.

Model training. The data for training a model consists of an M x
999 data matrix x, and an M—vector y of DA concentrations from a

subset of training data characterized by concentration mean m with

standard deviations. A row xij, j ¼ 1 to 999, of X is the derivative of

the current response of a training probe in a DA concentration yi.

The model is a vector b (of dimension N ¼ 999) which, when, aug-

mented by the constant term, is the solution to a penalized linear

regression problem (the elastic net [27])

min
ðb0,bÞ

1

2N

XM

i¼1

ðyi � b0 � xT
i � bÞ

2 þ lPaðbÞ,

where Pa(b) is a term that penalizes the size and number of

non-zero elements of

PaðbÞ ¼
XN

i¼1

ð1� aÞ
2

b2
i þ ajbij:

When a ¼ 1, this is the lasso [28], and when a ¼ 0, this is ridge

regression [29]. The question remains how to fix the constants a
and l. For this, we used cross-validation (cvglmnet in Glmnet

[30]). For fixed a, cvglmnet calculates a range of l and partitions

the data into 10 equal subsets called folds. For each l, the penalized

regression problem is solved for 9/10 of the data and used to pre-

dict on the remaining 1/10 of the data. The m.s.e. is calculated for

this prediction on each fold, and is averaged. The minimum aver-

age m.s.e. over the range of ls is recorded. This is repeated over a

grid of as from 0 to 1 in 0.1 increments, and the a,l pair with mini-

mum average m.s.e. is selected. Finally, with this a,l pair the

penalized regression problem on all of the training data is solved

to obtain the final model (b0, bT).

Model selection for in vivo probes. After the previous training

steps, we have a collection of M models (index the models by

m ¼ 1,2, . . . ,M ). Recall that a given model m is characterized by

a training concentration mm and concentration range sm as a

normal distribution. Let the predictions of a model on an in
vivo dataset be pm,i, and define the model error to be

Dm ¼
XT

i¼1

( pm,j � mm)2:

The model used for predicting the in vivo DA concentrations

is the model with minimum Dm

(i) DA trace processing
DA traces were extracted from 3000 ms before the reveal event,

and 3000 ms after. These DA snippets were de-meaned and

divided by the standard deviation taken over that snippet. The

time zero DA data point was taken as the sample closest in

time to the onset of the reveal event.

( j) DA analysis
The data were pooled across subjects, and for each categorization

of the data by behavioural factors (see below in the BOLD methods

for definitions of behavioural variables), the DA data were first

baseline corrected by subtracting the mean of the DA traces at

the reveal time. For plotting purposes, the points 100 ms before

and 700 ms after the reveal were used. The traces were then ana-

lysed by a two-factor (sign of behavioural variable e.g. MKT,

RPE, DBET and time; the DA levels used here were at 200, 300

and 400 ms after the reveal) repeated-measures ANOVA with

time as the repeated factor. The analysis was performed in R

[31,32] using the function gls in the nlme package [33]. Multiple

comparison calculations for significance were performed in R

using the function glht in the package multcomp [30].

(k) BOLD image collection and preprocessing
Images were collected on Siemens Allegra scanners at Baylor Col-

lege of Medicine. Structural scans (T1) were acquired using an

MPRage sequence (Siemens). Functional scans were acquired with

the following characteristics: echo-planar imaging, gradient-recalled

echo; TR¼ 2000 ms, TE ¼ 40 ms, flip angle 908, 64� 64 matrix, 26

4 mm axial slices yielding 3.4 � 3.4 � 4.0 mm voxels. Preprocessing

was performed using standard algorithms in SPM8. A subject’s

images were first slice-timing corrected. Next, they were motion-cor-

rected by aligning to the first functional scan using a six-parameter

rigid body transformation, then unwarped. The mean of the

motion corrected was then co-registered to the subject’s T1 image.

The T1 imagewas normalized to the Montreal Neurological Institute

(MNI) space using unified segmentation and normalization,

resampled to 4 � 4 � 4 mm functional voxels, and smoothed with

a 8 mm full-width at half-maximum (FWHM) Gaussian kernel.

(l) Time-series extraction, BOLD experiment
Masks were created in MarsBar [30] centred at MNI coordinates

(8,12,4), (28,8,4), (16,12,212) and (216,8,212), peak activation
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coordinates with radius 5 mm and sampled into the space of the

functional images. These coordinates were the peak-activation

coordinates in L/R caudate, L/R ventral striatum/putamen for

fictive error and RPE from [25]. A time series was formed for

each ROI by averaging the functional images over this mask.

Subjects were selected sequentially and assigned an ROI so

that the proportions of the four ROIs represented were the

same as in the DA subjects (see the electronic supplementary

material). Snippets of time series anchored on the Reveal event

were then extracted for 10 s prior and 20 s after the event

(16pts for 2 s TR) using the interp1 function in MATLAB. The 16

point times series were converted to % signal change by subtract-

ing the values by the value at t ¼ 0 (time point 6), dividing by the

t ¼ 0 value, and multiplying by 100.

(m) Behavioural parameters
The market return at event i (i ¼ 1 to 200) is ri ¼ pi � pi�1=pi�1,

where pi is the price level on trial i (p0 is the final price level in

the initial price snippet at the beginning of a market). The RPE

is defined by

RPEi ¼
biri �meanðbrÞ

s:d:ðbrÞ ,

where bi is the BET at trial i and where the mean and standard

deviation are taken over the biri prior to trial i in the current

market (for the first return in a market RPE1 ¼ r1; for the

second RPE2 ¼ r2 2 r1).
(n) BOLD analysis
For plotting and analysis, the extracted BOLD time series were

further reduced to values at nine time points (2 s before reveal,

14 s after). For plotting, the series were binned according to the be-

havioural variables. For statistical analysis, the data were pooled

across subjects and the BOLD values from 4, 6, 8 s were used and

entered (in the same manner as for the DA series) into a two-factor

repeated measures ANOVA with factors sign of the behavioural

variable and time asthe repeated factor. The analysis was performed

in R [31,32] using the function gls in the nlme package [33]. Multiple

comparison corrections for significance were calculated in R using

the function glht in the package multcomp [34].

(o) The NEMO software
The NEMO software is available to others and can be downloaded

at http://labs.vtc.vt.edu/hnl/nemo/download.html. The input

language for specifying an experiment (stimuli, timing, etc.) is

jython and so is flexible, but not particularly point-and-click.

NEMO is excellent for arbitrating multiple-subject, multiple-site

experiments and streaming the data to a database.
3. Results
We first sought to compare the BOLD signal and the DA signal

for positive and negative market returns, defined as the

http://labs.vtc.vt.edu/hnl/nemo/download.html
http://labs.vtc.vt.edu/hnl/nemo/download.html
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positive or zero (green trace, N ¼ 1375) and negative (red trace, N ¼ 1125) RPEs and BET range 0.1 – 0.5 (only events with RPE and market price change the same
considered). A star represents difference significant at p , .05, FWER corrected, two-tailed; cross represents difference trend-level significant at p , .1, FWER corrected,
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percentage return rt of the market at trial t. Figure 2a shows the

BOLD response in the right caudate for rt . 0, green, rt , 0,

red. The time series extends from 2 s before to 14 s after the

reveal of the market return. Figure 2b shows the DA response,

again rt . 0, green, rt , 0, red. This time series extends from

100 ms before the reveal, to 700 ms after the reveal. The BOLD

signals separate in a way consistent with considering rt as a

value signal: the rt . 0 trace lies above the rt , 0 trace (difference

significant at p , .05, FWER, two-tailed, for time points 4, 6, 8 s).

For the DA the picture is reversed: the rt . 0 trace lies below the

rt , 0 trace (difference significant at p , 0.05, FWER corrected,

two-tailed, for the time point 300 ms). While this first result for

rt is striking, it may be that while rt is an important computational

variable, it may not be the ‘correct’ one here. Thus, we investi-

gated the BOLD and DA signals for the RPEs. The RPE was

defined (see Material and methods above) as the current z-score

of the subject’s return br (‘current’ meaning the z-score over all

of the returns in that particular market up to time t).
Figure 3a(i) shows the BOLD response for RPE . 0 green, and

RPE , 0, red. Figure 3a(ii) shows the corresponding DA

RPE . 0 green, and RPE , 0, red. The result is in part similar

to that of rt: the BOLD signal separates, but unlike for market

return, the DA signal does not (BOLD: difference significant at

p , .05, FWER corrected, two-tailed for 4, 6, 8 s; DA, p . .05,

FWER corrected, two-tailed). However, recalling Kishida et al.
[22], for DA the RPE fluctuations depend on the size of the invest-

ment. Specifically, Kishida et al. [22] showed that for large

investments the DA signal did separate according to the sign of

the RPE. Indeed, for investments greater than or equal to 0.9

both the BOLD and DA signals separate: figure 3b(i) BOLD,

3b(ii) DA (BOLD: difference significant at p , 0.05, FWER

corrected, two-tailed, time points 4, 6 and 8 s; DA: difference

significant at p , .05, FWER corrected, two-tailed, for time

point 300 ms). Kishida et al. [22] went further and systematically

investigated the influence of investment size on the relative be-

haviour of the DA time series with respect to the sign of the

RPE. Figure 4 compares the DA signal with the BOLD response

in this situation. As in Kishida et al. [22] we restrict to jRPE �
0.75j. In figure 4a, (i) is the BOLD response for BETS 0.1–0.5

(for these small BETS as in [22] we further restrict to events

where the RPE and the market price change are the same sign).

The response separates at 4 and 6 s, with the positive RPEs trace

over the negative RPEs trace, (difference significant at p , .05,

FWER corrected, two-tailed, for time point 4 s; difference trend-

level significant at p , .1, FWER corrected, two-tailed, for time

point 6 s). Recapitulating [22] the DA response, figure 4a(ii) is

inverted with the negative RPE trace over the positive RPE

trace (difference significant at p , .05, FWER corrected, two-

tailed, for time points 200, 300, and 400 ms). Figure 4b shows

the situation for BETS 0.6–0.8. Figure 4b(i) shows that again the
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BOLD signal separates at 4 and 6 s, with positive RPEs over

negative RPEs (difference significant at p , .05, FWER corrected,

two-tailed, for time points 4 and 6 s), but figure 4b(ii) shows the

DA signal does not (difference p . .05, FWER corrected,

two tailed). Finally, figure 4c examines the case of BETS 0.9–1.

Here, the BOLD does not separate (figure 4c(i); difference p .

0.05, FWER corrected, two-tailed), but strikingly the DA trace

does, and is inverted from figure 4a(ii) with the positive RPE

trace now above the negative RPE trace (figure 4c(ii); difference

significant at p , .05, FWER corrected, two-tailed, for time

points 200 and 300 ms. The inversion of the DA signal for different

BET sizes was interpreted in [22] as a counterfactual signal

modulating the RPE.
 rans.R.Soc.B
371:20150352
4. Discussion
Here, we have used a unique set of data, BOLD data from [25]

and FSCV data from [22] to examine the relationship between

BOLD and FSCV signals in human striatum sorted by values

of computational learning parameters. Previous research using

BOLD in humans has reported signals in striatum

corresponding to prediction errors incorporated by compu-

tational learning models [6–8]. Work in rodents has identified

phasic dopamine fluctuations as encoding RPEs [16]. Exper-

iments in non-human primates and rodents show that

midbrain dopamine neurons encode RPEs in spike rates [2–5].

Very recent work has shown a relationship in rats between mid-

brain DA neuron spiking and BOLD signals in the striatum [19].

Altogether, this tempts one to expect to find a tight triad

amongst spike rates in DA neurons in the midbrain, DA release

in the striatum, and BOLD signals in the striatum. Yet other evi-

dence suggests that the triad is not that tight. Fenrenzci et al. [24]

also show that optogenetic stimulation of the mPFC in rats dam-

pens the striatal BOLD response to optogenetic stimulation of

midbrain DA neurons. Additionally, they show that administer-

ing dopamine agonists attenuates the BOLD signal. Taken

together this shows that the BOLD response in the striatum

cannot be due simply to the dopamine release. It is most prob-

ably a complex interaction of dopamine release, binding of

dopamine at postsynaptic dopamine receptors, synaptic input

from modulatory brain regions, and spiking of striatal neurons,

such as medium spiny neurons [10].

In this work, we have exhibited multiple situations where

there is no simple correspondence between the BOLD signal
and DA measured by FSCV. One immediate possibility is

that we are getting unexpected results in the dopamine sub-

jects because these are patients with Parkinson’s disease, a

disease of the dopamine system. This is possible, but the Par-

kinson’s patients are able to make decisions (financial,

consent) that require a functioning dopamine system. Further,

we compared using a simple linear regression the decision-

making patterns of the Parkinson’s patients with the healthy

controls. There were no significant differences between the

groups (see the electronic supplementary material). Perhaps

more interesting is figure 4, which shows the DA signal invert-

ing as investment size goes from smaller to larger, but no such

inversion for the BOLD signal. The interpretation of this signal

proposed in [22] is that the dopamine signal encodes a linear

combination of a prediction error signal and a counterfactual

error signal. This is intriguing in light of the fact that it is

known that there is heterogeneity in the type and projections

of dopamine neurons in the midbrain (with respect to

responses to reward and aversive events) [35,36]. This hetero-

geneity could perhaps help explain how the dopamine

transients encode a composite error signal. However, as the

BOLD does not invert with BET increases, it is clear in this situ-

ation that there is not a simple one-to-one correspondence of

DA with BOLD and that a more complicated process is in play.
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