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Human milk contains a dynamic and complex site-specific microbiome, which is not
assembled in an aleatory way, formed by organized microbial consortia and networks.
Presence of some genera, such as Staphylococcus, Streptococcus, Corynebacterium,
Cutibacterium (formerly known as Propionibacterium), Lactobacillus, Lactococcus and
Bifidobacterium, has been detected by both culture-dependent and culture-independent
approaches. DNA from some gut-associated strict anaerobes has also been repeatedly
found and some studies have revealed the presence of cells and/or nucleic acids from
viruses, archaea, fungi and protozoa in human milk. Colostrum and milk microbes are
transmitted to the infant and, therefore, they are among the first colonizers of the human
gut. Still, the significance of human milk microbes in infant gut colonization remains an
open question. Clinical studies trying to elucidate the question are confounded by the
profound impact of non-microbial human milk components to intestinal microecology.
Modifications in the microbiota of human milk may have biological consequences for infant
colonization, metabolism, immune and neuroendocrine development, and for mammary
health. However, the factors driving differences in the composition of the human milk
microbiome remain poorly known. In addition to colostrum and milk, breast tissue in
lactating and non-lactating women may also contain a microbiota, with implications in the
pathogenesis of breast cancer and in some of the adverse outcomes associated with
breast implants. This and other open issues, such as the origin of the human milk
microbiome, and the current limitations and future prospects are addressed in this review.

Keywords: human milk, microbiota, microbiome, vertical transfer, biological functions, mastitis, breast tissue,
breast cancer
INTRODUCTION

Historically human milk was considered sterile under physiological conditions and, therefore, the
presence of microbes was considered either as an infection or as a contamination. The mammary
glands are made up of a moist intra-mammary mucosal ecosystem which, during late pregnancy and
throughout the lactation period, becomes an ideal environment for bacterial growth due to the
availability of a wide range of nutrients, and the optimum temperature for many microbes. In
addition, the extremely complex duct system may favor the growth and spreading of biofilm-forming
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bacteria, a property that is common among Staphylococcus strains
isolated from human milk (Delgado et al., 2009; Delgado et al.,
2011; Begović et al., 2013). In addition, the mammary ecosystem is
exposed to the external environment (via the ducts/nipple) and,
also, to the internal environment since tight junctions remain open
for a few days after birth. Since the first culture-dependent and
-independent reports of the human milk microbiome (Heikkilä
and Saris, 2003; Martin et al., 2003), all published studies have
provided evidence of the presence of bacteria or bacterial DNA in
milk collected from healthy women under hygienic conditions. In
contrast, no modern study has found evidence of their absence.
THE MICROBIOTA OF HUMAN MILK:
HISTORICAL PERSPECTIVE

Knowledge of the bacterial content of fresh mammalian milk is as
old as Pasteur’s “germ” theory (Figure 1). Numerous studies,
dating back more than a century ago, demonstrated that bacteria
are common in milk of healthy ruminants. However, milk
microbes were traditionally viewed from three perspectives:
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
(a) as a potential cause of mastitis, leading to economic losses
in farms (Macfadyen, 1891; French, 1903; Jones, 1918); (b) as a
potential cause of milk spoilage (Hall and Trout, 1968); or (c) as a
potential threat to human health because of the potential transfer
of pathogenic microbes, including those with a zoonotic origin
and those arising from a non-hygienic handling (Anonymous,
1889; Park, 1901). Many milk-borne diseases, including
tuberculosis, brucellosis, typhoid fever, diphtheria or scarlet
fever, had been recognized before 1900 (Holsinger et al., 1997),
and that it is estimated that approximately 65,000 people died of
milk-borne tuberculosis in England alone between 1912 and
1937 (Wilson, 1943). More than half a century later (mid-1950s),
the first studies dealing with the bacteriological composition of
human milk were published (Lindemann and Rupp, 1954; Novel
and Pongratz, 1954; Lindemann, 1955; Mocquot, 1955; Meyer
and Potel, 1956; Sager, 1956; Mossel and Weijers, 1957;
Lindemann, 1958). Most of them reported an unexpected fact:
the abundant and widespread bacterial “contamination” of milk
donated to human milk banks. Since these institutions were
rapidly spreading in Western countries, the number of studies
proposing either bacterial criteria for acceptance of donor milk,
FIGURE 1 | Historical perspectives of the main milestones in research focused in human milk microbes.
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or collection, storage and processing procedures to reduce the
milk bacterial load, also increased rapidly from the 1950s to the
early 1980s (Bachmann and Pulverer, 1962; Krieg, 1966;
Liebhaber et al., 1978; Carroll et al., 1979; Davidson et al.,
1979; Eidelman and Szilagyi, 1979; Jones et al., 1979; Lucas
and Roberts, 1979; West et al., 1979; Björkstén et al., 1980;
Carroll et al., 1980).

In parallel, a number of studies warned about the presence of
some potential pathogenic bacteria among such “contaminants”,
which posed a risk for infant health. They included mainly
Staphylococcus aureus but, also, Streptococcus pyogenes,
Streptococcus agalactiae and some enterobacteria (Salmonella
spp., Klebsiella pneumoniae) (Dubois, 1954; Cayla et al., 1955;
Rantasalo and Kauppinen, 1959; Foster and Harris, 1960;
Ottenheimer et al., 1961; Dluzniewska, 1966; Burbianka and
Dluzniewska, 1971; Fleischrocker et al., 1972; Kenny, 1977;
Ryder et al., 1977; Schreiner et al., 1977; Lucas and Roberts,
1978; Williamson et al., 1978; Donowitz et al., 1981; Cooke et al.,
1987; Lemoine, 1987). Finally, a few studies were focused on the
relationship between milk bacteria and mastitis (Dorr and Sittel,
1953; Cherkasskaia et al., 1980; Thomsen, 1982).

In 1985, the first report of a case of presumed mother-
to-infant transmission of human immunodeficiency virus
(HIV) via milk was published (Ziegler et al., 1985). In the
following years, fear of HIV transmission led human milk
banks to a strong crisis and to the closing of many of them
because of the financial burden of serological testing of donors
(Haiden and Ziegler, 2016). In addition, a few years earlier,
human milk had also been recognized as a source of
cytomegalovirus (CMV) (Hayes et al., 1972). This worsened
the situation since most banked milk was intended for preterm
neonates, a population where CMV may be particularly harmful,
and no routine procedure for CMV screening was available at
that time. As a result, most microbial studies of human milk
published in the second half of the 80’s and throughout the 90’s
were related to its role as a vehicle of HIV and/or CMV, and to
the search for the best methods for donors screening and for viral
inactivation (Stagno et al., 1980; Friis and Andersen, 1982;
Cheeseman and McGraw, 1983; Dworsky et al., 1983; Boyes,
1987; Anonymous, 1988). At this stage, presence of any kind of
microbe in milk was generally seen as a potential threat for
infant health.

This disease-centric view of milk changed in 2003 following
the publication of two articles that described the presence of
lactic acid bacteria in human milk (Heikkilä and Saris, 2003;
Martin et al., 2003). Such bacteria were generally recognized as
safe and beneficial for infant health. One year later, it was
proposed that human milk contains its own site-specific
microbiota (Martıń et al., 2004). Soon, it was found that some
strains isolated from human milk displayed a wide array of
probiotic traits (Beasley and Saris, 2004; Martıń et al., 2005;
Martıń et al., 2006; Olivares et al., 2006a). In fact, the first
description of the presence of lactobacilli (Lactobacillus
acidophilus) and bifidobacteria (then the so-called Lactobacillus
bifidus) in colostrum from healthy women was made in 1947
(Cataldi and Müller, 1947); however, such work was (and still is)
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
ignored by the medical and scientific community, likely due to
the fact that it was published in an Argentine journal with no
diffusion outside of Spanish-talking countries.

Presence of microorganisms in human milk is no longer valid
as a predictor of the risk of infant infection (Boer et al., 1981;
Schanler et al., 2011; Zimmermann et al., 2017), despite the fact
that additional cases of human milk-related infant infections
have been reported (Qutaishat et al., 2003; Kayıran et al., 2014;
Weems et al., 2015).
THE COMPOSITION OF THE HUMAN
MILK MICROBIOTA

From 2003, the study of the human milk microbiota has attracted
the interest of many research groups worldwide (Fernandez et al.,
2013; Jost et al., 2015; Ojo-Okunola et al., 2018), enabling the
detection of approximately 200 different bacterial, archeal and
fungal species from more than 50 different genera (Fernandez
et al., 2013), including new species (Martıń et al., 2011), and new
genera, including Lactomassilus, Lactimicrobium, Anaerolactibacter,
Galactobacillus, and Acidipropionibacterium (Togo et al., 2017;
Togo et al., 2019a).

Culture-based methods have revealed that some species of the
genera Staphylococcus (Staphylococcus epidermidis and other
coagulase-negative species [CNS]), Streptococcus (S. salivarius, S.
mitis and other species of the mitis group), Corynebacterium,
Cutibacterium and other taxonomically-related Gram-positive
bacteria are usually the dominant cultivable bacteria in samples
of milk from healthy women (Jiménez et al., 2008a; Jiménez et al.,
2008b; Solıś et al., 2010; Schanler et al., 2011; Ding et al., 2019).
Less frequently, lactic acid bacteria (Lactococcus, Enterococcus,
Lactobacillus, Leuconostoc, and Weissella) and bifidobacteria are
isolated from this biological fluid (Martin et al., 2003; Martıń et al.,
2006; Abrahamsson et al., 2009; Martıń et al., 2009; Solıś
et al., 2010; Arboleya et al., 2011; Makino et al., 2015; Murphy
et al., 2017). Some Lactobacillus (L. salivarius, L. reuteri, L. gasseri,
L. fermentum) and Bifidobacterium (B. breve and B. longum)
species have received particular interest because of the potential
of the strains belonging to such species to be employed as
probiotics. It must be highlighted that the different species of the
genera Lactobacillus and Leuconostoc have been recently
reclassified into 25 different genera (Zheng et al., 2020).

Under physiological conditions, milk bacterial concentrations
may range from <1 to 4 log10 colony-forming units (cfu)/mL if
the samples are obtained by either manual expression or through
sterile pumps following hygienic practices (Espinosa-Martos
et al., 2016). In contrast, bacterial concentrations can rise up to
6 log10 cfu/mL, or even higher, in mastitis cases (Fernández et al.,
2014) or if milk is collected through the use of non-sterile pumps
(Boo et al., 2001; Brown et al., 2005; Marıń et al., 2009; Jiménez
et al., 2017). At present, cell count methods, from classic
counting chambers to flow cytometry, are the best methods for
an accurate quantification of (live) bacterial cells in milk while
quantitative PCR methods usually lead to an overestimation due
to the presence of dead bacterial cells, exosomes and/or free
November 2020 | Volume 10 | Article 586667
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bacterial DNA but, also, to mispriming with human DNA
(Walker et al., 2020), and copy number bias (Větrovský and
Baldrian, 2013; Louca et al., 2018).

Introduction of new media, supplements and incubation
conditions have allowed the isolation of bacteria that were
previously unnoticed. However, recent developments in
culturomics have revealed that many bacteria previously regarded
as non-cultivable can now be isolated from complex ecosystems
when a proper combination of culture conditions is provided
(Lagier et al., 2012; Lagier et al., 2015; Lau et al., 2016; Lagier
et al., 2018; Schwab et al., 2019). These new methodologies have
served as critical tests to validate data derived from metagenomic
studies regarding the gut ecosystem (Lau et al., 2016). Culture-
based techniques enable the isolation, preservation and
characterization of strains (Bäckhed et al., 2005; Lara-Villoslada
et al., 2007; Jiménez et al., 2008b; Delgado et al., 2009; Jiménez et al.,
2010a; Jiménez et al., 2010b; Arboleya et al., 2011; Delgado et al.,
2011; Gueimonde et al., 2012; Jiménez et al., 2012; Langa et al.,
2012; Martıń et al., 2012a; Martıń et al., 2013; Cárdenas et al., 2014;
Cárdenas et al., 2015).

In relation to the milk microbiome, the use of first generation
of culture-independent techniques, including PCR, combined or
not with creation of bacterial gene libraries, denaturing gradient
gel electrophoresis (DGGE), and temperature gradient gel
electrophoresis (TGGE), allowed a better knowledge of the
milk bacterial populations (Gueimonde et al., 2007; Martıń
et al., 2007a; Martıń et al., 2007b; Delgado et al., 2008; Collado
et al., 2009). Nowadays, they have been replaced by high-
throughput Next Generation Sequencing (NGS) techniques,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
including metataxonomics (16S rRNA amplicon analysis) and
metagenomics (total DNA sequencing). Sequencing of bacterial
16S rRNA genes has revealed that milk contains DNA of diverse
microbial groups that were previously undetected with
conventional culture-based techniques (Hunt et al., 2011;
Cabrera-Rubio et al., 2012; Jost et al., 2013; Jost et al., 2014;
Cabrera-Rubio et al., 2016; Boix-Amorós et al., 2017; Pannaraj
et al., 2017). Although results from such studies do not provide
evidence for viability, they have been useful to highlight the
complexity of the milk microbiota and its role in modulating
mammary homeostasis and gut colonization during early life.
Shotgun sequencing of milk microbial DNA has been rarely
performed to date (Ward et al., 2013; Jiménez et al., 2015),
despite the fact that it can reveal the presence and potential
functions of neglected members of this microbiota (archaea,
viruses, fungi, protozoa). In addition, although DNA-based
studies cannot demonstrate function, they can imply functional
capacity based on the genes present in the samples. Comprehensive
metagenomic, metatranscriptomic and metabolomic investigations
are required for a holistic understanding of genetic diversity and
functionality within the milk ecosystem (Figure 2).

Humanmilkmicrobiota is not aleatory assembled and contains
organized bacterial consortia and networks (Ma et al., 2015; Drago
et al., 2017). The milk microbiota of a woman is very stable
throughout the lactation period, particularly in relation to the
most abundant genera (Hunt et al., 2011; Williams et al.,
2017a). Culture-independent studies have shown a wide diversity
of bacterial signatures belonging to more than 800 different
bacterial species, mainly from four major phyla (Firmicutes,
FIGURE 2 | Current and future approaches to study the composition and functions of the human milk microbiota.
November 2020 | Volume 10 | Article 586667
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Actinobacteria, Bacteroidetes, and Proteobacteria) (Togo et al.,
2019b), including all the cultivable species (Gueimonde et al., 2007;
Martıń et al., 2007a;Martıń et al., 2007b;Delgado et al., 2008;Collado
et al., 2009; Hunt et al., 2011; Cabrera-Rubio et al., 2012; Jost et al.,
2013; Ward et al., 2013; Jost et al., 2014; Jiménez et al., 2015; Boix-
Amorós et al., 2016;Cabrera-Rubio et al., 2016; Sakwinska et al., 2016;
Chen et al., 2018; Simpson et al., 2018; Tuominen et al., 2018; Ding
et al., 2019; Lackey et al., 2019). Additionally, DNA from some gut-
associated strict anaerobes (Faecalibacterium, Bacteroides,
Clostridium, Blautia, Coprococcus, Ruminococcus, Roseburia,
Eubacterium, Veillonella, and others) has also been repeatedly
detected (Cabrera-Rubio et al., 2012; Jost et al., 2013; Jost et al.,
2014; Jiménez et al., 2015; Gómez-Gallego et al., 2016).

Different studies have also reported the frequent detection of
DNA sequences from soil- and water-related bacteria, including
Bradyrhizobium,Novosphingobium,Methylobacterium,Pseudomonas,
Sphingobium, Sphingopyxis, Stenotrophomonas, Sphingomonas or
Xanthomonas, in human milk (Hunt et al., 2011; Cabrera-Rubio
et al., 2012; Urbaniak et al., 2014a; Urbaniak et al., 2014b; Li et al.,
2017). It is possible that a highproportionof such sequences are the
result of technical artifacts. DNA from the bacterial genera cited
above is generally present in molecular biology reagents, solutions
and kits (Grahn et al., 2003; Mühl et al., 2010; Salter et al., 2014;
Lauder et al., 2016). This represents amajor challenge assessing the
composition of microbiotas characterized by a low microbial
biomass, as is the case of the human milk microbiota in healthy
women. Upon amplification, contaminating DNAmay overcome
the low amount of starting material in the biological sample and
lead to incorrect results (Laurence et al., 2014). Sequences
belonging to such genera (e.g., Pseudomonas) may be so
abundant that they can be wrongly included into the milk core
microbiome. There are several measures that can be implemented
to minimize this problem, such as sequencing of negative (blank)
controls and contaminant removal procedures (Salter et al., 2014;
Hornung et al., 2019; Karstens et al., 2019; Stinson et al., 2019),
while providing microbial DNA-free sampling containers and
molecular reagents is still a pending challenge for companies
working in this field.

Differences in the techniques and procedures employed in
different studies may account, at least partly, for conflicting
results regarding the frequency and abundance of sequences
belonging to Lactobacillus, Bifidobacterium and strict anaerobes
in human milk (Lagier et al., 2012). These kind of controversies
have also happened in relation to the microbiota of the infant gut
(Palmer et al., 2007; Turroni et al., 2012). Other limitations and
biases of molecular techniques include the lack of discrimination
between live or dead organisms when techniques compatible
with viability assessments are not selected (Emerson et al., 2017),
and the over- or underestimation of some microbial groups
because of the composition of their plasmatic membranes, outer
membranes or cell walls, methods used for extraction of nucleic
acids, copy number of the target gene, the specific 16S rRNA
region(s) targeted by the selected primers, and the pipelines used
for the bioinformatic analysis (McGuire and McGuire, 2015;
Gómez-Gallego et al., 2016; McGuire and McGuire, 2017).

Some studies have revealed the presence of cells, DNA and/or
RNA from viruses, archea, fungi and protozoa in human milk
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
(Jiménez et al., 2015; Pannaraj et al., 2018; Boix-Amorós et al.,
2019). Although some pathogenic viruses, such as HIV, CMV,
Ebola and Zika virusesmay be found in humanmilk (Kourtis et al.,
2003; Van de Perre et al., 2012; Bardanzellu et al., 2019; Sampieri
and Montero, 2019; Ververs and Arya, 2019), other viruses,
including bacteriophages, are also present (Mohandas and
Pannaraj, 2020). The human milk virome is distinct from other
body anatomical sites and includes eukaryotic viruses,
bacteriophages, and viral elements integrated in the host
chromosomes (Duranti et al., 2017; Pannaraj et al., 2018). The
most abundant eukaryotic viruses belong to the families
Herpesviridae, Poxviridae, Mimiviridae and Iridoviridae.
Bacteriophages comprise 95% of the human milk viruses and
have the ability of modulating the bacterial ecology by killing
specific bacteria or by supplying them with additional gene
functions (Pannaraj et al., 2018). Human endogenous
retroviruses, accounting for 0.06 to 3.63% of all reads, have also
been identified in milk samples (Jiménez et al., 2015). Both
pathogenic and non-pathogenic viruses can be vertically
transferred from mother to infant (Kuehn et al., 2013; Lugli et al.,
2016; Duranti et al., 2017; Blohm et al., 2018; Pannaraj et al., 2018).

Some studies have identified archaeal sequences in humanmilk
(Wardetal., 2013; Jiménez et al., 2015;Togoetal., 2019c). Inaddition,
Togo et al. (2019b) were able to isolate Methanobrevibacter
smithii from 3 colostrum and 5 milk samples out of a total of 20
sampleswhileMethanobrevibacter oraliswas cultured fromonemilk
sample. Methanogenic archaea have remained largely
underestimated in human microbiome studies due to technical
difificulties in their assessment (Bang and Schmitz, 2015).
However, they are particularly adapted to the human gut,
participating actively in metabolism and health through
methanogenesis (Samuel et al., 2007; Dridi et al., 2009). Presence of
M. smithii in the human gut is a feature of healthy lean adults while
there is a depletion of this species in obese adults (Le Chatelier et al.,
2013; Goodrich et al., 2014). In this context, M. smithii was less
frequently detected by either culture or PCR in the milk samples
obtained from obesemothers in the study of Togo et al. (2019c). The
human gastrointestinal tract is colonized by M. smithii early in life
(Grine et al., 2017), and colostrum and milk may represent relevant
sources of methanogenic archaea.

In relation to fungi, a metagenomic analysis detected fungal-
related sequences in 17 out of the 20 milk samples included in the
study (Jiménez et al., 2015).More specifically, the reads belonged to
the phyla Basidiomycota and Ascomycota, and to the species
Calocera cornea, Candida dubliniensis, Guepiniopsis buccina,
Malassezia globosa, Malassezia restricta, Podospora anserina,
Sordaria macrospora, Talaromyces stipitatus, and Yarrowia
lipolytica, with M. globosa being the most widespread species
(Jiménez et al., 2015). Boix-Amorós et al. (2017) could visualize
and isolate yeasts from 17 out of 41 milk samples from healthy
women, and most of the isolates belonged to the species Candida
parapsilosis and Rhodotorula mucilaginosa. Later, the same group
analyzed 80 milk samples from women of 4 different countries by
sequencing of the ITS1 region of the fungal rDNA gene, and found
that Malassezia and Davidiella were the most prevalent genera
independenty of the country, while delivery mode and geographic
location were associated with shifts in the milk mycobiome
November 2020 | Volume 10 | Article 586667
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composition (Boix-Amorós et al., 2017). Sequencing of the ITS2
region allowed the identification of Candida and Saccharomyces
sequences in 6 milk samples fromwomen whose infant stayed in a
neonatal intensive care unit (NICU) althouh sequences of the same
generawere also identified in samples from theNICUenvironment
(Heisel et al., 2019).Overall, these studied suggest thatmilkmay be
a source of fungi for the infant gut, thus contributing to the
acquisition and development of the gut mycobiota. However,
more studies are required to confirm this role, and to elucidate
the potential interactions with other microbes. The significance of
the protozoa (Toxoplasma gondii, Giardia intestinalis) detected in
milk from some mothers remains unclear (Jiménez et al., 2015).
FACTORS AFFECTING THE
COMPOSITION OF THE HUMAN
MILK MICROBIOTA

The milk microbiome is characterized by a certain degree of
interindividual variability (Martıń et al., 2007a; Martıń et al.,
2007b; Hunt et al., 2011; Boix-Amorós et al., 2016; Cabrera-
Rubio et al., 2016; Avershina et al., 2018; Chen et al., 2018).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
Modifications in its composition may have biological
implications for infant colonization, metabolism, immune and
neuroendocrine development and for mammary health.
However, the current knowledge about the impact of a wide
variety of factors (genetic background, ethnicity, milk sampling,
geographical location, circadian rhythm, maternal age, diet and
body mass index [BMI], delivery mode, gestational age, therapies
and food supplements, infant and maternal health status, and
others) on human milk microbial communities is very limited
(Fernández et al., 2014; Gómez-Gallego et al., 2016) (Figure 3).

Although some studies have tried to elucidate the influence of
some of these factors, most of them involved a low number of
samples/women and/or have relied on short amplicon
sequencing, a technology which poor resolution at the lower
taxonomical levels may mask differences or overinflate them;
these limitations together with the fact that many factors with a
potential impact on the composition of the milk microbiome
may interact, makes it difficult to evaluate their true impact on
the milk microbiome (LeMay-Nedjelski et al., 2018).

Sample Collection
When milk is collected through the use of domestic (non-single
use)milkpumps, ahigh concentrationof yeasts andGram-negative
FIGURE 3 | Factors affecting the composition of the human milk microbiota. HMO, human milk oligosaccharides; HLA, human leukocyte antigen; BMI, body mass
index; IgA, immunoglobulin A.
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bacteria (Enterobacteriaceae, Stenotrophomonas, Pseudomonas)
may arise from the water used to rinse the devices or as a
consequence of unhygienic practices (Knoop et al., 1985;
Moloney et al., 1987; Thompson et al., 1997; Boo et al., 2001;
Brown et al., 2005; Marıń et al., 2009; Jiménez et al., 2017); in fact,
some cases of neonatal and infant sepsis and infections initially
associated with human milk were the result of contamination of
breast pumps (Gransden et al., 1986). A recent study comparing
milk samples frommotherswho regularly usedpumps versus those
who never used pumps showed that pumpedmilk was consistently
related to an enrichment of potential pathogens compared to hand
expressed milk (Moossavi et al., 2019a). This observation suggests
that regular pump usemay alter themilkmicrobiome over time. In
fact, it has been shown that when sterile single-use pumps are used,
no difference is detected between hand-expressed and pump-
expressed samples, while the use of the mother’s own multi-use
pump does result in a significant change in the apparent milk
microbiome (Rodrıǵuez-Cruz et al., 2020).

Human Milk Oligosaccharides
Human milk oligosaccharides (HMOs) exert prebiotic effects on
some bacteria that are frequently detected in human milk,
including Bifidobacterium spp. and Staphylococcus epidermidis
(Hunt et al., 2012; Thongaram et al., 2017). Milk oligosaccharides
and microbes confer a highly personalized “symbiotic” complex
which may be crucial for the development of the infant gut
microbiota (Jost et al., 2015; Lewis et al., 2015; Wang et al., 2015;
Williams et al., 2017a; Moossavi et al., 2019b). Positive
correlations between HMO concentration and the abundance
of Staphylococcus (Williams et al., 2017b), between B. breve and
sialylated HMOs, between B. longum group and non-
fucosylated/non-sialylated HMOs, between fucosylated HMOs
and Akkermansia muciniphila, and between fucosylated/
sialylated HMOs and S. aureus have been described (Aakko
et al., 2017). A study found that the maternal secretor status was
associated with the composition of the milk microbiota for the
first 4 weeks after parturition (Cabrera-Rubio et al., 2019).
Although no differences on diversity and richness were
detected, Lactobacillus spp., Enterococcus spp., Streptococcus
spp., and Bifidobacterium spp. were lower or less prevalent in
non-secretor samples than in secretor samples (Cabrera-Rubio
et al., 2019).

There are several mechanisms by which HMOs may
modulate the human milk microbiota, including prebiotic,
antimicrobial, or immunomodulatory properties (Ackerman
et al., 2017; Ackerman et al., 2018; Triantis et al., 2018; Bode,
2020). The ability to assimilate, metabolize or use HMOs is
conserved among the Bifidobacterium species that are most
frequently detected in the infant gut and in human milk (Sela
and Mills, 2010; Underwood et al., 2015), although the pathways
vary among species and strains (Sakanaka et al., 2019). However,
a recent study has shown that there is not a strict correlation
between bifidobacterial populations in human milk and their
ability to metabolize HMOs (Lugli et al., 2020). The exact
growth-promoting effect of HMOs on Staphylococcus isolates
from human milk remains unknown, since these bacteria do not
metabolize these compounds (Hunt et al., 2012). Recently, novel
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pathways enabling the growth of Roseburia and Eubacterium
(two butyrate-producing genera that have been repeteadly
detected in human milk) on HMOs have been published
(Pichler et al., 2020). More studies are required to elucidate
how HMOs can contribute to shape the microbiota of milk.

Other Human Milk Metabolites
The complexity and dynamic chemical composition of human
milk represents a challenge for researchers (Ojo-Okunola et al.,
2020). In addition to HMOs, human milk contains a plethora of
metabolites produced by either human or bacterial cells that are
relevant for mammary and infant health (Gay et al., 2018). Some
of them have the potential to shape the composition of the
human milk and/or the infant gut microbiotas because of their
roles in changing environmental conditions that are relevant for
bacterial growth, such as the redox potential or by other
mechanisms that promote or inhibit the growth of certain
species or strains. Up to 68 metabolites were identified in one
study assessing the metabolic and microbiota profiles of milk
from 79 women from Finland, Spain, South Africa, and China.
Bacilli, Actinobacteria. and Proteobacteria were the bacterial
groups displaying more positive or negative associations with
milk metabolites (Gómez-Gallego et al., 2018).

Short chain fatty acids (SCFA), including butyrate, acetate, and
propionate, are the result of bacterial metabolism in the maternal
gut and may reach the mammary gland through the bloodstream.
These metabolites are key players in human homeostasis because
of their interactions with the microbiota, the immune system, and
the neuroendocrine system, contributing to the immunological,
metabolic, and neurological programming of the host (Stinson
et al., 2020). In this context, the concentrations of acetate and
butyrate in milk samples from atopic mothers are significantly
lower than in samples from non-atopic mothers (Stinson et al.,
2020). Levels of butyrate in milk have also been negatively
associated with infant BMI and this fact may program healthy
adiposity outcomes later in life (Prentice et al., 2019). Interestingly,
administration of some Lactobacillus strains isolated from human
milk (Lactobacillus salivarius CECT 5713, Lactobacillus
fermentum CECT 5716) to infants has shown ability for
increasing the fecal concentration of butyrate (Maldonado et al.,
2010; Gil-Campos et al., 2012). Variations in the concentrations of
some hormones present in human milk (leptin, insulin) have also
been associated with changes in the composition of the infant gut
microbiota, SCFA concentrations, and gut permeability (Lemas
et al., 2016). Current knowledge on the interactions between the
metabolome and the microbiota of human milk is scarce despite
the fact that they may have a paramount relevance for infant and
mammary outcomes. Integrative studies are required to address
these complex interactions.

Maternal Diet and Body Mass Index
Maternal diet is associated with the abundance of some bacterial
genera (Williams et al., 2017a; Williams et al., 2017b). Protein
intake is positively correlated with the abundance of Gemella
while consumption of monounsaturated and saturated fatty acids
is negatively related with the abundance of Corynebacterium;
similarly, a negative correlation was found between Firmicutes
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and total carbohydrates, disaccharides, and lactose ingestion
(Williams et al., 2017a). A previous study had revealed that
monounsaturated fatty acids were positively associated with
Lactobacillus genus, while the contrary was observed for
Proteobacteria (Kumar et al., 2016).

An association between vitamin C intake during pregnancy
and the bacterial diversity of milk has also been reported (Padilha
et al., 2019a). The same study found a positive relationship
between ingestion of some fatty acids (linoleic and
polyunsaturated fatty acids) during lactation and the level of
Bifidobacterium in milk.

In relation to BMI, prepregnancy BMI has been associated
with a higher milk microbial diversity and a lower abundance of
Streptococcus (Davé et al., 2016). Another study found that the
abundance of Granulicatella in milk from overweight and obese
mothers was higher than in milk from normoweight women
(Williams et al., 2017a). A recent study showed that the milk of
mothers with a high postpartum BMI contained more
Staphylococcus and less Lactobacillus and Streptococcus
sequences than milk from normoweight mothers (Ding
et al., 2019).

Immune Cells
The lactating mammary gland is a component of the mucosal-
associated immune system that displays unique features when
compared with other mucosal sites. For example, it contains a
low biomass microbiota in contrast to the high bacterial
concentration that characterizes the intestinal or the upper
respiratory tracts (Mestecky, 2020). In addition, the mammary
gland is considered a relevant component of the infant immune
system since this link enables maternal-infant immune dialogue
(Brandtzaeg, 2010; Hassiotou and Geddes, 2015). It is long
known that the gut microbiota is essential for programming
the infant immune system and vice versa (Milani et al., 2017a).
However, while the development of the immune system and the
development of the microbiota are coordinated in the gut, they
remain independently regulated in the breast (Niimi et al., 2018).
Interactions between milk microbiota and the mammary
immune system are poorly known despite the fact that
maternal mononuclear cells can transport gut-derived bacteria
and bacterial components to the breast during pregnancy and
lactation (Perez et al., 2007). It has been speculated that this
process facilitates the discrimination between pathogens and
commensal microbes by the neonatal immune system (Perez
et al., 2007).

Studies dealing with potential associations between the milk
concentrations of bacteria and immune cells are scarce and have
provided conflicting results from no correlation (Boix-Amorós
et al., 2016) to a negative association between the relative
abundance of Serratia and both the somatic cell count and the
neutrophil concentration (Williams et al., 2017b). As in the case
of HMOs and other milk metabolites, there is a need for
integrative approaches to clarify the interactions between the
immune system and the microbiota in the mammary ecosystem.
Information on the potential roles of specific bacterial strains
isolated from human milk on the infant immune system is
provided in Moving From Composition to Function.
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Gestational Age, Mode of Delivery, and
Postpartum Period

Controversial results have been obtained from studies comparing
the human milk microbiome composition among women
delivering preterm or term neonates. So, while Urbaniak et al.
(2016a) did not detect differences in bacterial profiles between
preterm and term births, Soeorg et al. (2017a) reported that milk
of mothers of preterm infants had higher staphylococcal counts
but lower species diversity compared with term mothers. The
same authors found that the S. epidermidis strains that colonized
the gastrointestinal tract and skin of preterm neonates were
different to those found in milk while the opposite was observed
in term neonates (Soeorg et al., 2017b). However, the gut of
breast-fed preterm infants was gradually enriched with strains
present in the milk of their mothers.

Concerning the delivery mode, Urbaniak et al. (2016a) found
no significant differences in bacterial profiles between Cesarean
section (either elective or non-elective) and vaginal deliveries,
which is in contrast with the data provided by other authors
(Khodayar-Pardo et al., 2014; Cabrera-Rubio et al., 2016; Kumar
et al., 2016; Ding et al., 2019). Toscano et al. (2017) described
many differences in the microbiome of colostrum depending on the
mode of delivery. Compared to Cesarean section, vaginal delivery
was associated with a lower abundance of Staphylococcus,
Pseudomonas, and Prevotella. In addition, colostrum from women
delivering by Cesarean section was associated with a higher number
of bacterial hubs and was richer in environmental bacteria. In
practice, it is difficult to separate the influence of the mode of
delivery with other factors since, as an example, antibiotherapy
administered per protocol to women delivering by Cesarean section
may be responsable for some of the differences in the microbial
population. A recent work reported that the effect of intrapartum
antibiotic exposure was less decisive than that of delivery mode on
the milk microbiome assessed one month after delivery
(Hermansson et al., 2019).

In relation to the postpartum period, Hoashi et al. (2016) found
changes in bacterial abundance and glycosylation patterns
associated with the amount of time passed since delivery but
only in milk from women who delivered vaginally. Drago et al.
(2017) detected differences between the microbiomes of colostrum
and milk since abundance of anaerobic intestinal bacteria was
lower in colostrum than in mature milk. The permeability of the
tight junctions in the mammary epithelium is greater in the first
days after parturition and this fact determines major differences in
the biochemical and immunological composition of colostrum
with respect to mature milk. Such differences may be responsible
for differences in the microbial composition of colostrum and
mature milk. In addition, increasing exposures of the breast to the
infant microbiota may also determine microbial changes over time.

Another study showed that the relative abundance of
Staphylococcus in samples collected at 3 months postpartum was
lower in comparison to samples collected at 10 days postpartum
which, in turn, had a lower diversity of operational taxonomic units
(OTUs) from the genera Rothia, Veillonella and Granulicatella
(Simpson et al., 2018). Biagi et al. (2018) reported that the
composition of the milk microbiota changes after the first infant
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latching, becoming more diverse and being dominated by oral
microbes (Rothia and Streptococcus). In contrast, Li et al. (2017)
found that neither the lactation stage nor the maternal BMI
influenced the milk microbiota of Taiwanese and Chinese women.

Geographical Location
Geographical location of the mother seems to exert a strong
impact on the microbiota composition of human milk. A study
including samples from mothers of Spain, Finland, South Africa
and China found location-related differences in the relative
abundance of Bacteroidetes, Actinobacteria and Proteobacteria
(Kumar et al., 2016). Geographical differences in the microbiota
of samples obtained from 133 mothers in seven regions of China
and Taiwan have also been described (Li et al., 2017). Similarly,
differences in the alpha diversity and Lactobacillus occurrence
in milk were also observed depending on the region of China
where the mothers were recruited (Ding et al., 2019). A study
involving a higher number of samples from mothers living in
Ethiopia, Gambia, US, Ghana, Kenya, Peru, Spain, and Sweden
provided evidence of substantial variability within and across
cohorts (Lackey et al., 2019).

There are several reasons that may explain why geographical
location, even within the same country, might influence the
bacterial composition of human milk. Ethnicity, genetic
background, diet and climate vary across regions, but people
with different ethnicity, genetic background, age, diet, housing,
or contact with other people and animals usually coexist in the
same village or town. The environmental microbiome (air,
surfaces, water, plants, animals, food, waste, etc.) reflects the
influences existing in a given place and might drive differences in
the composition of the microbiome in any body site. Experiments
to elucidate the impact of the geographical location on the milk
microbiome are very challenging because of the high number of
factors that may bias the interpretation of the data. They should
have to take into account the factors cited above but also use
identical protocols from sample collection, storage and shipping to
data analysis, which is very difficult in practice.

Maternal Treatments (Antibiotics,
Probiotics, Prebiotics, and Chemotherapy)
and Infections
Antibiotic administration is one of the main drivers of dysbiosis
in mucosal surfaces and the lactating mammary gland does not
seem to be an exception. Lactobacilli and bifidobacteria are more
abundant in milk from women who are not treated with
antibiotics during pregnancy, delivery or lactation (Soto et al.,
2014). Similarly, the Bifidobacterium load in milk obtained in the
first week after delivery was lower among women receiving
antibiotic prophylaxis in comparison to the control group
(Padilha et al., 2019b). It is interesting to note that significantly
lower amounts of bifidobacteria have been found in milk of
allergic mothers compared with non-allergic ones (Grönlund
et al., 2007).

Soeorg et al. (2017a) found that the probability of finding
mecA-positive CNS in milk increases if the mother is hospitalized
during the first month after delivery or if the neonate received
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
antibiotherapy or needed an arterial catheter. These authors
suggested that the presence in milk of pathogenic Staphylococcus
could be reduced by limiting the exposition of women to the
hospital environment. Intrapartum antibiotic prophylaxis is
associated with a higher presence of transmissible genes
conferring resistance to antibiotics in milk, which are
subsequently shared with their infants (Pärnänen et al., 2018)

In relation to probiotics, oral administration of the probiotic
VSL#3 (a mix of 8 strains belonging to the species B. breve,
B. longum, L. acidophillus, Lactobacillus delbrueckii subsp.
bulgaricus, Lactobacillus paracasei, Lactobacillus plantarum,
and Streptococcus thermophilus) to pregnant and lactating
women led to higher concentrations of Lactobacillus and
Bifidobacterium in colostrum and milk of those women who
ingested the product when compared to the placebo group
(Mastromarino et al., 2015). However, this effect was only seen
among women with vaginal deliveries. In contrast, ingestion of
milk containing Bifidobacterium animalis ssp. lactis Bb-12,
L. acidophilus La-5 and Lactobacillus rhamnosus GG during
late pregnancy and early lactation, did not modified
significantly the composition of the milk microbiota (Simpson
et al., 2018). Recently, Padilha et al. (2020) reported that the
intake of prebiotics (fructooligosaccharides) affects the
composition of the milk microbiota and found that this effect
was influenced by the age of the mother.

Two studies studied the impact of chemotherapy employed
during the treatment of Hodgkin’s lymphoma in the milk
microbiome. The first study included milk samples obtained
regularly during four months from a single treated woman and
from 8 healthy lactating women (Urbaniak et al., 2014b).
Chemotherapy led to significant changes in the milk bacterial
composition, including an increase of Xanthomonadaceae,
Acinetobacter and Stenotrophomonas, and a drastic reduction in
the presence of Eubacterium, Bifidobacterium, Cloacibacterium
and Staphylococcus. Changes in the metabolic profile of milk,
characterized by a decrease of inositol and docosahexaenoic, were
also observed (Urbaniak et al., 2014b). The second study provided
contradictory results since no negative effect of chemotherapy on
community diversity was found (Ma et al., 2016).

Maternal and infant infections exert a strong influence on the
immunological composition of milk (Bryan et al., 2007; Riskin
et al., 2012; Hassiotou et al., 2013) and, therefore, they likely impact
on its microbiological composition. However, there is an almost
complete absence of studies addresing this question. Human
papilloma virus (HPV) infection was not correlated with a
modification of the bacterial composition of milk (Tuominen
et al., 2018) although the authors stated that this result might be
due to the low number of HPV positive milk samples (3 out of 35)
in the analyzed population.
TRANSFER OF MILK BACTERIA TO THE
INFANT GUT

The bacteria present in colostrum and milk are among the first
microbes to enter the neonatal gastrointestinal tract and, as a
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consequence, they may have a paramount relevance as drivers in
the acquisition and development of a healthy microbiota. The
role of milk as a source of bacteria, including strict anaerobes, to
the infant gut has been repeteadly reported at the species and/or
the strain level, by classical culture techniques (Martin et al.,
2003; Martıń et al., 2006; Martıń et al., 2009; Solıś et al., 2010;
Albesharat et al., 2011; Makino et al., 2011; Martıń et al., 2012b;
Kozak et al., 2015; Makino et al., 2015; Murphy et al., 2017), and
by culture-independent approaches (Milani et al., 2015; Asnicar
et al., 2017; Duranti et al., 2017; Milani et al., 2017b). In addition,
mother-to-infant transfer of Bifidobacterium phages through
human milk has also been described (Duranti et al., 2017).
However, the significance and contribution to infant gut
colonization of milk bacteria remains an open question.
Clinical studies trying to elucidate the question are confounded
by the profound impact of non-microbial human milk
components to intestinal microecology.

The microbiota of healthy breastfed infants is related to that
present in the milk of their respective mothers. Pannaraj et al.
(2017) suggested that approximately a quarter of the bacteria
detected in infant feces during early life may derive from milk
while Murphy et al. (2017) reported that the genera responsible
for most of the bacterial abundance (>70%) in infant feces are
shared with human milk. However, these two studies achieved
genus level resolution, and only strain level analysis is valid for
identifying shared taxa. Asnicar et al. (2017) described the
vertical milk transmission of microbial strains, including some
belonging to strict anaerobic species, and characterized their
transcriptional activity once in the infant gut. Bacterial-host
networks are different when breast-fed infants are compared to
formula-fed infants (Martıń et al., 2016), a fact that is reflected in
the host transcriptome (Praveen et al., 2015). Some studies have
also found long lasting differences in the fecal microbiota when
comparing exclusively breastfed and non-exclusively breastfed
infants (Pannaraj et al., 2017; Ho et al., 2018; Moossavi et al.,
2019a). Overall, bacterial diversity and microbial pathways
implied in the metabolism of carbohydrates are higher in non-
exclusively breastfed infants while the contrary is observed for
those pathways involved in the metabolism of vitamins, lipids
and xenobiotic compounds (Ho et al., 2018).

Although the introduction of solid food during weaning was
once thought to be associated with a sharp increase in the
diversity of the gut microbiota in breastfed infants (Favier
et al., 2002), the fecal microbiota of infants are dominated by
milk bacteria, independently of the introduction or not of other
foods, as long as they are breastfed (Bäckhed et al., 2015).
MOVING FROM COMPOSITION TO
FUNCTION

Human milk is a source of a wide spectrum of beneficial
microorganisms that might play a role in priming the
development and function of many infant systems (Ojo-
Okunola et al., 2018). However, studies dealing with the
functions of such microbiota/microbiome are very scarce
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and, as stated by Theobald Smith, (1904), “it is what bacteria
do rather than what they are that commands attention, since
our interest centers in the host rather than in the parasite”.
Human colostrum and milk contain a complex array of
bioactive molecules and cells, including the microbiota, which
may act synergistically to preserve infant and maternal health
through a wide variety of mechanisms (Morrow and
Rangel, 2004).

The human milk microbiota may contribute to, at least, some of
the functional properties and health benefits that epidemiological
studies have associated with breastfeeding (Renfrew et al., 2012),
including protection against infections, metabolic programming,
immunomodulation and neuromodulation. Human milk bacteria
may provide a certain degree of protection against infections caused
by viruses, bacteria or fungi through a variety of mechanisms: (a)
biosynthesis of compounds with antimicrobial activity, including
organic acids (lactic acid, acetic acid, ethanol), bacteriocins, reuterin
or hydrogen peroxide (Heikkilä and Saris, 2003; Beasley and Saris,
2004; Martıń et al., 2005; Martıń et al., 2006; Cárdenas et al., 2016;
Cárdenas et al., 2019; Angelopoulou et al., 2020; Garcıá-Gutierrez
et al., 2020); (b) coaggregation with pathobionts, impeding their
access to the gut epithelial cells (Cárdenas et al., 2019); (c)
competitive exclusion with pathobionts for nutrients or host
receptors (Olivares et al., 2006a; Martıń et al., 2010; Langa et al.,
2012); (d) reinforcement of the infant gut barrier by preserving and
decreasing intestinal permeability and increasing mucin
biosynthesis (Olivares et al., 2006a; Vanhaecke et al., 2017; Liu
et al., 2020); and (e) inmmunomodulation (Liu et al., 2020).

The analysis of the genome of some strains isolated from
human milk provides some clues that may explain their anti-
infectious properties. As an example, L. salivarius CECT 5713 is
able to inhibit HIV-1 infectivity in vitro and its genome contains
a gene encoding a protein containing a recognition motif of the
high mannose N-linked oligosaccharides displayed by many
pathogen antigens, such as gp120, which is essential for HIV
pathogenesis (Langa et al., 2012). In developing countries, the
World Health Organization (WHO) recommends exclusive
breastfeeding among HIV-infected women during the first six
months after birth “unless replacement feeding is acceptable,
feasible, affordable, sustainable, and safe for them and their
infants”, and to continue breastfeeding thereafter, with gradual
introduction of solid foods (WHO, 2016). In these settings, the
advantages of breastfeeding for mother and infant health
compensate the potential risk of viral transmission (Barthel
et al., 2013). Unfortunately, the contribution of the human milk
microbiota in protecting from infant infections caused by this or
other life-threatening viruses which are relatively frequent in
developing (dengue, Ebola, and zika) or developed countries
(CMV) remains largely unexplored. Interestingly, the outcome
of neonatal rotavirus infections is influenced by the complex
interplay between HMOs, the milk microbiome and the infant
gut microbiome (Ramani et al., 2018). In the context of the
ongoing pandemic caused by the SARS-CoV-2 virus, a recent
study did not detect the virus in human milk (Chambers et al.,
2020), and COVID-19-positive women are recommended to
continue breastfeeding by the WHO and the United Nations
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Children’s Fund (UNICEF) (United Nations Children’s
Fund, 2020).

Although most of the information about potential antimicrobial
properties of human milk bacteria has arisen from in vitro studies
and animal models, the beneficial effects of some strains have been
confirmed in human clinical trials. Daily intake of a formula
containing L. fermentum CECT5716 by 6-month-old children
significantly decreased the rates of upper respiratory tract
infections, gastrointestinal infections and total infections in the
following 6 months (Maldonado et al., 2012). L. salivarius PS7, a
human milk strain with a strong antimicrobial activity against
several otopathogens, has been shown to be efficient in preventing
recurrent acute otitis media in children (Cárdenas et al., 2019).

Studies addressing the potential role of the human milk
microbiota on infant metabolism are scarce but promising.
Bacterial diversity in milk is positively correlated with
metabolites that are known to exert beneficial effects, including
docosahexaenoic acid (DHA), as assessed by the construction of
diversity-metabolites networks (Ma et al., 2016). Additionally,
some species seem to be critical to regulate the concentrations of
relevant milk metabolites, including inositol, DHA or butanal
(Ma et al., 2016). Previous studies revealed that some strains
originally isolated from human milk display metabolic activivity
once in the human gut and are able to participate in the
biosynthesis of functional metabolites, such as butyrate, leading
to better bowel habits (Olivares et al., 2006c). More recently,
administration of L. fermentum CECT5716 to pregnanat and
lactating rats induced beneficial changes in the fatty acid
composition of milk by increasing total polyunsaturated fatty
acids including linoleic and a-linolenic acids and decreasing the
proportion of palmitic acid (Azagra-Boronat et al., 2020).

Human milk bacteria may also be involved in immune
programming of infants through different mechanisms,
impacting both innate and acquired immunity (Dıáz-Ropero
et al., 2006; Olivares et al., 2006b; Pérez-Cano et al., 2010;
Azagra-Boronat et al., 2020). Such mechanisms seem to be
complementary and to exhibit a high degree of flexibility
depending on factors related to the gut environment, such as the
exposition to lipopolysaccharide (Dıáz-Ropero et al., 2006).
L. fermentum CECT5716 and L. salivarius CECT5713 behave as
activators of NK, CD4+, CD8+, and regulatory T cells, and their
immunomodulatory effects are different to those displayed by
other strains of the same species but isolated from other sources
(Pérez-Cano et al., 2010). In fact, L. fermentum CECT5716 is able
to significantly ameliorate the inflammatory response and the
intestinal damage in an animal model of intestinal inflammation
(Peran et al., 2005; Peran et al., 2006; Peran et al., 2007).

As cited above, immunomodulation is involved in the anti-
infectious protection conferred by some human milk bacteria or
in the restoration of the damage caused by infections. In vivo
assays have shown that L. rhamnosus SHA113 inhibits the
expression of TNF-a and IL-6 caused by a multi-drug resistant
S. aureus strain, restoring the concentration of leukocytes in
blood (Liu et al., 2020).

Bacterial strains originally isolated from milk of healthy
women are appealing as probiotic candidates because of their
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
origin, which implies a history of safe intake by infants (Lara-
Villoslada et al., 2009; Maldonado et al., 2010; Gil-Campos et al.,
2012; Maldonado-Lobón et al., 2015a), and complex symbiotic
interactions from the time we are born (Lara-Villoslada et al.,
2007; Fernández et al., 2013; Jeurink et al., 2013). Among them,
those species belonging to the genera Bifidobacterium and
Lactobacillus (B. longum, B. breve, L. salivarius, L. fermentum,
L. reuteri, L. gasseri, L. plantarum, and L. rhamnosus), have
received special attention since many of them enjoy the GRAS
(Generally Recognised As Safe) status (Food and Drug
Administration, USA) and the QPS (Qualified Presumption of
Safety) of the European Food Safety Authority (EFSA). In
contrast, S. mitis and other mitis streptococci, S. salivarius and
CNS have received marginal attention because of theoretical
safety concerns despite of the fact that they are among the
dominant bacteria both in this biological fluid (Jiménez et al.,
2008a; Hunt et al., 2012; Martıń et al., 2012b; Cacho et al., 2017)
and in the feces of breast-fed infants (Jiménez et al., 2008a).
However, they may provide relevant probiotic functions in
practice (Kirjavainen et al., 2001; Uehara et al., 2001; Otto,
2009; Iwase et al., 2010; Park et al., 2011), and therefore, their
potential beneficial roles in infants deserve future studies.

Desciphering the genomes of representative collections of
human milk isolates and analysis of the human milk
metagenome will allow the expansion of our knowledge on the
functions that a “healthy” human milk microbiome should provide
to the mother-infant dyad. The design of human milk bacterial
consortia specifically tailored to meet early life requeriments is an
attractive strategy for those infants that are devoid of the benefits of
breastfeeding (Fernández et al., 2018).
THE ORIGINS OF THE HUMAN MILK
MICROBIOTA

While suckling, some oral bacteria from the mouth or
nasopharynx of the infant may seed milk (Ramsey et al., 2004;
Moossavi et al., 2019a); however, pre-colostrum expressed
during late pregnancy contain some of the bacteria usually
detected in human milk (Martıń et al., 2004). In fact, oral-
associated bacteria have also been isolated in precolostrum
collected at the end of the first pregnancy and, therefore,
before any contact with the newborn (Ruiz et al., 2014).

The origin of the microbes that constitute the oral
microbiome remains widely unknown (Zaura et al., 2014) but
streptococci are already present in edentulous infants (Li et al.,
1997; Caufield et al., 2000; Bearfield et al., 2002; Cephas et al.,
2011). The fact that these bacteria are also frequently detected in
human milk (Jiménez et al., 2008a; Jiménez et al., 2008b; Hunt
et al., 2011; Martıń et al., 2015), might suggest a role in the
acquisition or modulation of the oral bacterial communities. A
recent study investigating potential relationships among
bacterial communities in samples of milk, maternal and infant
feces, and maternal and infant oral swabs from some mother-
infant pairs found strong associations among these three
complex microbial communities and Streptococcus was the
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most abundant genus not only in infant and maternal oral
samples but also in milk (Williams et al., 2019). Similar results
had been previously obtained by Davé et al. (2016). Biagi et al.
(2017) showed that only a limited number of OTUs were shared
between milk and the mouth of the infants, but they included
specific Streptococcus and Staphylococcus OTUs.

Some species and genera commonly detected from human
milk, such as Corynebacterium C. acnes and, especially,
S. epidermidis, are also inhabitants of the human skin (Oh
et al., 2014). Therefore, breast skin, nipples, and mammary
areolas may be a source of such bacteria for human breast and
milk (Figure 4). However, no studies on the specific transfer of
skin bacterial strains to human milk or breast tissue have been
performed yet. CNS, Cutibacterium and Corynebacterium are
also present in all the human mucosal surfaces, including that of
the digestive tract, which is, very likely, a relevant source of these
bacteria for the mammary environment (Figure 4).

Although milk, breast skin and the infant oral cavity may
share some phylotypes, there are major differences between their
respective microbial communities (Hunt et al., 2011; Cabrera-
Rubio et al., 2012; Jost et al., 2013; Jiménez et al., 2015). A study
that compared the bacteriome of areolar skin, milk, and feces of
107 mother-infant dyads found differences in diversity and
composition among the bacterial communities of the three
ecosystems (Pannaraj et al., 2017).

The mucosal surfaces of the maternal digestive tract (oral
cavity, gut) may be a source of bacteria for the mammary
ecosystem from late pregnancy to the end of lactation (Martıń
et al., 2004; Rodrıǵuez, 2014; Mira and Rodrıǵuez, 2017;
Fernández and Rodrıǵuez, 2020). These oral- and entero-
mammary routes imply a highly regulated cross-talk between
bacterial cells, immune cells (dendritic cells [DCs] and
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macrophages) and epithelial cells. These complex cross-talks
would drive the physiological translocation of certain bacteria
without compromising the integrity of the gut epithelium
(Vazquez-Torres et al., 1999; Rescigno et al., 2001; Macpherson
and Uhr, 2004). Upon translocation, the mammary gland would
exert a homing effect on the immune cells that act as bacterial
carriers (Perez et al., 2007).

Low level bacterial translocation from the digestive tract to
extra-digestive locations is a relatively common process
(Ouwehand et al., 2001; Vankerckhoven et al., 2004; Begier
et al., 2005; Dasanayake et al., 2005), while an increase in the
rates of bacterial translocation from the gastrointestinal tract to
the mammary environment has been observed in pregnant and
lactating rodents without compromising host health (Perez et al.,
2007; Treven et al., 2015; de Andrés et al., 2017; Azagra-Boronat
et al., 2020). In addition, the existence of an entero-mammary
traffic of immune cells during late pregnancy and lactation has
long been known (Bertotto et al., 1991; Roitt, 2001; Newburg,
2005). Such efflux is responsible for the integration of the
lactating breast into the mucosal immune system and its
transformation in a formidable organ from the immunological
point of view (Pabst, 1987; Brandtzaeg, 2010). It has also been
reported that some bacterial strains isolated from human milk
can cross Caco-2 monolayer by using a mechanism that involves
interactions with DCs while this ability is lost in the absence of
DC-like cells (Langa, 2006; Langa et al., 2012). Carrying of
bacterial cells, including streptococci, lactobacilli, and
bifidobacteria, by blood and milk maternal mononuclear cells
has already been reported (Perez et al., 2007).

In fact, presence in milk of specific lactic acid bacteria after
their per os administration has been reported in lactating rodents
(Treven et al., 2015; de Andrés et al., 2017; Azagra-Boronat et al.,
FIGURE 4 | Potential sources of the microbes present in human milk and interactions with other mother-infant microbiotas. Dashed arrows represent potential
translocation through an endogenous pathway.
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2020), lactating women (Jiménez et al., 2008c; Abrahamsson
et al., 2009; Arroyo et al., 2010), or pregnant women (Fernández
et al., 2016). Similarly, mothers who had ingested L. rhamnosus
GG, L. acidophilus La-5, and B. animalis ssp. lactis Bb-12 can
transfer such strains to their infants through breastfeeding
(Avershina et al., 2018; Simpson et al., 2018).

Previously, it has been shown a Lactobacillus strain ingested
during pregnancy could be detected in the feces of the breastfed
infants, including those who were born by Caesarean section
(Schultz et al., 2004). However, the authors did not investigate if
the strain was present in the milk of the mothers. More recently,
a B. breve strain detected in a rectal sample and in the milk of a
woman could be also detected in the feces of her infant who was
delivered via Caesarean section, suggesting a direct mother-to-
infant transmission and supporting the possibility of a microbial
translocation through an entero-mammary pathway (Kordy
et al., 2020). In addition, the possibility of a shared
environmental source, including the indoor microbiome, must
not be ruled out.

Many transient anatomical and physiological changes may
increase the translocation rate from the digestive system to the
mammary glands in pregnant and lactating women (Rodrıǵuez,
2014; Mira and Rodrıǵuez, 2017; Fernández and Rodrıǵuez, 2020).
Such a homing effect may involve a physiological immunodepression
to tolerate the fetus, a formidable angiogenesis process in the breast
and the filling of the mammary duct system with pre-colostrum
during late pregnancy, which would be an excellent source of
nutrients for bacteria.

Although more studies are necessary to elucidate the existence
of oral- and entero-mammary pathways, if this was confirmed, it
would provide new approaches to manipulate the microbiota of
mothers and infants inorder to improve infant health and
development (Rautava et al., 2002; Martıń et al., 2004).
MAMMARY DYSBIOSIS AND
LACTATIONAL MASTITIS

Mastitis constitutes a common feeding problem for most
mammalian species and humans are not an exception
(Contreras and Rodrıǵuez, 2011). This condition is the major
cause of undesired weaning from the medical point of view and
represents a relevant public health issue since such premature
weaning prevents the health benefits that breastfeeding provides
to infants and mothers (U.S. Department of Health and Human
Services, 2011; American Academy of Pediatrics, 2012; Renfrew
et al., 2012).

A wide variety of bacteria may inhabit the mammary gland
ecosystem during a healthy lactation period, including potential
mastitis-causing species; however, if there is a disturbance of this
balanced state, milk dysbiosis may occur, eventually leading to
mastitis (Delgado et al., 2008; Fernández et al., 2014; Mediano
et al., 2017) (Figure 3). Patel et al. (2017) analyzed milk samples
from women suffering either subacute or acute mastitis and,
also, from healthy controls. In comparison to controls, the
microbiome of samples from acute and subacute cases were
distinct: their diversity was drastically reduced, and they were
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significantly enriched in some aerotolerant bacteria, including
Staphylococcus, while depleted in obligate anaerobes, such as
Ruminococcus, Faecalibacterium, or Eubacterium. Similar
alterations in the milk microbiome have also been found in
cases of mastitis involving other mammalian species (Kuehn
et al., 2013; Oikonomou et al., 2014; Derakhshani et al., 2018).

The etiology and pathogenesis of acute and subacute
lactational mastitis have been reviewed by Fernández et al.
(2014) and Rodrıǵuez and Fernández (2017). Empiric use of
antibiotics has been, and still is, the most common approach to
treat mastitis. However, many cases do not respond to such
therapy since mastitis agents are becoming increasingly resistant
to antimicrobials through different mechanisms, including
intrinsic resistances, presence of transmissible antibiotic
resistance genes and/or the formation of biofilms (Marıń et al.,
2017). The high rates of antimicrobial resistance among mastitis-
causing bacteria have clinical relevance in relation to treatment
options. In addition, wide-spectrum antibiotics may alter the
bacterial composition of milk, impairing vertical transmission of
microbes through breastfeeding (Soto et al., 2014). Therefore,
new strategies for the management of mastitis are needed, and in
this context, those based in the modulation of the mammary
bacterial communities through the selection and application of
probiotic strains that were originally isolated from human milk
seem particularly suited for this target (Fernández et al., 2014).

Several human trials have shown that oral administration of
some human milk strains (L. salivarius CECT5713, L. salivarius
PS2, Lactobacillus gasseri CECT5714, L. fermentum CECT5716)
provoke relevant changes in a variety of milk microbiological,
biochemical and immunological parameters, including a
significant decrease in the concentration of mastitis-causing
agents (Jiménez et al., 2008c; Maldonado-Lobón et al., 2015b;
Espinosa-Martos et al., 2016). In fact, such an approach has been
found to be more efficient than empiric antibiotherapy for the
treatment of this condition (Arroyo et al., 2010). Metabolomic
studies have revealed that the impact of the probiotic treatment
can be also observed in the urine of the treated women (Vazquez-
Fresno et al., 2014). As an example, lactose was present in urine
samples before the treatment but it was no longer detected after
the probiotic treatment, indicating a restoration of the integrity
of the mammary epithelium. Assessment of transcriptomic
changes in milk somatic cells associated with the intake of
L. salivarius PS2 by women with mastitis has also provided
valuable information about the potential mechanisms responsible
for the efficacy of specific probiotics in treating mastitis (de Andrés
et al., 2018). Finally, a few strains (L. salivarius PS2 and
L. fermentum CECT5716) have been successfully applied as a
preventive strategy compared to a placebo, when administered
either during late pregnancy (Fernández et al., 2016) or during
lactation (Hurtado et al., 2017) to women with a history of mastitis
after previous pregnancies.

Significant increases in the milk concentrations of TGF-b2 and
IgA have been observed after intake of other probiotics during
pregnancy or lactation (Rautava et al., 2002; Prescott et al., 2008;
Nikniaz et al., 2013), suggesting that the probiotic approach may
control the growth of mastitis-causing bacteria in the mammary
gland preventing potential damage to the mammary epithelium.
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MICROBIOTA OF THE BREAST TISSUE OF
NON-LACTATING WOMEN

Most microbial studies addressing the human mammary ecosystem
have been focused on the lactation period and limited to the analysis
of colostrum and milk samples. However, the number of studies
dealing with the microbiota of breast tissue in non-lactating women
is rapidly increasing, particularly in the frame of breast cancer
research. Breast cancer ranks as the most common malignancy in
women. Some studies have observed a correlation between dysbiosis
of the gutmicrobiota and breast cancer (Goedert et al., 2015; Goedert
et al., 2018; Laborda-Illanes et al., 2020). In addition, changes in the
microbiota of breast tissue have also been linked to breast cancer.

In a pioneering study, samples of breast tissue from 81 women
with and without cancer were analyzed by sequencing of the V6
region of the 16S rRNA gene (Urbaniak et al., 2014a). Sequences
corresponding to Staphylococcus, Cutibacterium, Acinetobacter,
Enterobacteriaceae, Bacillus, Pseudomonas, or Prevotella were
detected in a high percentage of the samples, including some
obtained from women without a previous history of lactation.
Cultures confirmed the presence of viable bacteria in some of the
samples. In parallel, Xuan et al. (2014) employed 454
pyrosequencing of the V4 region of 16S rRNA gene to analyze
breast tissue samples from 20 patients with breast cancer, each one
providing tumor tissue and normal adjacent tissue. These authors
found thatMethylobacterium radiotolerans was enriched in tumor
tissue, while Sphingomonas yanoikuyae was enriched in normal
tissue. However, some doubts arise from their results since this
technique does not discriminate at the species level, the DNA of
the two genera that discriminated between both groups are
typically found in DNA extraction reagents and kits, and no
blank controls were included in the study. Later, Urbaniak et al.
(2016b) reported that the bacteriome of breast tissue adjacent to
breast cancer differs from that found in breast tissue from healthy
controls undergoing cosmetic surgery. Compared to healthy
controls, the relative abundances of Bacillus, Enterobacteriaceae
and Staphylococcus were higher in samples from women with
breast cancer while the abundance of lactic acid bacteria was lower
(Urbaniak et al., 2016b).

Hieken et al. (2016) found different bacterial communities in
breast tissue from women with breast cancer in comparison to
women suffering from a benign breast disease. Malignancy was
associated with an increase in some taxa that were present at a
low abundance level, including the genera Atopobium,
Fusobacterium, Gluconacetobacter and Hydrogenophaga. Chan
et al. (2016) investigated the presence of bacteria in the nipple
aspirate fluid obtained from women with a previous history of
breast cancer and from healthy women and found a higher
incidence of the genus Alistipes in the first group. In addition, the
bacteria associated with breast cancer shared b-glucuronidase
activity and, therefore, the authors suggested that this enzymatic
activity may promote breast cancer. Recently, two studies
described racial differences in the microbiome of breast tumors
(Smith et al., 2019; Thyagarajan et al., 2020) while another study
identified differences in diversity and composition not only
between tumor and normal tissue but also among women and
between the breasts of the same woman (Klann et al., 2020).
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The microbiota may promote or inhibit tumorigenesis by
several mechanisms, including the alteration of immune
responses or the effect of bacterial-derived enzymes (e.g., b-
glucuronidase and b-glucosidase activities) and metabolites, such
as short-chain fatty acids, lipopolysaccharides, secondary bile
acids, estrogens, or genotoxins (Kovács et al., 2020). In addition,
the microbiota and its metabolites may exert a strong influence
on the efficacy of chemotherapy and radiation therapies (Kovács
et al., 2020). Overall, the results of previous studies warrant
further research to elucidate the relationships between breast
microbiota and breast cancer.

The breast microbiome may also play a key role in the
outcomes of breast plastic or cosmetic surgery, including breast
reconstruction, breast reduction or breast augmentation. Breast
augmentation is one of the most frequent cosmetic surgical
procedures practiced worldwide and can lead to several
complications, capsular contracture being the most common
one (Rieger et al., 2013; Cook et al., 2020). Bacterial growth, and
subsequent biofilm formation, is one of the main risk factors for
capsular contracture (Dancey et al., 2012; Ajdic et al., 2016;
Walker et al., 2019). It has been suggested that chronic biofilm
infection of breast implants may be implicated in the development
of breast implant-associated lymphoma (Hu et al., 2015; Hu et al.,
2016). Bacteria that are often associated with human milk, breast
tissue and breast skin (S. epidermidis and other CNS species; C.
acnes) have been repeatedly isolated within or surrounding breast
implants from patients with capsular contracture by using classic
culture-based approaches (Virden et al., 1992; Dobke et al., 1995;
Ahn et al., 1996; Pajkos et al., 2003; Galdiero et al., 2018) and
culture-independent techniques (Cook et al., 2020). At present,
the origin of the bacteria detected in the explants (breast tissue and
skin contamination) remains unclear (Bachour et al., 2019), and
more studies are required to elucidate the role of mammary-
related bacteria in the tolerance toward these devices or in the
adverse outcomes that are relatively frequently associated with
their implantation.
FUTURE TRENDS AND CONCLUSIONS

Conflicting results when trying to analyze the factors that may play
a role in shaping the composition of the human milk microbiota
can be explained, at least partially, by the low number of samples/
women analyzed in most of the studies carried out so far and, also,
by many host, environmental, perinatal, and technical factors
(LeMay-Nedjelski et al., 2018). International and collaborative
studies, involving a high number of participants and performed
under identical conditions, are required in order to elucidate the
impact of these factors and their interactions.

The origin of the microbes found in the mammary ecosystem
remains a largely open question. Some of the bacteria detected in
milk most likely originate from the maternal skin and areola.
During lactation, shared features between the microecology in the
infant mouth and milk suggest interactions but the precise
directions and significance of which are yet to be determined.
Perhaps most intriguingly, experimental and human data indicates
that some bacteria in milk may originate in the maternal digestive
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tract and that an enteromammary pathway for microbes may
exist. Further assessment of this hypothesis demands sophisticated
experimental and clinical studies and state-of-the-art methods to
ensure accurate strain-level identification of specific bacteria in not
only the intestine and milk but also in the bloodstream and within
the immune cells thought to be responsible for the transfer.

The emerging data indicating that variousmaternal characteristics
and exposures, including BMI, antibiotic exposure, gestational age
or delivery mode, are associated with the composition of the milk
microbiota suggest that the microbes in milk are linked to health
and disease in the mother and perhaps, also, in the infant. As of
present, however, the biological role and clinical significance of
the bacteria in human milk remain poorly characterized and
several fundamental questions require elucidation. Detailed
metagenomic, metatranscriptomic and metabolomic studies are
paramount for understanding the functionality of the milk
microbiota. It is also important to appreciate the fact that most
published studies describing the bacterial communities of human
milk are based on culture-independent molecular methods, such
as qPCR and sequencing of either of the 16S rRNA gene or the
whole bacterial genome. While these tools are highly sensitive,
detection of bacterial DNA does not entail the presence of viable
or even intact bacteria. Furthermore, there are published data
indicating that at least some bacteria in milk may actually be
found on and inside immune cells (Perez et al., 2007).
Distinguishing between intact and viable free or intracellular
bacteria and the mere presence of bacterial fragments is a
crucial step in understanding their biological function. The
presence of bacterial components such as DNA in milk may be
sufficient to induce immune responses in the mammary
epithelium, immune cells, or the neonatal gut. Milk immune
cells interacting with bacteria, on the other hand, may mediate
immune responses specific to these bacteria. Given the role of
human milk in establishing immune tolerance towards antigens in
thematernal diet (Verhasselt et al., 2008), it is conceivable that milk
may serve as a vehicle for inducing tolerance in the newborn to
colonizingmicrobes from themother. Currently, no direct evidence
to corroborate or refute this hypothesis exists.

Live bacteria in human milk serve biological purposes in the
mother. The relationships between the bacterial composition of
milk and the risk of mastitis suggest that the indigenous bacteria
may be necessary for mammary gland health. Mammary bacteria
may also play some roles in the non-lactating mammary gland
and the development of breast carcinoma, which is a subject of
substantial clinical significance and an area of active research.

In addition to implications to maternal health, the human
milk microbiota may be transferred to the infant, potentially
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 15
acting as a driver in early oral and gut colonization. As reviewed
above, shared bacterial taxa detected in maternal stool, human
milk and the infant gut suggest that milk may be a vehicle for
early colonization. This has to be interpreted with caution since
there is the possibility of other routes of bacterial transfer and
taxonomic discrimination should be performed at the strain level
to confirm identity. As in the case of the origin of the milk
bacteria, experimental studies in animal models offer a more
reductionist means of dissecting the role of milk microbes for gut
colonization. A translational approach complementing clinical
studies with basic science is therefore needed.

So far, most studies dealing with the human milk microbiome
have been focused on the taxonomical composition and only a few
of them have dealt with its potential functions for the infant-
mother dyad. Breastfeeding has been associated with reduced risk
of chronic conditions such as obesity (Victora et al., 2016), which
has also been linked to aberrant early gut colonization. The extent
to which the beneficial health effects of breastfeeding are mediated
by modulation of the developing gut microbiota remains an open
question. Even less clear is the impact of human milk bacteria on
child health. Indeed, studying the roles of the human milk
microbiota in health and disease is a difficult task since there are
synergistic activities among differentmilk molecules and cells, and
several non-microbial components in human milk have the
potential to modify the infant gut microbiota. However, we have
a rapidly increasing variety of powerful in vitro and in vivo tools,
techniques, and procedures to address such a question from cell
biology to well-designed clinical trials, from human breast
organoids to human milk microbiota-associated mouse models
(Wang et al., 2017) and from true metagenome (integrating data
from microbiome, microbial genomes and human genome
projects) to systems biology approaches.
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Dridi, B., Henry, M., El Khéchine, A., Raoult, D., and Drancourt, M. (2009). High
prevalence of Methanobrevibacter smithii and Methanosphaera stadtmanae
detected in the human gut using an improved DNA detection protocol. PloS
One 4, e7063. doi: 10.1371/journal.pone.0007063

Dubois, M. (1954). Role of contamination by breast milk in staphylococcus
infection of newborn]. Rev. Prat. 4, 493–495.

Duranti, S., Lugli, G. A., Mancabelli, L., Armanini, F., Turroni, F., James, K., et al.
(2017). Maternal inheritance of bifidobacterial communities and bifidophages
in infants through vertical transmission. Microbiome 5, 66. doi: 10.1186/
s40168-017-0282-6

Dworsky, M., Yow, M., Stagno, S., Pass, R. F., and Alford, C. (1983).
Cytomegalovirus infection of breast milk and transmission in infancy.
Pediatrics 72, 295–299.
November 2020 | Volume 10 | Article 586667

https://doi.org/10.3389/fmicb.2017.01470
https://doi.org/10.1016/j.idairyj.2014.06.008
https://doi.org/10.1007/s00253-015-6429-0
https://doi.org/10.1007/s00253-016-7616-3
https://doi.org/10.3390/nu11020376
https://doi.org/10.1016/s0140-6736(79)92409-7
https://doi.org/10.1136/adc.55.11.898
https://doi.org/10.1128/IAI.68.7.4018-4023.2000
https://doi.org/10.1371/journal.pone.0023503
https://doi.org/10.1001/jama.2020.15580
https://doi.org/10.1038/srep28061
https://doi.org/10.1093/infdis/148.3.615a
https://doi.org/10.1016/j.jfda.2018.03.004
https://doi.org/10.1111/j.1472-765X.2009.02567.x
https://doi.org/10.1007/s10911-011-9234-0
https://doi.org/10.1007/s10911-011-9234-0
https://doi.org/10.1093/asj/sjaa097
https://doi.org/10.1016/0195-6701(87)90016-8
https://doi.org/10.1016/0195-6701(87)90016-8
https://doi.org/10.1016/j.bjps.2011.09.011
https://doi.org/10.1902/jop.2005.76.2.171
https://doi.org/10.1038/pr.2016.9
https://doi.org/10.1136/adc.54.10.760
https://doi.org/10.3390/nu10010014
https://doi.org/10.3389/fmicb.2018.02166
https://doi.org/10.1186/1471-2334-8-51
https://doi.org/10.1186/1471-2180-9-82
https://doi.org/10.1111/j.1574-695X.2011.00806.x
https://doi.org/10.3168/jds.2018-14860
https://doi.org/10.1111/j.1365-2672.2006.03102.x
https://doi.org/10.1111/j.1365-2672.2006.03102.x
https://doi.org/10.1039/C8FO02182A
https://doi.org/10.1097/00000637-199506000-00001
https://doi.org/10.1097/00000637-199506000-00001
https://doi.org/10.1093/clinids/3.4.716
https://doi.org/10.1038/ismej.2016.183
https://doi.org/10.1371/journal.pone.0007063
https://doi.org/10.1186/s40168-017-0282-6
https://doi.org/10.1186/s40168-017-0282-6
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Fernández et al. Human Mammary Microbiota
Eidelman, A.II, and Szilagyi, G. (1979). Patterns of bacterial colonization of
human milk. Obstet. Gynecol. 53, 550–552.

Emerson, J. B., Adams, R.II, Román, C., Brooks, B., Coil, D. A., Dahlhausen, K.,
et al. (2017). Schrödinger’s microbes: Tools for distinguishing the living from
the dead in microbial ecosystems. Microbiome 5, 86. doi: 10.1186/s40168-017-
0285-3
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M., Mayer, M. J., et al. (2020). Production of multiple bacteriocins, including
the novel bacteriocin gassericin M, by Lactobacillus gasseri LM19, a strain
isolated from human milk. Appl. Microbiol. Biotechnol. 104, 3869–3884. doi:
10.1007/s00253-020-10493-3

Gay, M., Koleva, P. T., Slupsky, C. M., Toit, E. D., Eggesbo, M., Johnson, C. C., et al.
(2018). Worldwide variation in human milk metabolome: indicators of breast
physiology and maternal lifestyle? Nutrients 10, 1151. doi: 10.3390/nu10091151
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et al. (2007a). Cultivation-independent assessment of the bacterial diversity of
breast milk among healthy women. Res. Microbiol; 158, 31–37. doi: 10.1016/
j.resmic.2006.11.004
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Togo, A. H., Camara, A., Konaté, S., Doumbo, O. K., Raoult, D., and Million, M.
(2017). ‘Lactomassilus timonensis,’ a new anaerobic bacterial species isolated
from the milk of a healthy African mother. New Microbes New Infect. 21, 122–
124. doi: 10.1016/j.nmni.2017.12.004

Togo, A. H., Diop, A., Camara, A., Kuete, E., Konate, S., Brevaut, V., et al. (2019a).
Lactimicrobium massiliense gen. nov., sp. nov.; Anaerolactibacter massiliensis
gen. nov., sp. nov.; Galactobacillus timonensis gen. nov., sp. nov. and
Acidipropionibacterium timonense sp. nov. isolated from breast milk from
healthy breastfeeding African women. New Microbes New Infect. 29, 100537.
doi: 10.1016/j.nmni.2019.100537

Togo, A., Dufour, J. C., Lagier, J. C., Dubourg, G., Raoult, D., and Million, M.
(2019b). Repertoire of human breast and milk microbiota: a systematic review.
Future Microbiol. 14, 623–641. doi: 10.2217/fmb-2018-0317

Togo, A. H., Grine, G., Khelaifia, S., des Robert, C., Brevaut, V., Caputo, A., et al.
(2019c). Culture of methanogenic archaea from human colostrum and milk.
Sci. Rep. 9, 18653. doi: 10.1038/s41598-019-54759-x

Toscano, M., De Grandi, R., Peroni, D. G., Grossi, E., Facchin, V., Comberiati, P.,
et al. (2017). Impact of delivery mode on the colostrum microbiota
composition. BMC Microbiol. 17, 205. doi. 10.1186/s12866-017-1109-0
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