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Abstract: Due to rapid urbanization globally more people live in urban areas and, simultaneously,
more people are exposed to the threat of environmental pollution. Taking PM2.5 emission data as
the intermediate link to explore the correlation between corresponding sectors behind various PM2.5

emission sources and urban expansion in the process of urbanization, and formulating effective
policies, have become major issues. In this paper, based on long temporal coverage and high-
quality nighttime light data seen from the top of the atmosphere and recently compiled PM2.5

emissions data from different sources (transportation, residential and commercial, industry, energy
production, deforestation and wildfire, and agriculture), we built an advanced Bayesian spatio-
temporal autoregressive model and a local regression model to quantitatively analyze the correlation
between PM2.5 emissions from different sources and urban expansion in the Beijing-Tianjin-Hebei
region. Our results suggest that the overall urban expansion in the study area maintained gradual
growth from 1995 to 2014, with the fastest growth rate during 2005 to 2010; the urban expansion
maintained a significant positive correlation with PM2.5 emissions from transportation, energy
production, and industry; different anti-haze policies should be designated according to respective
local conditions in Beijing, Tianjin, and Hebei provinces; and during the period of rapid urban
expansion (2005–2010), the spatial correlations between PM2.5 emissions from different sources and
urban expansion also changed, with the biggest change coming from the PM2.5 emissions from the
transport sector.

Keywords: PM2.5 emission; urban expansion; spatio-temporal analysis; Beijing-Tianjin-Hebei region

1. Introduction

China’s urbanization has resulted in significant achievements in recent decades, with
an increasing number and continuously expanding scale of cities [1,2]. The level of urban-
ization has increased from 17.92% in 1978 to 60.60% in 2019 [3]. However, behind these
achievements, China has also become the country with the largest pollutant emissions in
the world, resulting in various environmental pollution problems, particularly the deterio-
ration of air quality, which is serious in terms of its impact range and intensity [4,5]. The
main reason for the deterioration of air quality in urban areas is pollutant emissions, such
as SO2, NOx, and PM2.5 (particulate matters with an aerodynamic diameter ≤ 2.5 µm) [6,7].
Existing research has found that PM2.5 emission is the main pollutant in haze pollution in
China and presents typical regional characteristics [8,9]. Due to its long residence time in
the atmosphere, it can not only reduce the visibility of the atmosphere and lead to climate
change, but can also affect human health [10–12]. Medical research has proved that PM2.5
pollutants can cause various respiratory diseases and increase the death rate of exposed
people by destroying the human immune system [13,14].
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The Beijing-Tianjin-Hebei region is one of the most important urban agglomerations
in China. The extremely high population density and limited urban living space have led
to a series of problems that need to be resolved, including haze pollution and the resulting
health problems [15,16]. In 2013, the air quality qualified days in the Beijing-Tianjin-Hebei
region accounted for only 37.5% of the whole year, and seven of the ten cities with the
worst air quality in the country were in the Beijing-Tianjin-Hebei region. In 2014, haze
pollution occurred in most provinces in central and eastern China, with a heavy haze area
of approximately 8.1 × 105 km2, mainly concentrated in the Beijing-Tianjin-Hebei region.
In particular, according to the research results of Song et al. [17], in 2015, about half of the
population living in Beijing-Tianjin-Hebei Region was exposed to areas where the average
monthly PM2.5 concentration was higher than 80 µg/m3, and in terms of all-cause diseases,
cardiovascular diseases, and respiratory diseases, the estimated number of premature
deaths attributed to PM2.5 pollution were 138,150, 80,945 and 18,752, respectively.

A large number of empirical studies have demonstrated the relationships between pol-
lutant emissions, urbanization, and economic development [18–22]. However, these studies
rarely focus on the sources of PM2.5 emissions to explain the differences in correlations
between these variables and urban expansion. Moreover, few studies have considered both
temporal dynamics and spatial correlations simultaneously when modeling pollutant emis-
sions data and urban expansion data [23,24]. Furthermore, most of these studies rely on
large-scale analysis units (provincial units or municipal units) [25,26], which may lead to the
potential for heterogeneity within the unit to be ignored. In addition, the time span of the
selected environmental pollution data is usually short (for instance, 5 to 10 years) [27,28],
which may reduce the reliability and accuracy of the correlation between urban expansion
and pollutant emissions estimated by the model. To address the above problems, there is
an urgent need for high-quality data sets of various sources and suitable models that can
handle the complex spatio-temporal effects existing in the data sets. The purpose of this
paper is not to prove that there is a simple one-way causality between urban expansion and
PM2.5 emission. In this paper, the pollutant emission data source used was PM2.5 emission
data from different sectors, so the PM2.5 emission data used is more like an intermediate
variable connecting urban expansion and various sectors (such as transportation, energy
production, and industry). When studying the correlation between urban expansion and
various sectors in the process of urbanization, it is difficult to find an indicator that is
convenient for unified quantification and can simultaneously characterize the development
degree of different sectors. PM2.5 emissions from different sources can serve as such an
indicator to effectively solve this problem, which is a manifestation of the innovation of
this study.

Therefore, this article attempts to solve these problems and provide reliable and
specific estimates of the correlation between PM2.5 emission and urban expansion. First,
we adopted PM2.5 emission data that has good spatial resolution and a long-time span
(20 years), and has been classified according to the sources of emissions, which were tested
for validity in previous studies. Then, we used remote sensing data to characterize urban
expansion, which went beyond the traditional method of using statistical data to measure
urban expansion. Finally, this study established a newly developed advanced Bayesian
spatio-temporal autoregressive model and a local regression model to estimate the spatio-
temporal dynamic effects between PM2.5 pollution and urbanization through accurate and
flexible modeling.

The remainder of this paper is structured as follows. The second section introduces
the research area, data and its processing, research methods, and related models. Section 3
describes the findings of the descriptive analysis and spatio-temporal models. In Section 4,
we discuss possibilities based on simulation results. Finally, Section 5 summarizes these
research findings.
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2. Materials and Methods
2.1. Overview of the Study Area

The study area is composed of 204 county-level administrative units (16 counties
in Beijing, 16 counties in Tianjin, and 172 counties in Hebei Province) throughout the
Beijing-Tianjin-Hebei region, located in north China (36◦05′–42◦40′ N, 113◦27′–119◦50′ E)
(Figure 1). The Beijing-Tianjin-Hebei region is China’s “capital economic circle” and one of
the most densely populated urban areas in China. In 2019, the land area (1.24 × 105 km2)
of the Beijing-Tianjin-Hebei region accounted for only 2.3% of the country, but concen-
trated 8.1% of the country’s population (1.13 × 108) and 9.7% of the county’s GDP
(8.46 × 1012 Yuan). The urbanization rate is 86.60% in Beijing, 83.48% in Tianjin, and
57.60% in Hebei Province [3].
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2.2. Remote Sensing Data

In this study, we used nighttime light data to characterize urban expansion. Nighttime
light data has been increasingly used as an indicator of urban expansion and socio-economic
development [29–33]. The source of nighttime light data for this paper was NOAA/NGDC
(https://www.ngdc.noaa.gov/ngdc.html), with a fine spatial resolution of 1 × 1 km in
the matched time periods. Data was de-clouded, and background noise and short-time
data (volcanic gas, forest fire, aurora, etc.) were eliminated. The gray value of the pixels
was between 0 and 63. We first extracted the nighttime light data for Beijing-Tianjin-Hebei
region from 1995 to 2014, then we divided the total luminosity of each county by its total
area to characterize each county’s urban expansion. Here we used luminosity density
(LD) to represent this variable (Table 1). The standard GIS areal weighting approach was
involved during the LD data process.

The standard GIS areal weighting approach used in this paper was based on the
method of Lloyd et al. [34]. Areal weighting entails the overlay of the source zones
(nighttime light data or pollutant emissions data), s, and the target zones, t (1 km grid cells),
and the proportional allocation of raw data to the target zones which it overlays:

Zt =
N

∑
s=1

Ast

As
Zs (1)

where Zt is the estimated value (nighttime light data or pollutant emissions data) of the
target zone t, Ast is the area of the zone of intersection between s and t and As is the area of
the source zone s.

https://www.ngdc.noaa.gov/ngdc.html
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Table 1. Data and variables involved in this study.

Variables Description Mean Standard
Deviation

log LD log of luminosity density 0.9397 (1995) 0.3726
1.1392 (2014) 0.4632

log Tran log of PM2.5 emission intensity from transport sector (g/km2)
3.9147 (1995) 0.6771
4.4775 (2014) 0.6666

log RC log of PM2.5 emission intensity from residential and commercial sector (g/km2)
6.2076(1995) 0.2712
6.4677 (2014) 0.2736

log Indu log of PM2.5 emission intensity from industry sector (g/km2)
6.2749 (1995) 0.5771
6.3509 (2014) 0.5067

log EP log of PM2.5 emission intensity from energy production sector (g/km2)
5.6675 (1995) 0.4506
5.9665 (2014) 0.4501

log DW log of PM2.5 emission intensity from deforestation wildfire sector (g/km2)
2.5092 (1995) 0.7176
3.8058 (2014) 0.6937

log Agri log of PM2.5 emission intensity from agriculture sector (g/km2)
4.7293 (1995) 0.4701
4.8050 (2014) 0.3344

2.3. Pollutant Emissions Data

In this paper, we used pollutant emissions data, rather than pollution concentrations
data, to measure the environmental pollution impacts during urban expansion. Although
pollution concentration data is an optional data source for this paper, it lacks the tempo-
ral coverage of our emission data. In addition, the pollution concentration data suffers
from noise added by various spatial interpolation techniques and issues from selective
choices of monitoring sites. The PM2.5 emission data was obtained from the School of
Environmental Sciences at Peking University (http://inventory.pku.edu.cn), from which
the monthly pollutant emissions data a spatial resolution of with 0.1 × 0.1 degrees may be
freely downloaded.

To build the emission inventory, a space-for-time substitute method [35] was applied
to calculate monthly (or daily) residential fuel consumption and, consequently, monthly
emissions of individual pollutant emissions. The intra-annual variations associated with
agricultural waste burning, deforestation, and wildfires were obtained directly from the
Global Fire Emissions Database (GFED) [36]. Sub-national disaggregation of pollutant
emissions was used to generate spatial resolution of 0.1 × 0.1 degrees [37]. The rural
residential energy consumption data for China were updated based on a nationwide survey
and a nationwide fuel weighing campaign conducted in 2012. The results are different
from the International Energy Agency (IEA) and Food and Agriculture Organization of the
United Nations (FAO) data, which overlook the rapid fuel mix transition in rural China.

The files with the extension “nc” contain monthly gridded emission data (1800× 3600)
provided in Network Common Data Form (NetCDF). Furthermore, we obtained pollutant
emissions data that were processed from six sources, which are transportation (Tran),
residential and commercial (RC), industry (Indu), energy production (EP), deforestation
wildfire (DW), and agriculture (Agri) (Table 1).

First, monthly gridded PM2.5 emission data in 1995, 2000, 2005, 2010, and 2014 for
Beijing-Tianjin-Hebei region were downloaded according to the six categories above. Then
we aggregated the monthly data to calculate the annual cumulative PM2.5 emissions of
each county. Because the boundaries of counties in the study area and the grids of PM2.5
emission data do not match each other geographically, we used the standard GIS areal
weighting approach for the data preprocessing. Finally, by dividing the annual cumulative
PM2.5 emissions by the area of each county, we calculated the annual pollutant emission
intensity of each county.

2.4. Bayesian Spatio-Temporal Dynamic Statistical Model

To explore the spatio-temporal dynamic characteristics between PM2.5 emissions
and urbanization in each county of Beijing-Tianjin-Hebei region under the background

http://inventory.pku.edu.cn
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of the long-term data series, we adopted a newly developed advanced Bayesian spatio-
temporal statistical model, i.e., the Spatio-temporal Conditional Autoregressive (ST.CAR)
model [38–40].

Specifically, we defined the 204 counties constituting the study area, which do not
overlap each other, as Sn (n = 1, 2, . . . , 204) and the corresponding time periods as t. The
Bayesian model we used here can be shown as:

ynt|µnt ∼ f (ynt
∣∣µnt, µnt); n = 1, 2, . . . , 204; t = 1995, 2000, . . . , 2014 (2)

µnt = Xntσ + ψnt (3)

µnt = Xntθ + Untη + ψnt (4)

where ynt means the observed urban expansion density (log LD) of the study area n at time
t, following a normal distribution linked with variance σ2 and mean µnt, N

(
µnt, σ2); Unt

means the urban expansion variables measured from the nighttime light data, that is LD
of each county in the study area; Xnt represents the selected six variables, log Tran, log
EP, log Indu, log RC, log DW, and log Agri; θ and η represent the coefficient vectors to be
estimated corresponding to each variable.

ψknt represents a potential supplement for the study area n at the time period t, cap-
turing the structured temporal and spatial random effects existing in the data collectively.
To accurately model the spatial correlations, the N × N spatial weights matrix W was
adopted to clarify the potential spatial connection structure among those counties (n = 1,
2, . . . , 204) [41,42].

The Bayesian spatio-temporal models we used in this paper were implemented by
adopting the Bayesian Markov Chain Monte Carlo (MCMC) simulation approach, which
is available in a free R software package named CARBayST [43]. For each of the models
implemented, statistical inferences were based on two MCMC chains to ensure the conver-
gence of samplers. In addition, the deviance information criterion (DIC) was applied to
compare the simulation results of the Bayesian models [44].

2.5. Local Regression Model

To supplement the simulation results of the Bayesian spatio-temporal statistical model,
and to further explore the potentially local changes existing in the data, a local regression
model—a geographic weighted regression (GWR) model—was adopted in this study.
In previous studies, the GWR model has been widely used to explore scientific issues
associated with PM2.5 pollution [45–47]. The formula can be expressed as:

ln yp = βp0 +
n

∑
p=1

βpkxpk + εp (5)

In Equation (5), p(1, . . . , 204) gives the spatial location of each county; yp represents
the log LD value of the p county (the dependent variable); six independent variables
xpk (k = 1, . . . , 6), namely log Tran, log EP, log RC, log Indu, log DW, and log Agri; βpk
represents the local regression parameters; and εp represents the random error term, giving
each county corresponding parameters to explore the correlation between urban expansion
and PM2.5 emissions from six different sources.

3. Results
3.1. Characterization of the Spatio-Temporal Dynamics in Data

Figure 2(1.a,1.b) reveals the spatio-temporal evolution of urban expansion and PM2.5
emissions in Beijing-Tianjin-Hebei region from 1995 to 2014. The classification method used
in Figure 2, Figure 4, Figure 5 and Figure 6 was Natural Breaks (Jenks), meaning classes
are divided based on the natural groupings inherent in data. The features are divided
into multiple classes whose boundaries are set where the relatively large changes in the
data exist. From 1995 to 2014, after two decades of development, the urban expansion
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in the Beijing-Tianjin-Hebei region made significant progress. Overall, the average value
of log LD in the study area increased from 0.9397 in 1995 to 1.1392 in 2014. From the
perspective of spatial changes, there were large differences in the speed of urban expansion
in different regions. County-level administrative units located in the northwest of the
Beijing-Tianjin-Hebei region, such as Kangbao County (the value of log LD was 0.38 in
1995 and 0.42 in 2014) and Guyuan County (the value of log LD was 0.41 in 1995 and 0.45
in 2014), maintained a low level of urban expansion and underwent little change during
the past two decades; whereas county-level administrations located in the central and
southeastern regions, such as Tongzhou (the value of log LD was 1.29 in 1995 and 1.68
in 2014) District and Yongnian County (the value of log LD was 0.94 in 1995 and 1.30
in 2014), experienced significant urban expansion. In addition, the urban agglomeration
phenomenon in 2014 was more obvious than in 1995, particularly in Beijing, Tianjin, and
surrounding cities.

From the perspective of PM2.5 emission intensity based on transportation, the average
log Tran (4.4775) in Beijing-Tianjin-Hebei region in 2014 was significantly higher than
that in 1994 (3.9147) as a whole (Figure 2(2.a,2.b)). Furthermore, in 1994, the county-level
administrative units with high log Tran values were mainly concentrated in Beijing and
Tianjin, whereas in Hebei Province, the counties’ values were relatively low and no obvious
accumulation areas existed. After 20 years of development, regional differences in the study
area increased significantly. PM2.5 emission intensities from transportation formed a series
of agglomeration areas centered on Beijing, Tianjin, Shijiazhuang, Handan, and Tangshan.
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Regarding PM2.5 emission intensity based on residential and commercial, the overall
change in the counties in the Beijing-Tianjin-Hebei region during the past two decades has not
changed significantly (average value of 6.2076 in 1995 and 6.4677 in 2014) (Figure 2(3.a,3.b)),
and the spatial change trend is not obvious. Compared with 1995, the county-level admin-
istrative units with high log RC are still concentrated in the central and southern areas of
the study area 20 years later.

Based on the average value alone, the PM2.5 emission intensity based on industry
in the Beijing-Tianjin-Hebei region has not changed significantly overall (6.2749 in 1995
and 6.3509 in 2014) (Figure 2(4.a,4.b)). However, after two decades of development, the
spatial distribution of these counties’ emission intensities changed significantly. The most
obvious change is that the log Indu values of counties in Beijing and surrounding counties
decreased. For example, the log Indu value of Mentougou District decreased from 6.84 in
1995 to 6.43 in 2014. However, the log Indu values of some county-level administrative
units in Hebei Province increased significantly, such as Qianxi County (log Indu value of
6.20 in 1995 and 6.73 in 2014) and Gaocheng District (logIndu value of 6.67 in 1995 and 7.04
in 2014).

Similar to the PM2.5 emission intensity based on industry, the overall PM2.5 pollution
caused by energy production in the Beijing-Tianjin-Hebei region did not change signifi-
cantly (average value was 5.6675 in 1995 and 5.9665 in 2014) (Figure 2(5.a,5.b)). However,
compared with 1994, the PM2.5 emission intensity based on energy production of each
county in 2014 showed more spatially localized characteristics, of which the centralization
phenomenon centered on Beijing, Tangshan, Handan, and Shijiazhuang was the most obvi-
ous.

In 2014, the county-level average of PM2.5 emission intensity from the deforestation
wildfire sector in Beijing-Tianjin-Hebei region (3.8058) was significantly higher than that
in 1994 (2.5092) (Figure 2(6.a,6.b)). The counties in the northwest of Beijing-Tianjin-Hebei
region, such as Guyuan County (log DW value was 2.67 in 1995 and 4.66 in 2014), gradually
became regions with high log DW values, whereas in 1994 the regions with high log DW
values were concentrated in the central and southern regions, such as Ci County (the log
DW value was 3.20 in 1995 and 4.01 in 2014).

Overall, the PM2.5 emission intensity from agriculture in the Beijing-Tianjin-Hebei
region did not change significantly (average value of log Agri was 4.7293 in 1995 and 4.8050
in 2014) (Figure 2(7.a,7.b)). Regarding the change trend of its spatial distribution, the local
accumulation was obvious in 1994, mainly concentrated in the Beijing-Tianjin area and
Shijiazhuang and Handan areas in the south of Hebei Province; whereas two decades later,
the counties in the east and south parts of the Beijing-Tianjin-Hebei area all became high
log Agri value areas.

3.2. Results of Bayesian Spatio-Temporal Statistical Model Estimation

A set of Bayesian spatio-temporal statistical models were implemented to explore the
dynamic spatio-temporal relationships between PM2.5 emission and urban expansion in
Beijing-Tianjin-Hebei region from 1995 to 2014.

First, we took the Beijing-Tianjin-Hebei region as a whole to explore the relationship
between PM2.5 emission and urban expansion (model 1). We detected that the endogenous
spatio-temporal autoregressive parameters of the data are quite high (both > 0.9) with
narrow 95% confidence intervals, showing that the data has significant spatial correla-
tion and time dependence, in addition to the necessity of spatio-temporal autoregressive
statistical modeling.

Urban expansion in Beijing-Tianjin-Hebei Region was statistically significantly related
to PM2.5 emission from transportation, industry, and energy production. Specifically, based
on the estimated results (Table 2), with other conditions remaining the same, every 0.01
increase in log LD (roughly the average increase in log LD from 1995–2014) related to 7.89%
(with a 95% confidence interval of [4.21%, 11.41%]) increase in log Tran; every 0.01 increase
in log LD led to 13.6% (with a 95% confidence interval of [9.72%, 17.58%]) increase in log EP;
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and every 0.01 increase in log LD was associated with about 15.66% (with a 95% confidence
interval of [10.62%, 20.41%]) increase in log Indu. By comparing the simulation results, the
urban expansion of Beijing-Tianjin-Hebei area from 1995 to 2014 was most related to the
PM2.5 emission intensity from industry, ceteris paribus.

Table 2. Model 1 estimation results.

Variables Median 2.5% 97.5%

Intercept −1.5643 −2.1456 −0.9747
log Tran 0.0789 * 0.0421 0.1141
log RC 0.0726 −0.0218 0.1629
log EP 0.1360 * 0.0972 0.1758

log Indu 0.1566 * 0.1062 0.2041
log DW −0.0063 −0.0245 0.013
log Agri 0.0106 −0.0348 0.0541

τ2 0.0629 0.057 0.0694
σ2 0.0009 0.0006 0.0014
ρ 0.9598 0.9107 0.9874
λ 0.9138 0.8708 0.9561

DIC −3348.4014
Likelihood-value 2566.7320

Note: “*” represents the statistical significance at confidence interval of 95%. To complete the specification of the
Bayesian spatio-temporal autoregressive model, conventional prior distributions were specified for unknown
model parameters: an inverse-gamma distribution for variance parameters (τ2 and σ2); and a uniform distribution
for spatial and temporal autoregressive parameters (ρ and λ).

Figure 3 shows the simulated values of urban expansion in Beijing-Tianjin-Hebei
region over time based on model 1 from 1995 to 2014, and superimposes the upper and
lower limits of these estimated values (shown by the dotted lines in the figure). The figure
presents two interesting trends in the study area based on model simulation results. First,
overall, the urban expansion of the counties in the Beijing-Tianjin-Hebei region has shown
a gradual upward trend over time. Furthermore, in terms of growth rate, the growth rate
was slower from 1995 to 2005, and a relatively high growth rate was maintained from 2005
to 2010; however, the growth rate slowed down again after 2010.
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Figure 3. Model 1-based estimates of the temporal trends of urban expansion. The vertical axis
legend represents the estimated log LD value of each county in the study area based on the model 1
simulation results. The three lines (75%, 50%, and 25%) represent the upper quantile, median, and
lower quantile of estimation results on urban expansion after adjusting for covariate effects from
1994 to 2014.
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Figure 4 shows the estimated spatial distribution of urban expansion in Beijing-
Tianjin-Hebei region from 1995 to 2014 after deducting the effect of covariates. The spatial
correlation of these estimates clearly reveals the spatial agglomeration effect of the urban
development intensity in the study area. They take Shijiazhuang, Handan, Tangshan, and
Cangzhou of Beijing, Tianjin, Hebei Province as the central hot spots, and gradually reduce
to their surrounding county-level administrative units.
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Figure 4. Estimated spatial patterns of urban expansion. Value of spatial pattern presents the
estimates of spatial distributions of urban expansion, net of covariate effects.

Although the Beijing-Tianjin-Hebei integration policy has been implemented for
many years (beginning in the 1980s), the socio-economic development levels of the three
provinces of Beijing, Tianjin, and Hebei province remain uneven, and there are still sig-
nificant gaps among these areas [48]. To further explore the relationship between urban
expansion and PM2.5 emissions from different sources in the three provinces respectively,
we established three new Bayesian spatio-temporal statistical models, model 2 (based
on Beijing), model 3 (based on Tianjin), and model 4 (based on Hebei province). The
simulation results are shown in Table 3.
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Table 3. Model 2, 3 and 4 estimation results.

Variables
Model 2 Model 3 Model 4

Median 2.5% 97.5% Median 2.5% 97.5% Median 2.5% 97.5%

Intercept −3.1064 −4.1723 −2.0286 −2.1633 −3.5688 −0.7559 −1.2961 −2.0044 −0.6205
log Tran 0.0633 * 0.0057 0.1268 0.1129 −0.0024 0.2337 0.0564 * 0.0112 0.1053
log EP 0.4266 * 0.2916 0.5508 0.0608 −0.0379 0.1595 0.1179 * 0.0702 0.1674

log Indu 0.0431 −0.1232 0.2117 0.3256 * 0.1712 0.4843 0.1837 * 0.1240 0.2466
τ2 0.0160 0.0084 0.0292 0.0159 0.0103 0.0244 0.0601 0.0538 0.0671
σ2 0.0024 0.0012 0.0049 0.0017 0.0009 0.0033 0.0010 0.0007 0.0015
ρ 0.2858 0.0307 0.7181 0.7388 0.4229 0.9317 0.9209 0.8643 0.9626
λ 0.9165 0.7604 0.9952 0.7384 0.4951 0.9469 0.9163 0.8664 0.9616

DIC −207.5416 −240.9145 −2754.7026
Likelihood-value 157.8441 174.3942 2124.7144

Note: “*” represents the statistical significance at confidence interval of 95%. The estimation results of model 2 based on Beijing; the
estimation results of model 3 based on Tianjin; the estimation results of model 4 based on Hebei.

Based on the simulation results of models 2, 3, and 4, the relationship between urban
expansion and PM2.5 pollution in the three provinces is different. Urbanization was statisti-
cally significantly related to PM2.5 emission from transportation, and energy production
in Beijing. Specifically, with other conditions remaining the same, every 0.01 increase in
log LD led to 6.33% (with a 95% confidence interval of [0.57%, 12.68%]) increase in log
Tran; every 0.01 increase in log LD was related to 42.66% (with a 95% confidence interval
of [29.16%, 55.08%]) increase in log EP. Urbanization showed statistically significantly
association with PM2.5 emission from industry in Tianjin. Every 0.01 increase in log LD
led to 32.56% (with a 95% confidence interval of [17.12%, 48.43%]) increase in log Indu,
ceteris paribus. Urbanization was statistically significantly related to PM2.5 emission from
transportation, energy production, and industry in Hebei province. With other conditions
remaining the same, every 0.01 increase in log LD (roughly the average increase in log LD
from 1995–2014) led to 5.64% (with a 95% confidence interval of [1.12%, 10.53%]) increase
in log Tran; every 0.01 increase in log LD was related to 11.79% (with a 95% confidence
interval of [7.02%, 16.74%]) increase in log EP; and every 0.01 increase in log LD was related
to 18.37% (with a 95% confidence interval of [12.40%, 24.66%]) increase in log Indu.

3.3. Results of Local Regression Model Estimation

As shown in Figure 3, the overall urban expansion in Beijing-Tianjin-Hebei region
was the fastest in the time period from 2005 to 2010. Thus, to explore more specifically the
trend of spatial correlation of PM2.5 emission and urban expansion over time in the context
of rapid urban expansion, we adopted the geographic weighted regression (GWR) model,
which is a local regression model.

According to Table 4, the source of PM2.5 pollution in the Beijing-Tianjin-Hebei region
most closely related to urban expansion in 2005 was industry (the coefficient of log Indu is
0.7108), followed by energy production (the coefficient of log EP is 0.7080), whereas the
relationship between transportation and urban was relatively weak (the coefficient of log
Tran is 0.5986). However, after five years of rapid development, the urban development
pattern in the study area changed to a significant extent, and the correlation between the
three major sources of PM2.5 pollution and urban expansion also changed significantly.
Among these, the change of transportation is the most obvious, increasing from 0.5986 in
2005 to 0.7518 in 2010, whereas the relationship between urban expansion and the two
other factors (industry and energy production) did not change significantly. Compared
with those in 2005, the correlations between the two and urban expansion were even lower
in 2010.
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Table 4. Results of the correlation analysis between urban expansion and pollutant emissions based
on the geographic weighted regression (GWR) model (N = 204).

Variables 2005 2010

log Tran 0.5986 * 0.7518 *
log EP 0.7080 * 0.6676 *

log Indu 0.7108 * 0.7062 *

Note: “*” represents the statistical significance at confidence interval of 95%.

4. Discussion

Due to the acceleration of urbanization globally and the ensuing environmental
pollution problems, clarifying the relationship between urban expansion and pollutant
discharge is an important topic of theoretical and empirical study. Therefore, this paper
adopted an advanced Bayesian spatio-temporal statistical model and a local regression
model to measure the spatio-temporal dynamic relationships between PM2.5 emission
sources and urban expansion.

Regarding the simulation results of the advanced Bayesian spatio-temporal statistical
model, it can be inferred from the difference between the results of model 2, 3 and 4 that
the industrial structures of Beijing, Tianjin, and Hebei provinces are quite different, and the
PM2.5 emissions control policies need different emphases. The model also has limitations.
This article mainly explores the relationship between different sources of PM2.5 emission
and urban expansion, and therefore does not take into account some confounding variables
that were associated with urbanization or PM2.5 emissions.

Regarding the simulation results of the GWR model, Figure 5 shows the spatial
correlation between urban expansion and the PM2.5 emission from the transport sector in
2005 and 2010. Overall, the spatial correlation between urban expansion and the PM2.5
emission from transport sector in the Beijing-Tianjin-Hebei region increased, and we deduce
that this is related to the popularity of family cars [49]. However, from 2005 to 2010, its
spatial distribution did not change significantly, and both showed a gradual weakening
trend from northwest to southeast, which is presumably related to the topographical factors
of the study area (Figure 6) [50].
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Figure 5. The results of log Tran based on the GWR model in Beijing-Tianjin-Hebei region in 2005
and 2010. (a) shows the degree of correlation between urban expansion and PM2.5 emission from the
transport sector in the Beijing-Tianjin-Hebei region in 2005, while (b) shows that in 2010.
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Figure 6. Elevation of Beijing-Tianjin-Hebei region.

Some limitations remain. First, PM2.5 pollution is linked to both primary and sec-
ondary emissions. This paper mainly explores the correlation between PM2.5 pollution
from different sources and urban expansion, so only primary PM2.5 emission is considered.
In subsequent research, we will comprehensively analyze the correlation between urban
expansion and PM2.5 from both primary and secondary emission. Second, with new credi-
ble data sources on urban expansion for other urban agglomerations in China, such as the
Guangdong–Hong Kong–Macao Greater Bay Area, we will empirically check whether the
correlation between PM2.5 emissions from different sources and urban expansion varies
across different regions and discuss the potential mechanisms leading to such spatial het-
erogeneities. In addition, certain confounding variables that affect both pollutant emissions
and urban expansion might be not incorporated in our model because of data limitations.

5. Conclusions

This paper explored the correlation between urban expansion and PM2.5 emissions
from different sources in the Beijing-Tianjin-Hebei region. Our exploration mainly drew
upon the fine resolution urban expansion indicator complied from remote sensing and
satellite data sources. A Bayesian spatio-temporal autoregressive statistical model and
a local regression model were used to explicitly analyze potential spatial correlations
and temporal dependency between urban expansion and PM2.5 emissions from different
sources. Our empirical results based on the Bayesian model showed that the urbanization
in Beijing-Tianjin-Hebei region was significantly positively correlated with PM2.5 emissions
from transportation, energy production, and industry, and model-based estimates of
the spatial distributions of urban expansion presented obvious clustering patterns. Our
empirical results based on the local regression model showed that the spatial correlations
between PM2.5 emissions from different sources and urban expansion changed during the
period of rapid urban expansion (2005–2010), and the biggest change originated from the
PM2.5 emissions of the transport sector.
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