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Abstract: A symmetric graphene plasmon waveguide (SGPWG) is proposed here to achieve excellent
subwavelength waveguiding performance of mid-infrared waves. The modal properties of the
fundamental graphene plasmon mode are investigated by use of the finite element method. Due to
the naturally rounded tips, the plasmon mode in SGPWG could achieve a normalized mode field area
of ~10−5 (or less) and a figure of merit over 400 by tuning the key geometric structure parameters and
the chemical potential of graphene. In addition, results show that the modal performance of SGPWG
seems to improve over its circular counterparts. Besides the modal properties, crosstalk analysis
indicates that the proposed waveguide exhibits extremely low crosstalk, even at a separation distance
of 64 nm. Due to these excellent characteristics, the proposed waveguide has promising applications
in ultra-compact integrated photonic components and other intriguing nanoscale devices.

Keywords: graphene plasmons; waveguides; subwavelength structures; mid-infrared waves

1. Introduction

Plasmonic waveguides (PWGs) [1], which can confine and guide light at the subwave-
length scale, are one of the components necessary to realize ultra-high-density photonic
integration [2]. The traditional noble metallic PWGs, such as metal stripe/nanowire waveg-
uides [3–5], channel/wedge plasmon waveguides [6], gap plasmon waveguides [7–9],
dielectric-loaded plasmon waveguides [10–12], and hybrid PWGs [1,13–18], have been
intensively studied in the near-infrared and visible bands. However, in the mid- and
far-infrared bands, the plasmonic effects of metals (which were modeled as perfect electric
conductors) are very weak and the electromagnetic optical response cannot be dynamically
adjusted, which imposes restrictions on their applications at the nanoscale [19,20]. Thus,
finding appropriate materials for PWGs is an urgent need.

To address this critical challenge, researchers have suggested some available materials
with tunable properties for exciting surface plasmons [21], including graphene [22–24],
transition metal dichalcogenides [25–27], bulk Dirac semimetals [28,29], borophene [30,31],
etc. Among these, graphene plasmons (GPs) have attracted widespread attention due to
their advantages, including strong light–matter interactions, deep subwavelength field
confinement, and tunable optical properties [23,24]. Benefiting from these excellent char-
acteristics, graphene has served as an effective nanoscale waveguiding platform in the
infrared region. More importantly, the combination of graphene and silicon-on-insulator
(SOI) waveguides make it possible to design graphene-based photonic integration de-
vices [32], such as waveguides [33–39], sensors [40,41], filters [42], modulators [43,44],
etc. Recently, graphene–SiO2–Si coaxial-like waveguides [45], graphene layer–SiO2–Si
planar structures [46–50], and graphene-coated nanowires integrated with SiO2 or Si sub-
strates [51–56] were presented to demonstrate ultra-compact photonic integrated circuits
in the mid- and far-infrared bands.
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The combination of graphene and silicon-based waveguides not only provides addi-
tional degrees of freedom to tune the modal properties, but also leads to strong coupling
between the graphene layer and silicon layer, which massively reduces the modal field
area. To realize ultra-compact photonic integration, the modal field area should be small
enough to circumvent the interference between neighboring structures. Therefore, highly
concentrated modal fields are preferred. Here, we propose a symmetric graphene plasmon
waveguide (SGPWG) to achieve nanoscale waveguiding of mid-infrared waves. The re-
sults of our simulations show that the elliptical nanowire-based SGPWG performs better
than its circular counterparts and is suitable for ultra-compact photonics integration. We
first introduce the waveguide structure and methods, then comprehensively evaluate the
proposed waveguide in the light of geometric and physical parameters. We also discuss the
dependences of modal properties on the ratio of the semi-major axis to the semi-minor axis.
Finally, we present the crosstalk analysis and briefly compare the mode characteristics of
the elliptical nanowire-based SGPWG with those of the circular nanowire-based SGPWG.

2. Waveguide Structure and Methods

Figure 1 shows the schematic of the proposed SGPWG, which is composed of two
graphene-coated elliptical nanowires symmetrically placed on each side of a thin Si slab
with a small gap distance, h. The semi-minor axis and semi-major axis of the elliptical
nanowire are a and b, respectively. The thickness and width of the Si slab are H and W,
respectively. The relative permittivities of the dielectric nanowire, Si slab, and surrounding
silica are set as ε1 = 2, ε2 = 12.25 (with an approximated refractive index of 3.5), and ε3 = 2.25,
respectively [57–59]. The dielectric nanowires are coated by the monolayer graphene. In
this work, the monolayer graphene is simulated as an electric field-induced surface current
(J = σgE) on the nanowire surfaces [60]. Graphene’s surface conductivity (σg) is obtained
from Kubo’s formula, which consists of the intra- and inter-band contributions [56], namely
σg = σintra + σinter, where:

σintra =
2ie2kBT
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The electron relaxation time τ is set at 0.5 ps according to [61]. The temperature is T 
= 300 K; ω = 2πf, with f being the frequency of the incident light; EF is the chemical 
potential; ћ is the reduced Plank’s constant; kB is the Boltzmann’s constant; and e = 1.6 × 
10−19 C. 

 

Figure 1. Schematic of the proposed SGPWG. (a) Three-dimensional (3D) view, (b) two-dimensional
(2D) cross-section.

The electron relaxation time τ is set at 0.5 ps according to [61]. The temperature is
T = 300 K; ω = 2πf, with f being the frequency of the incident light; EF is the chemical poten-
tial; h̄ is the reduced Plank’s constant; kB is the Boltzmann’s constant; and e = 1.6 × 10−19 C.
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The GP mode propagates along the z-direction with a complex propagation constant
kz, where: kz = k0Neff; k0 = 2π/λ0, where λ0 is the wavelength in air; and Neff is the complex
effective mode index. The propagation distance is calculated by LP = λ0/[2πIm(Neff)],
where Im(Neff) denotes the imaginary part of Neff. The normalized mode size is defined as
AN = Aeff/A0, where A0 = λ0

2/4, and Aeff is defined as

Aeff =
x

W(r)d2r/max{W(r)} (3)

where W(r) represents the energy density of the plasmon mode [1]. Figure of merit
(FoM) [62] is defined as LP/(Aeff/π)1/2. The modal properties are investigated by the
finite element method (FEM) software COMSOL Multiphysics, which is capable of pre-
cisely modeling complex plasmonic structures and thus widely used [1,60,63].

3. Results and Discussion

The time-averaged Poynting vector along the z-direction is given as Sz = 1/2Re(E ×
M*)|z, where Re(·) is the real part, the superscript of M is the complex conjugate, and
E and M are the electric and magnetic field vectors. Figure 2a–c depicts the 2D energy
density (Sz) distributions of the fundamental mode in SGPWG for different gap distances
(h = 2, 5, 10 nm), where a = 50 nm, b = 100 nm, W = 400 nm, H = 20 nm, EF = 0.5 eV,
and f = 30 THz. It could be seen that the optical energy of the plasmon mode is mainly
concentrated between the nanowire and the Si layer. For h = 2, 5, and 10 nm, the peak values
of the energy density are 0.36, 0.13 and 0.06 W/m2, respectively. To get an intuitive view,
Figure 2d,e depicts the normalized energy density distributions along the x (at y = 0 nm)
and y (at x = 0 nm) directions (shown in Figure 1b), respectively. Clearly, the energy is
mainly restricted between the nanowires. With increasing h, the field confinement weakens,
and the energy density becomes more dispersed. Both features are consistent with the
coupling behavior between metal nanoparticles [64]. This is because the coupling strength
between the GP mode and silicon layer decreases when h increases. In order to increase
the degree of field confinement, the gap should be at the deep subwavelength scale (e.g.,
2~20 nm), which in turn can help to avoid crosstalk between optical signals in the photonic
integrated circuits.

As elliptical nanowires are involved in the proposed SGPWG, we need to consider
different b/a values. We chose four representative b/a values throughout the paper, namely
b/a = 0.5, 1, 2, and 5. Although the case of b/a = 1 has already been investigated in [52],
we show that the b/a > 1 setting presented an increased subwavelength optical energy
transmission performance as compared to the b/a = 1 setting.

Figure 3 shows the relationship between the fundamental mode properties and the
gap distance h at different b/a values (b/a = 0.5, 1, 2, and 5). The parameters were a = 50 nm,
W = 400 nm, H = 20 nm, EF = 0.5 eV, and f = 30 THz. From Figure 3a, it can be seen that the
real parts of the effective mode indices (neff) decrease with the increase in h for b/a = 0.5,
1, 2, and 5. For the case of b/a = 0.5, the coupling between the plasmon mode and the Si
layer is much stronger, and then gradually weakens with the increase in b/a. For the four
cases considered here, LP increases with the increase in h. As a whole, the propagation
distance also increases with the increase in b/a, as shown in Figure 3b. Figure 3c,d shows
the normalized mode area and figure of merit, respectively. As stated above, the smaller
the gap distance, the better the field confinement. Therefore, one can see that AN varies
from 3.76 × 10−6 to 8.305 × 10−5 when h increases from 2 to 12 nm. At a fixed h value,
the normalized mode area decreases with the increase in b/a. Finally, the plots of figure
of merit shown in Figure 3d indicate that the overall performance of the SGPWG can be
improved when h is reduced.
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Based on above simulations, we show that the cases of b/a > 1 (orange and purple
lines) show better performances compared with the cases of b/a = 1 (red lines) and 0.5
(blue lines) in terms of LP, AN, and FoM. In other words, these results show that the modal
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performance of elliptical nanowire-based SGPWG is better than its circular counterparts.
Noticing that the FoM decreases with the increase in the gap distance h, we set h = 5 nm in
the following experiments to maintain the good performance of this structure.

Figure 4 shows the relationship between the fundamental mode properties and the
thickness of the silicon layer at b/a = 0.5, 1, 2, and 5 when a = 50 nm, W = 400 nm, h = 5 nm,
EF = 0.5 eV, and f = 30 THz. The modal properties are similar to those presented in Figure 3,
except for Figure 4b, where the propagation length seems to have a maximum value
when H is around 30 nm. As show in Figure 4b,c, when H increases, LP first reaches a
maximum value and then slightly decreases, while the normalized mode area AN increases
monotonically. With increasing H, the corresponding effective mode index and FoM
decrease significantly, as shown in Figure 4a,d. Hence, we set H = 20 nm to maintain a
large FoM value in the following experiments. Apparently, b/a > 1 settings (orange and
purple lines) perform better than b/a = 1 (red lines) and 0.5 (blue lines) settings in terms of
LP, AN, and FoM.
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The frequency-dependent mode characteristics of the SGPWG are shown in Figure 5 at
different b/a values. We set a = 50 nm, W = 400 nm, H = 20 nm, h = 5 nm, and EF = 0.5 eV. As
shown in Figure 5a,b, when the frequency varies from 20 to 40 THz, neff increases linearly
and LP decreases monotonically. This is because at higher frequencies, the large absorption
of graphene leads to the increase in propagation loss. From Figure 5c, we see that the
normalized mode field area (AN) increases with increasing frequency, maintaining a level
of ~10−5. As for the figure of merit shown in Figure 5d, increasing frequency degenerates
the overall performance. In other words, higher frequencies lead to higher neff and AN
values, but lower LP and FoM values. Once again, we showed that b/a > 1 settings (orange
and purple lines) perform better than b/a = 1 (red lines) and 0.5 (blue lines) settings in
terms of LP, AN, and FoM.
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To present the tunability of the GP mode in the proposed SGPWG, the mode properties
versus EF are presented in Figure 6. In [65], the chemical potential of graphene could reach
a value of 1.77 eV; thus, EF varied from 0.4 to 1.6 eV. The other parameters were a = 50 nm,
W = 400 nm, H = 20 nm, h = 5 nm, and f = 30 THz. As shown in Figure 6a,b, when EF
changes from 0.4 to 1.6 eV, both neff and modal loss decrease monotonically. The latter is
due to the fact that when the chemical potential is increased, the interband contribution of
σg is drastically reduced, thus leading to the reduction of propagation loss. However, the
chemical potential seems to have a limited effect on AN (see Figure 6c), since the modal
field area changes a little. In addition, the figure of merit shown in Figure 6d increases
rapidly with EF increase, and reaches a value of 850 when EF = 1.6 eV and b/a = 5. Overall,
when b/a ranges from 0.5 to 5, LP and FoM increase and AN decreases, indicating that
the elliptical nanowire-based SGPWG performs better than its circular counterparts. A
recent report showed that the graphene samples fabricated by large scale methods show
a relaxation time of only τ = 0.05 ps [66]. Hence, we also studied the modal properties
when τ = 0.05 ps (see black lines) and b/a = 5 for comparison. As seen in Figure 6b, LP
substantially decreases while neff and AN are nearly unchanged (see Figure 6a,c), and the
black lines are overlapped with the purple lines. These results indicate that the shorter
relaxation time degenerates the overall performance of the SGPWG (see Figure 6d). This is
because the imaginary part of the equivalent relative permittivity of monolayer graphene
increases about ten times.

If ultra-compact photonic integration is attempted, highly localized modal fields could
help reduce the crosstalk between neighboring structures. Here, we studied the crosstalk
between neighboring structures by considering a system consisting of two parallel SGPWGs
with an edge-to-edge distance of S (40~100 nm) as shown in Figure 7a. The parameters
were a = 50 nm, W = 800 nm, H = 20 nm, h = 5 nm, EF = 0.5 eV, and f = 30 THz. The
electric field (Ey) distributions of the symmetric and antisymmetric modes are depicted in
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Figure 7b,c with S = 40 nm and b/a = 2. Based on the coupled mode theory, the crosstalk
is estimated by the coupling length LC, which is the length required for complete power
transfer from one waveguide to the other, and is given by LC = λ0/(2|neff,s - neff,as|), where
neff,s and neff,as denote the real parts of the effective mode indices of the symmetric and
antisymmetric modes, respectively [7]. Figure 7d shows the normalized coupling lengths
(LC/LP) with respect to S for different b/a values. Usually, when LC/LP approaches 10 (see
the black dashed line), it is assumed that no coupling happens between the neighboring
components. When LC/LP reaches 10, the corresponding edge-to-edge distance are about
44.0, 55.5, 61.7, and 64.0 nm for b/a = 0.5, 1, 2, and 5, respectively. It is worth noting that
when S is above 64 nm, LC/LP is always larger than 10, which indicates that the proposed
SGPWG shows extremely low crosstalk between neighboring components and is suitable
for ultra-compact photonics integration.
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Next, we briefly compare the mode characteristics among three different kinds of
waveguides, including circular nanowire-based SGPWGs with R = a (Waveguide A)
and R = b (Waveguide C), and an elliptical nanowire-based SGPWG (Waveguide B). The
schematics of the three SGPWGs are shown in Figure 8a, and we set a = 50 nm, b = 150 nm,
W = 400 nm, h = 5 nm, H = 20 nm, EF = 0.5 eV, and f = 30 THz. Figure 8b shows the 2D
energy density distributions of the fundamental mode in three SGPWGs. The results show
that Waveguide B exhibits much stronger energy confinement than Waveguides A and C,
which can be intuitively seen from Table 1 (lower AN). As shown in Table 1, the plasmon
mode in Waveguide B has the smallest normalized mode area and largest LP compared
with the other waveguides.
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Table 1. Waveguiding performance comparison of three SGPWGs.

Waveguide Neff LP/µm AN

A 58.845 + 0.642i 2.477 2.512 × 10−5

B 52.428 + 0.608i 2.616 1.699 × 10−5

C 65.394 + 0.658i 2.417 3.501 × 10−5



Nanomaterials 2021, 11, 1281 9 of 12

Finally, we briefly introduce the fabrication process of the SGPWG. Recent reports [67,68]
showed that graphene-coated elliptical nanowires can be experimentally made by coating a
dielectric nanowire with a monolayer of graphene due to van der Waals forces. Then, based
on modern semiconductor fabrication technology, the substrate silica can be deposited on
top of the buffer layer [69]. After that, one GCNW is placed on the silica substrate, then the
GCNW is covered by silica deposition with a thickness of 2b + h. Next, a silicon layer with a
thickness of H (about 10 nm) could be deposited on top of the silica using plasma-enhanced
chemical vapor deposition (PECVD) technology [70]. Then, h-thick silica is deposited on
the silicon layer before transferring another GCNW. Finally, the second GCNW is covered
by silica deposition with a thickness of over 2b.

4. Conclusions

In summary, a symmetric graphene plasmon waveguide is proposed and investigated.
The simulation results show that a normalized mode field area of ∼10-5 and a figure of
merit of ~400 can be achieved by optimizing the parameters. The mode characteristics
could be dynamically tuned by changing the chemical potential of graphene by a DC bias
voltage or chemical doping. By varying the ratio of b/a, the simulation results show that
elliptical nanowire-based SGPWGs (b/a > 1) show better performance compared with
the cases of b/a ≤1 in terms of LP, AN, and FoM. In addition, crosstalk analysis suggests
that the proposed SGPWGs have extremely small energy couplings between neighboring
components, even at a separation distance of 64 nm. These findings could have potential
applications for ultra-compact photonic integration and subwavelength optoelectronic
devices in the mid-infrared band.
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