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ABSTRACT: Chemistry42 is a software platform for de novo small molecule design and optimization that integrates Artificial
Intelligence (AI) techniques with computational and medicinal chemistry methodologies. Chemistry42 efficiently generates novel
molecular structures with optimized properties validated in both in vitro and in vivo studies and is available through licensing or
collaboration. Chemistry42 is the core component of Insilico Medicine’s Pharma.ai drug discovery suite. Pharma.ai also includes
PandaOmics for target discovery and multiomics data analysis, and inClinico�a data-driven multimodal forecast of a clinical trial’s
probability of success (PoS). In this paper, we demonstrate how the platform can be used to efficiently find novel molecular
structures against DDR1 and CDK20.

■ INTRODUCTION
Deep Learning (DL) has proven to be very effective in speech
and image recognition. This is because DL-based architectures
are uniquely suited for the automatic identification of patterns
within complex, nonlinear data sets without the need for manual
feature engineering. DL methods have recently been adapted to
successfully overcome limitations inherent in the standard
techniques used for small molecule design.1−3 These adapta-
tions offer exciting possibilities for the development of new
methods that efficiently explore uncharted chemical space.

Insilico Medicine was one of the first groups to publish a
method that uses a deep adversarial model for new compound
generation.4 Since then, DL-based architectures that combine
generative algorithms with reinforcement learning (RL) have
been developed and applied in chemistry and pharmacology to
generate novel molecular structures with predefined properties.2

Especially encouraging is the recent progress in the de novo
design of active molecules that have been validated in both in
vitro and in vivo assays.5,6 Generative chemistry is now one of the
fastest-growing areas in drug discovery.2,7,8 The Chemistry42
platform has been routinely and successfully used at Insilico
Medicine to drive the drug discovery process in several

therapeutic areas (https://insilico.com/pipeline) and has
evolved significantly during the past years.9 In the following
sections, we describe the key features of the Chemistry42
platform.

■ OVERVIEW OF THE GENERATIVE CAPABILITIES OF
THE CHEMISTRY42 PLATFORM

Chemistry42 is a platform that connects state-of-the-art
generative AI algorithms with medicinal and computational
chemistry expertise and best engineering practices. It was
launched in 2020 and has been used by over 20 pharmaceutical
companies, over 15 external programs, and over 30 internal
programs.

The main objective of this platform is to accelerate the design
of novel molecules with user-defined properties. The general
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workflow for Chemistry42 is illustrated and described in Figure
1.

Generative experiments are created using the user-friendly
web-based interface of Chemistry42 and can be started using
ligand- or structure-based drug design workflows depending on
the available information for the target of choice. The Ligand-
Based Drug Design (LBDD) approach requires a 2D or 3D
ligand structure as input in an .sdf file, a SMILES string, or the
molecule can be sketched directly on the platform using the
handy sketcher panel. A pharmacophore hypothesis can also be
added as needed and created manually using a widget or
automatically within the platform. In the Structure-Based Drug
Design (SBDD) approach, the structure of a protein target,
either in the apo format or in complex with a ligand, must be
uploaded to the platform as a prepared .pdb file. One can pick
either the pocket around the ligand (ligand binding site) or
select one from the set of alternative pockets indicated by the
Pocket Scanner Module. As with the case of LBDD, a
pharmacophore hypothesis can also be added as needed (Figure
2). To complete the configuration of a generation experiment,
the user defines acceptable ranges for multiple properties (e.g.,
physicochemical properties and diversity) of the generated
structures. The user can prioritize reward modules by adjusting
their weights and specify how restrictive the modules should be
by adjusting corresponding thresholds. In both LBDD and
SBDD approaches, advanced options enable the user to specify
and fine-tune reward modules and which generative models
should be used in an experiment. Hit expansion, hit-
optimization, and Fragment-Based Drug Design (FBDD)
workflows are also available on the platform through
functionality called Anchor points. With Anchor points, users
can fix in 3D space specified cores or R-groups of a hit-molecule
while the rest of the molecule varies during a generative
experiment. Anchor points also support multiple reference
substructures by editing atom types to include alternatives
(supported by SMARTS). For example, the user can specify
whether they would like to see nitrogen or carbon in an aromatic
ring. Autoconfiguration is a quick way of adjusting all the
parameters automatically, based on the provided input data. To
see how the platform can be autoconfigured based on the input
ligand structure and properties see S1 section in the SI.

The generative pipeline in Chemistry42 engages an
asynchronous ensemble of proprietary generative models.
These carefully curated and selected algorithms have diverse
architectures that implement distinct strategies. The platform
takes advantage of multiple machine learning models and
molecular representations for different generative scenarios to
maximize each model’s contribution and the platform’s
efficiency. For example, some models focus on the exploration
of the chemical space, while being tailored to improve these
explored structures. In the current version of Chemistry42, there
are over 40 generative models, including generative autoen-
coders,5,10 generative adversarial networks,4,11,12 flow-based
approaches,13 evolutionary algorithms,14 language models,15

and others. These models employ different molecular
representations�string-based, graph-based, and 3D-based.

It is essential to understand and stimulate the interplay of
multiple generative models. As such, rather than treating these
algorithms as black-box solutions, we provide deep domain-
specific analytics to understand the advantages and drawbacks of
each approach. Combining various state-of-the-art machine
learning methods, Chemistry42 delivers diverse, high-quality
molecular structures within hours. As the structures are

Figure 1.A schematic representation of the three-step workflow for a de
novo generative experiment using the Chemistry42 platform. In the first
step, on a secure and company-specific instance of the software, users
upload their data and configure the platform with the desired properties
for the generated structures. The second step involves running the
platform where an ensemble of 40+ generative models functions in
parallel to generate the novel structures�this step is called the
generation phase. A variety of filters scrutinize the generated molecular
structures in the generation phase. The molecular structures are then
subjected to multiple sets of reward and scoring modules, classified as
either 2D or 3D modules, that dynamically assess the generated
structures’ properties according to the predefined criteria. Additional
custom scoring modules (such as ADME predictors) can also be
integrated into the reward pipeline to prioritize the generated
structures. These modules form the backbone of Chemistry42’s
multiagent reinforcement learning (RL)-based generation protocol.
Generated structures’ scores are fed back to the generative models to
reinforce them and guide the generative process toward high-scoring
structures�this is called the learning phase. The final step is analysis.
The generated structures are automatically ranked according to
customizable metrics based on their predicted properties, including
synthetic accessibility, novelty, diversity, etc. The platform also
provides users with interactive tools to monitor generative model
performance.
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generated, they are dynamically assessed using the reward and
scoring modules in the platform.

The reward and scoring modules used in Chemistry42 for RL-
based generations are either two-dimensional (2D) or three-
dimensional (3D) (Figure 1). The 2Dmodules are composed of
multiple scores and in-houseMedicinal Chemistry Filters (MCFs)
that are used to assess the generated structures. In the current
version of Chemistry42, the MCFs include a set of over 460 in-
house structure-based rules that exclude “bad” structures, i.e.,
those that contain structure alerts, PAINS16 or functional groups
that are reactive, unstable or potentially toxic. The Medicinal
Chemistry Evolution (MCE-18) function is a unique molecular
descriptor that scores structures by novelty in terms of their
cumulative sp3 complexity.17 Other 2D modules include
Lipinski’s Rule of Five (Ro5),18 Drug-likeness and Weighted
atom-type portion descriptors, a rule-based filter that constitutes a
set of rules to eliminate structures with an unbalanced number of
heteroatoms and aromatic atoms. Novelty scores assess the 2D
similarity between the generated structures and the reference
data set (that can be customized) to improve novelty. Drug-
likeness is estimated using a set of extended rules. The synthetic
accessibility (SA) of the generated structures is assessed using
the Retrosynthesis Related Synthetic Accessibility (ReRSA) score.19

ReRSA is an improved fragment-based SA estimation method
that is based on the fragmentation of the generated structure
from a retrosynthesis perspective, which results in a more
accurate estimation of SA. ReRSA also takes into account the
space of commercially available building blocks and rewards a
structure if it can be converted into existing building blocks
(BBs). By default, ReRSA exploits the approximately 200,000
commonly used BBs. Diversity assessments and clustering
metrics are performed for the generated structures using a
custom similarity function. Tracking the Diversity of the
generated structures provides a means of understanding how
structurally diverse the generated molecules are based on the
number of generated chemotypes following clustering. Privileged
Fragments (PFs) are defined structural motifs that contribute to
the activity of a target or target class.20 PFs functionality is most

useful in two types of generative design workflows. The first
involves defining 2D PF substructure(s) that will be found in all
generated structures with no predefined positioning in 3D space.
This is useful if you only have an apoprotein structure with no
reported inhibitors. For example, if your target is the apo
structures of the novel kinase, 2D PFs of hinge binders can be
used in the generative experiments to navigate the generation
into well-established chemical space. The second workflow
involves the use of Anchor Points�essentially 3D privileged
fragments. Here, the presence of the substructure of interest is
essential in either a protein−ligand complex (SBDD mode) or a
3D conformation of a ligand (LBDDmode). The self-organizing
maps (SOM)Classif ier Module (general SOMmap 100 × 100) is
used to drive the generation of molecular structures toward the
chemical space corresponding to a specified target class. Since
the general SOM contains neurons with the classification power
below a predefined threshold for a selected category of
molecules, all the reference molecules from such neurons are
collected and then subjected to automatically generated ZOOM
maps of an adapted size to achieve reliable classification
accuracy. The data set used to train the SOMs Classif ier
Module,21 and ZOOM maps are called the Hierarchical Active
Molecules (HAM) data set. The HAM data set consists of data
from 800k+ experimentally validatedmolecules with IC50s of 10
μM or less. The Structure Morphing module contains two
components: a rule-based Metabolic Stability Enhancer22 that
addresses metabolic instability caused by potential sites of
metabolism in the generated structures and the Bioisostere
Module that performs bioisosteric/isosteric transformations.23

Following the assessment of the generated structures with the
2D modules, multiple 3D modules are deployed for further
assessment. The ConfGen Module is the first 3D module. It
produces a conformational ensemble for each generated
structure. The Conf Gen Module generates conformational
ensembles through an in-house set of rules and predefined
substructure geometries based on small molecule cocrystal X-ray
data followed by energy minimization using Insilico’s propri-
etary force field. A flexibility assessment (FLEX score) is used to

Figure 2. Chemistry42 interface for configuring an SBDD generative experiment.
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rank molecular structures by intrinsic rigidity. Once the
conformational ensembles have been generated, the 3D-
Descriptors Module evaluates the 3D similarity between the
generated structures and a reference molecule (input ligand)
using a set of calculated 3D-descriptors. The Pharmacophore
Module then assesses if any of the generated conformations
match the specified pharmacophore hypothesis, including all
important binding points, distances, angles, and tolerance. If the
Anchor Points module is used in the generation, it checks if the
user-defined 3D substructures are present in the generated
structure in the correct position and conformation. The Shape
Similarity Module evaluates the 3D-shape similarity to a
reference molecule using weighted Gaussian functions.24 The
final module focuses on positioning and scoring the generated
structures to assess how well they fit the selected binding site
(Pocket Module) and approximates the binding affinity with a
Pocket-Ligand Interaction (PLI) score. The PLI score was
trained on the PDBBind Refined Set v2020 (both Ki and Kd data
were used).25 The score takes into account hydrogen bonds, π-
staking, π-cation, XH-π, hydrophobic interactions, as well as salt
bridges and chelating bonds. The units of the PLI score are kcal/
mol, where themore negative the value, the better the score. The
list of most important scores and rewards for each individual
workflow (e.g., de novo SBDD or FBDD) is available in the S2
section of SI. The tabulated list of all mentioned modules,
scores, and rewards, as well as default ranges, values, and options,
for them can be found in the S3 section of SI.

The user can specify how long they want to run the generative
experiment. In most cases, we observe convergence after 72 h.
During a generative experiment, the performance of each
generative model is monitored and recorded. This allows the
user to follow the progress of their experiments in real-time from
start to completion. An example of the generation monitoring at
the early stage and after the completion can be found in S4

section of SI. The generated structures are automatically
evaluated and ranked according to metrics incorporated in the
modules that are integrated into the platform. All corresponding
data, including scores, molecular structures, and generative
model performance, are stored and accessible on the results page
of the platform. Once a generative experiment is complete, the
results can be analyzed through an interactive interface.

A mediocre user can get valuable results (1−5 novel
molecules for synthesis) even from the first run of the generation
for both SBDD, LBDD, and other various workflows. The
obtained results and their subsequent analysis can help to
configure the second run in a more specific way to get more
expected results. Usually, at the second run the user can utilize
some ideas that have been provided by the platform at the first
run (e.g., add some privileged structures at the second run). An
advanced user who is deeply familiar with the functionality and
outcomes of the platform can configure the platform and get
expected results (10−20 of novel molecules for synthesis) even
in the first run for a new project.

A user is provided at the platform with an online well-
documented manual describing sample virtual case studies for
different workflows mentioned in SI section S2, step-by-step
instructions for these case studies and sample outcomes as .sdf
files and their analysis by medicinal and computational chemists.
These case studies can help a fresher to accept the more
appropriate strategy to exploit the platform for their own project
purposes.

■ BENCHMARKING THE GENERATIVE MODELS IN
CHEMISTRY42

The performance of all generative models used in an experiment
is monitored and recorded by a benchmarking system based on
the Molecular Sets (MOSES) system. MOSES assesses the

Figure 3. DDR1 inhibitors generation was performed in 2018 by the GENTRL model in Case study 1 (above). The supporting postgeneration
modules (MCFs, SOMs, and pharmacophores) were utilized to narrow down the generation output. Chemistry42 is an integrated platform released in
2020, where more than 40 generative models work together and get information from the reward modules and filters to produce molecular structures
with desired properties. The newer version of the platform enables the exploitation of .pdb files of protein−ligand complexes and apo-structures as
input data. The CDK20 model from AlfaFold2 was used in two sequential rounds of generation. The first round was focused on the de novo design of
potential CDK20 inhibitors from apo-structure, while the second round exploited a hit-opt workflow starting from the primary hit identified in the first
round.
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performance of each model and the reward components,
including novelty, diversity, and others, during the generation
and once the experiment is completed.26 Based on the provided
analytics, users can analyze each model’s performance. A record
of the results and training data is kept during the experiment and
stored to ensure that reproducibility and monitoring are both
simple and feasible. An example of MOSES-based analytics for a
generation is available in the S5 of Supporting Information.

■ CASE STUDIES
Early versions of the generative pipeline (prior to the launch of
Chemistry42), were used to demonstrate the ability of
generative algorithms to design experimentally validated,
druglike molecular structures (see Figure 3).
Case Study 1: GENTRL Model Enabled the Rapid

Generation of Potent DDR1 Inhibitors. The GENTRL
model and postgeneration protocols are the ancestors of the
current architecture of the Chemistry42 platform. In the seminal
and widely discussed study5 the model developed in 2018
generated experimentally validated potent DDR1 kinase
inhibitors. GENTRL was trained on the ZINC data set and
then fine-tuned on reported DDR1 inhibitors and a publicly
available kinase inhibitor data set. The obtained structures were
then passed through structural filters to eliminate structures with
reactive groups, PAINS, and other alerts. This functionality was
further converted into the MCFs module of the Chemistry42
platform. The number of structures was further reduced by
clustering and the selection of the most diverse members of each
cluster. This smaller subset of structures was then assessed on
kinase SOMs and by pharmacophore hypotheses, constructed
from reported cocrystals of DDR1 with its inhibitors. The
remaining structures were subject to a random selection of 40
that were further subjected to a manual synthetic accessibility
evaluation. Of the 40 structures, six were nominated for
synthesis and biological assessment. By day 35, the compounds
had been successfully synthesized and tested in vitro for the
inhibition of DDR1 enzymatic kinase assay. More than half of
the compounds were found to be active (IC50 < 1 μM), including
two two-digit nanomolar inhibitors (10 nM and 21 nM), while
two compounds showed no activity in the assay.
Case Study 2: The Use of AlphaFold2 Generated 3D

Protein Structures to Generate Hit-Molecules. We have
recently demonstrated the use of an AlphaFold227 predicted
protein structure in an SBDD case study of Cyclin-Dependent
Kinase 20 (CDK20) inhibitors.28 The selected target, CDK20

(also known as cell cycle-related kinase, CCRK), was identified
as a promising drug target for hepatocellular carcinoma by the
PandaOmics29 software. The absence of structural information
for both protein and reported tool compoundsmakes CDK20 an
ideal candidate for the validation of our AlphaFold2+Chemis-
try42 approach. The CDK20 AlphaFold2 model (AF-Q8IZL9-
F1-model_v1) was used as input for Chemistry42 in the SBDD
mode to produce new molecular structures that would inhibit
CDK20. The Pocket Scanner Module mapped the ATP-binding
site as an ideal pocket of choice to generate potential inhibitors.
To navigate the generation into the chemical space common for
kinases and specifically CDK inhibitors a classic hinge binder
pharmacophore and a SOM trained on the known CDK
inhibitors were used. The Novelty filter was engaged to ensure
that generated molecules will not share similar structures to the
existing molecules from the CDK subset of the HAM data set.
Also Shape and 3D-descriptorsmodules were disabled at the first
de novo stage, since these modules are not applicable in the
absence of the template ligand, when the apo-structure of
modeled protein is used (see disabled modules at the Figure 3).
In total, 8918 molecules were designed by the generative
pipeline. After molecular docking and visual pose inspection, 54
molecules with diverse hinge binder scaffolds were prioritized
and seven compounds were nominated for synthesis based on
their scores. Among these compounds, a primary hit containing
a quinazoline ring with Kd value of 8.9 ± 1.6 μM in a CDK20
binding assay was discovered. The experimental details of the
assay are available in the section S6 of SI. Hit-optimization at the
second stage using the 2D PFs functionality was deployed to
maintain the quinazoline scaffold and explore the R-group space
to improve the binding affinity of the identified hit-molecule.
From this hit-optimization generation that exploited the same
pharmacophore from the first round and did not use SOM
scoring, six molecules were short-listed for synthesis based on
their scores, and two compounds showed remarkable improve-
ment in potency resulting in Kd values of 210.0 ± 42.4 nM and
375 ± 5 nM, respectively. The default set of MCFs and default
ranges for Drug-likeness related properties (see section S3 in SI)
were applied for both generations. Altogether this work
demonstrated the synergy between AI methods supporting
target identification (PandaOmics), protein folding (Alpha-
Fold2), and generative chemistry (Chemistry42) in their ability
to effectively contribute to a digital drug development process
when structural data are limited. The structures of all 7
compounds selected from the first round, as well as those of

Figure 4. PandaOmics and Chemistry42 platforms integrated into your drug discovery pipeline. The interoperability of these platforms allows an
efficient interaction between target identification and de novo small molecule generation.
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optimized hit-compound and their similarity analysis using
ChEMBL tools, are available in the section S7 of SI.

■ CHEMISTRY42 INTEROPERABILITY
Chemistry42 is accessible through a web interface built on top of
a distributed cloud platform with scalable cloud architecture.
The implementation integrates a variety of features aimed at
optimizing performance, including cluster management with
Kubernetes, multiple flexible workflows, and integrated
monitoring and logging. The structure and interoperability of
the Chemistry42 platform allow its deployment on either the
AWS or Azure cloud or as a SaaS solution (chemistry42.com).
For either deployment scenario, the platform can be integrated
into already established workflows.

Chemistry42 can be connected to Insilico Medicine’s
bioinformatics web service PandaOmics (https://pandaomics.
com) (Figure 4). PandaOmics is a comprehensive computa-
tional suite for the analysis of -omics data that provides access to
information ranging from disease signatures to prospective
targets and existing drugs. PandaOmics combines classic
bioinformatics methods with signaling pathway analysis using
the iPANDA algorithm.29−33 PandaOmics also provides access
to an AI-powered toolkit including deep feature selection for
pathway reconstruction, a pathway scoring engine, causal
inference, a deep-learned transcriptional response scoring
engine, and an activation-based scoring engine. This multimodal
approach combines big data, chemistry, biology, and medicine
and allows a complete characterization of the interplay between
molecular structures, properties, alteration in biological samples,
and drug response required for target discovery.

■ CONCLUSION
The Chemistry42 platform (https://chemistry42.com) is a
customizable working environment that offers state-of-the-art
AI technologies developed for de novo molecular design. The
flexible, user-friendly interface makes Chemistry42 accessible to
medicinal and computational chemists, AI experts, and other
scientists working in the field of drug discovery. The
collaborative nature of Chemistry42 enables and fosters
relationships between different scientific communities and
facilitates the decision-making process�a process which is
exceptionally demanding in the field of drug design.

■ ASSOCIATED CONTENT
Data Availability Statement
The Chemistry42 platform is commercially available to the
public (https://chemistry42.com). Parts of the platform, such as
the GENTRL algorithm, are available online https://github.
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