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A B S T R A C T   

Background: Consensus on the optimal metrics for neurovascular coupling (NVC) is lacking. The aim of this study 
was to use principal component analysis (PCA) to determine the most significant contributors to NVC responses 
in healthy adults (HC), Alzheimer’s disease (AD), and mild cognitive impairment (MCI). 
New method: PCA was applied to three datasets: 1) 69 HC, 2) 30 older HC, 34 AD, and 22 MCI, 3) 1&2 combined. 
Data were extracted on peak percentage change in cerebral blood flow velocity (CBFv), variance ratio (VR), 
cross-correlation function peak (CCF), and blood pressure, for five cognitive tasks. An equamax rotation was 
applied and factors were significant where the eignevalue was ≥1. Rotated factor loadings ≥0.4 determined 
significant NVC variables. 
Results: PCA identified 12 significant factors accounting for 78% of variance (all datasets). Contributing variables 
loaded differently on the factors across the datasets. In datasets 1&2, peak percentage change in CBFv 
contributed to factors explaining the most variance (45–58%), whereas cognitive test scores, fluency and 
memory domains contributed the least (15–37%). In the combined dataset, CBFv, CCF and fluency domain 
contributed the majority (33–43%), whereas VR and attention the least (6–24%). 
Conclusions: Peak percentage change in CBFv and the visuospatial task consistently accounted for a large pro-
portion of the variance, suggesting these are robust NVC markers for future studies.   

1. Introduction 

Neurovascular coupling (NVC) is the relationship between cerebral 
blood flow (CBF) and local neural activity in the neurons and glia (oli-
godendrocytes, astrocytes and microglia) in the neurovascular unit, 
which can be triggered by various stimuli [10]. In the majority of 
healthy individuals, an increase in neural activity leads to an increase in 
CBF, owing to a combination of the increased metabolic and energy 
demands and the relatively small energy storage capacity of the brain 
[2]. NVC is regulated via a selection of factors including metabolic, 
myogenic, autonomic and sheer wall stress regulation [18]. 

There are 50 million people living with dementia worldwide [16]. 
Despite an increasing proportion of the population living with dementia, 
there are surprisingly few diagnostics and treatments available. De-
mentia can cause uncoupling of the NVC processes described above, 
resulting in an impaired hyperaemic response when individuals are 
cognitively challenged [4, 23]. The observed reduction in CBF [8] and 
NVC results in a mismatch between CBF demand and supply, leading to 

cognitive dysfunction [14]. Proposed by Zlokovic et al, the two-hit 
vascular hypothesis suggests that the amyloid cascades typical in Alz-
heimer’s disease (AD) are initially triggered by vascular events and risk 
factors (e.g. diabetes and hypertension) [25]. In the first hit of the 
model, factors such as atherosclerosis trigger vascular dysfunction in the 
form of a reduced vascular integrity [14].  This results in a reduction in 
CBF leading to neuronal dysfunction and eventually dementia symp-
tomatology [14]. The second hit of the model, features a rise in 
amyloid-beta (Aβ), as a result of reduced clearance, and enhanced tau 
hyperphosphorylation [12,14]. 

AD is the most common form of dementia (~60%), closely followed 
by vascular dementia (VaD) (~20%) [20]. Risk factors such as athero-
sclerosis and cerebral small vessel disease trigger a decrease of vascular 
integrity and, in turn, a reduction in CBF, resulting in a mis-match be-
tween CBF and neural activity [9]. VaD secondary to cerebral small 
vessel disease is associated with chronic hypoperfusion and increased 
vascular resistance which inherently limits the brain’s capacity to meet 
the metabolic demands of increased cognitive activity [9,11]. In a study 
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by Asil and Unzer, only participants with VaD had reduced CBFv re-
sponses to visual stimulation compared to participants with AD [1]. 
Fewer studies have investigated rarer dementia sub-types (Parkinson’s 
disease dementia, Lewy body dementia), although one study demon-
strated no differences in NVC between healthy controls and people with 
Parkinson’s disease with and without dementia [19]. 

Non-invasive methods are particularly attractive to study NVC in 
dementia owing to their acceptability and tolerability compared to al-
ternatives. One such method uses transcranial Doppler ultrasonography 
(TCD) and typically measures the peak percentage change in CBF ve-
locity (CBFv) at rest and following cognitive stimulation [22]. Other 
common parameters include: area under the curve of the CBFv response, 
time to peak response, and more recently dichotomisation into the 
presence (“responders”) and absence (“non-responders”) of a response 
[5]. Typically, repeated trials are used to improve the signal to noise 
ratio, but these are limited by protocol duration, and thus tolerability 
when translating to clinical practice. More recent protocols have 
demonstrated that single trials are feasible and produce robust NVC 
responses [6], however, “non-responders” to stimulation are often pre-
sent even in healthy populations [5]. Whilst, response rate can 
discriminate between dementia and healthy ageing with good accuracy 
[3], this relies on the use of multiple tasks and physiological parameters, 
which may not be easily translated to a clinical setting. 

There remains a lack of consensus on the most appropriate mea-
surement technique to use in NVC studies in both healthy and disease 
states [21]. Given the multitude of available techniques, reducing 
dimensionality in the data may be useful to identify the most important 
metrics that account for the largest proportion of the explained variance. 
Principal component analysis (PCA) is one such method of reducing the 
dimensionality in large datasets. This can be achieved by eliminating 
redundant information in the dataset, and retaining orthogonal vari-
ables, thus reducing multi-collinearity.  Although a recent analysis 
demonstrated good discriminative ability of NVC between AD, mild 
cognitive impairment (MCI), and healthy older adults (HC) [3], this 
relied upon data from two metrics across five tasks, which may not al-
ways be practical to collect. Thus, PCA may be able to reduce the need 
for multiple tasks and trials by identifying the most useful variables for 
discrimination. 

Therefore, the aim of this analysis was to identify the most useful 
NVC metrics from a large, healthy dataset of 45 variables using PCA, and 
to compare these with a second data including participants with a 
diagnosis of AD or MCI. 

2. Methods 

2.1. Participants 

The data in this study were extracted from two datasets in the Ce-
rebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) 
database. The first dataset was a sample of 69 healthy volunteers (HC), 
free from major co-morbidities or medications that adversely affect 
cognitive function. The second dataset included 56 patients with a 
diagnosis of AD or mild cognitive impairment (MCI), and 30 matched 
healthy controls recruited from May 2017 – January 2020. The NIA/AA 
2011 criteria were used to confirm a diagnosis of AD or MCI in the 
original studies. Inclusion, exclusion criteria and research protocols 
were similar across the original studies and can be seen in our previous 
publications [3, 4, 6]. In brief, exclusion criteria were as follows: under 
the age of 18, pregnant, planning pregnancy or lactating, severe respi-
ratory disease, severe cardiac failure with an ejection fraction of <20%, 
severe carotid artery stenosis and generally unable to comply with the 
requirements of the study. Participants on anti-dementia medications 
were suitable for inclusion in all studies. HC participants were without 
major comorbidity, measurable cognitive deficit or medication known 
to have an adverse effect on cognitive function. Well-controlled or stable 
comorbidities (e.g. hypertension, diabetes) were suitable for inclusion. 

Written, informed or personal consultee consent was sought from all 
participants used in the original studies, and all studies had University of 
Leicester, or Research Ethics Committee approval (references: 17/WA/ 
0089 and 18/YH/0396). All studies were conducted in accordance with 
the Declaration of Helsinki 1964. 

2.2. Data collection protocol 

The data used in this study were collected at the CHiASM research 
space, which is a quiet, temperature-controlled environment. Partici-
pants were requested to abstain from stimulants (caffeine), depressants 
(alcohol), nicotine, large or heavy meals and strenuous exercise for at 
least 4 hours previous to the measurements being taken. Continuous 
TCD (DWL Doppler Box or Viasys Companion III), measurements were 
taken for CBFv via bilateral insonation of the middle cerebral arteries 
(MCAs). In addition, continuous measurements of heart rate (HR, using 
a 3-lead ECG), beat-to-beat blood pressure (BP, using a Finometer by 
Finapres Medical Systems) and end-tidal CO2 (ETCO2, using capnog-
raphy - Capnocheck Plus) were recorded alongside CBFv. The signals 
were sampled at 500 samples/s before being stored in a data acquisition 
system (PHYSIDAS, Department of Medical Physics, University Hospi-
tals of Leicester NHS Trust), for offline analysis. 

Each participant was asked to complete five minutes of rest (base-
line), followed by five cognitive tasks (attention, fluency, language, vi-
suospatial, and memory) from the Addenbrooke’s Cognitive 
Examination-III (ACE-III). Prior to, and between each cognitive task, 
there was a 1-minute rest period in order for CBFv to return to baseline. 
The start of each task was marked with an event recorder. We extracted 
the following parameters from the database for the final datasets: CBFv, 
BP, HR, and ETCO2 during cognitive stimulation. We also extracted data 
on key demographics (e.g. age and sex), and cognitive test scores. 

Once collected, the data was processed and non-physiological spikes 
were removed by linear interpolation. The data were then passed 
through a median filter to remove smaller spikes and a zero-phase 
Butterworth filter was used to low-pass filter the data at 20 Hz. Hand-
edness (Edinburgh Handedness Inventory [15]) was assessed to classify 
participants as right or left hand dominant, and thus the corresponding 
hemisphere as dominant and non-dominant. 

Peak percentage change from a twenty second baseline period prior 
to task activation in CBFv, and BP was extracted. Peak percentage 
change was calculated at two time points: T2 (5 seconds after activation 
as the initial response), and T3 (10 seconds after activation as the sus-
tained response). This allowed uniform measurements for percentage 
change. 

In addition to data on peak percentage change, we extracted data on 
the cross-correlation function peak (CCF), and the variance ratio (VR). 
CCF is the time dependant cross-correlation between a population 
coherent average and an individual participant’s signal, with the highest 
CCF possible being 1. The VR compares the variability of the signals 
before and after the NVC stimulus, where a higher VR represents greater 
(expected) variability in the signal post-activation. 

2.3. Data Analysis Methods 

2.3.1. Principal component analysis 
PCA was performed to identify the NVC metrics which provide the 

most relevant information or loadings. We tested PCA in the combined 
dataset, healthy dataset and the patient dataset, to identify if different 
variables contributed to a greater proportion of the variance in different 
populations. The following variables were investigated: peak percentage 
change in CBFv for both hemispheres at T2 and T3, peak percentage 
change in MAP, CCF and VR (all for five cognitive tasks listed above), 
and the sub-domain test scores of the ACE-III (attention, language, 
verbal fluency, visuospatial, memory). We used an equamax rotation 
assuming orthogonal variables and factors which we confirmed by the 
correlation matrix. We determined significant factors to be those with an 
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eigenvalue of greater than 1, and visually inspected this on a scree plot. 
We determined significant variables to be those which loaded the 
highest on each factor with an eigenvalue above 1. All analyses were 
performed in SPSS version 26 For Windows. Supplemental data can be 
accessed here: https://figshare.com/s/b8285455f379761f9e8a. 

3. Results 

3.1. Demographics 

Table 1 shows the demographics of the two data-sets (full list pub-
lished in [3]). Education level was lower amongst AD participants, with 
higher anti-dementia drug use, lower resting CBFv, BP, and cognitive 
test scores. HC were younger than those with MCI or dementia in the 
patient data-set (67 vs 72 years old, respectively). 

3.2. PCA results 

3.2.1. PCA in healthy dataset 
In preliminary analyses, data from both hemispheres loaded on the 

same factors, providing no additional information, and so were averaged 
across hemispheres. This left 35 variables (averaged CBFv and BP at T2 
and T3, VR, CCF, for five cognitive tasks and their corresponding test 
scores) for analysis. In the healthy dataset, 12 components were iden-
tified with an eigenvalue ≥1 which accounted for 78.6% of the total 
variance (Table 2, Fig. 1a). The first factor accounted for almost a fifth 
(19%) of all the variance (Table 2). Supplementary Table 3 shows the 
variables which load on the rotated components, accounting for the 
majority of the variance in the data. The first factor was predominantly 
loaded by visuospatial variables (CBFv, CCF). 

In terms of the pattern of loadings, variables tended to load by task 
(2: language, 3: memory, 6: fluency, 8: attention). BP from different task 
loaded on the same factors (4 and 5), and VR loaded predominantly on 
factor 7. This suggests that tasks provide different information, but 
within tasks individual variables may not provide additional informa-
tion. Similarly, BP and VR do not provide additional information 
amongst the various tasks. 

3.2.2. PCA in patient data-set 
In the patient dataset, 12 factors were identified with an eigenvalue 

at or close to 1, accounting for 78.2% of the total variance (Table 3, 
Fig. 1b). In keeping with the healthy results, the first factor accounted 
for the majority of the variance (17.9%). Supplementary Table 2 shows 
the variables which load on the rotated components. In contrast to the 
healthy dataset, the majority of variables (n=18) loaded on the first 
factor, and were predominantly CBFv, BP and CCF variables across the 
five tasks. Test scores mainly loaded on factors 2 and 3. In contrast to the 
healthy dataset, VR from different tasks did not load together on one 
factor, and variables did not load within task onto individual factors 
(Supplementary Table 2). 

3.2.3. Combined dataset 
In keeping with the patient and healthy datasets, the combined 

dataset had 12 significant factors (eigenvalue ≥1), and the first factor 
accounted for the majority of the variance (17.3%) (Table 4, Fig. 1c). 
However, when assessing the rotated factors and variable loadings the 
pattern was distinct from that seen in the previous two datasets. Factors 
1 and 9 were loaded predominantly by memory test scores, and CBFv 
and CCF values were split across factors within their respective tasks (3, 
5, 6, 8, and 12) (Supplementary Table 3). BP variables by task loaded 
predominantly on factors 2, 7 and 11, and the remaining VR variables 
loaded on factor 10. These results suggest independence of the CBFv 
data across different cognitive domains, when healthy and patient data 
are combined into one dataset. 

3.2.4. Comparison of contributing variables 
Table 5 shows the factors against which variables and cognitive 

domains loaded and the variance explained by these factors. In the 
healthy and patient datasets, CBFv and the visuospatial domain loaded 
against factors explaining the most variance (45–58%), whereas cogni-
tive test scores and the fluency and memory domains contributed the 
least (15–37%). In the combined dataset, CBFv, CCF and the fluency 
domain contributed the majority (33–43%), whereas VR and attention 
the least (6–24%). 

Table 1 
Demographics of the two datasets (healthy and patient - participants with Alz-
heimer’s dementia [AD] or mild cognitive impairment [MCI]). Data are mean 
(standard deviation), median [inter-quartile range], or number (percentage). 
Significance testing by chi-square (nominal data), one-way ANOVA (normally 
distributed, continuous), or Kruskall-Wallis (non-normally distributed, contin-
uous). Significant where p<0.05, highlighted in bold. Abbreviations: ACHeI: 
acetylcholinesterase inhibitor, CBFv: cerebral blood flow velocity, ETCO2: end- 
tidal CO2, BP: blood pressure, ACE-III: Addenbrooke’s Cognitive Examination 
III.  

Demographic Healthy 
control 

MCI AD P value 

Healthy data-set     
n 69 - -  
Mean age (years) 49 (20) - -  
Female Sex (n, %) 40 (58) - -  
Right handed (n, %) 63 (91) - -  
Patient data-set     
n 30 22 35  
Mean age (years) 67 (8.6) 72.3 (8.5) 72.2 (8.9) 0.033 
Female (n, %) 13 (43.3) 4 (18.2) 12 (34.3) 0.16 
Education (years) 18 [16–20] 15 [12–17] 14 

[11.25–17] 
0.009 

ACHeI (n, %) 0 (0) 5 (22.7) 23 (65.7) <0.005 
CBFv non-dominant 

(cm/s) 
50.7 (9.3) 46.7 (7.2) 44.0 (9.4) 0.012 

CBFv dominant (cm/ 
s) 

51.6 (7.8) 46.4 (7.2) 42.9 (11.3) 0.001 

ABP (mmHg) 98.6 (12.8) 92.4 (11.1) 95.2 (22.4) 0.001 
Heart rate (bpm) 68.1 (13.5) 62.9 (11.5) 63.1 (11.1) 0.18 
ETCO2 (mmHg) 37.6 (3.1 36.1 (3.9) 35.0 (3.2) 0.01 
ACE-III total score 98 [95–99] 87 

[85–92.8] 
77 [70–82] <0.005 

Attention 18 [17.3–18] 17 [16–18] 15 [12–16.5] <0.005 
Memory 25.5 

[24.3–26] 
22 [19–24] 15 

[11.5–17.5] 
<0.005 

Fluency 13 [11.3–14] 11.5 [9–12] 9 [7–10] <0.005 
Language 26 [26–26] 25 [25–26] 25 [24–26] <0.005 
Visuospatial 16 [15.3–16] 16 [15–16] 15 [13–15.5] <0.005  

Table 2 
The total variance explained for the averaged healthy dataset, with corre-
sponding eigenvalues and the cumulative percentage of the variance for all 
twelve factors.  

Factor Eigenvalue % of variance Cumulative % 

1 6.6 19.0 19.0 
2 3.7 10.5 29.5 
3 3.0 8.7 38.2 
4 2.4 6.7 44.9 
5 2.0 5.8 50.7 
6 1.8 5.2 55.9 
7 1.8 5.0 61.0 
8 1.5 4.4 65.3 
9 1.3 3.8 69.1 
10 1.2 3.5 72.6 
11 1.1 3.1 75.7 
12 1.0 2.9 78.6  
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Fig. 1. PCA.  

Table 3 
The total variance explained for the averaged patient dataset, with corre-
sponding eigenvalues and the cumulative percentage of the variance for all 
twelve factors.  

Factor Eigenvalue % of variance Cumulative % 

1 6.3 17.9 17.9 
2 3.5 10.0 27.9 
3 2.9 8.3 36.3 
4 2.7 7.6 43.9 
5 2.3 6.7 50.5 
6 1.9 5.4 55.9 
7 1.5 4.3 60.2 
8 1.5 4.2 64.3 
9 1.4 3.9 68.3 
10 1.3 3.8 72.0 
11 1.2 3.4 75.5 
12 0.95 2.7 78.2  

Table 4 
The total variance explained for the averaged patient dataset, with corre-
sponding eigenvalues and the cumulative percentage of the variance for all 
twelve factors. .  

Factor Eigenvalue % of variance Cumulative % 

1 6.3 17.9 17.9 
2 3.5 10.0 27.9 
3 2.9 8.3 36.3 
4 2.7 7.6 43.9 
5 2.3 6.7 50.5 
6 1.9 5.4 55.9 
7 1.5 4.3 60.2 
8 1.5 4.2 64.3 
9 1.4 3.9 68.3 
10 1.3 3.8 72.0 
11 1.2 3.4 75.5 
12 0.95 2.7 78.2  

Table 5 
The factors and variance explained by variable and cognitive domain for each of 
the three datasets. CBFv= cerebral blood flow velocity, CCF= cross-correlation 
function peak, BP= blood pressure, VR= variance ratio.  

Variables 
contributing 
most 
variance 
(high to low) 

Factors 
loading 

% variance 
explained 
by these 
factors 

Cognitive 
domains 
contributing 
most variance 
(high to low) 

Factors 
loading 

% 
variance 
explained 

Healthy      
CBFv 1, 2, 3, 

4, 6, 8, 
10 

58 Visuospatial 1, 3, 5, 
7, 8, 12 

45.8 

CCF 1, 2, 3, 
6, 8 

47.8 Memory 3, 5, 7, 
9 10, 11 

29.9 

BP 3, 4, 5, 
8, 9 

29.4 Attention 4, 5, 7, 
8, 12 

24.8 

VR 3, 7, 8, 
11 

21.2 Language 2, 4, 9, 
11 

24.1 

Cognitive test 
score 

5, 9, 11 
,12 

15.6 Fluency 4, 5, 6, 
7 

22.7 

Patients      
CBFv 1, 2, 3, 

4, 5, 6 
55.9 Visuospatial 1, 2, 3, 

4 10, 11 
51 

BP 1, 2, 5, 
6, 7, 9, 
11 

51.6 Attention 1, 2, 3, 
5, 11 

46.3 

CCF 1, 4, 5 32.2 Fluency 1, 2, 3, 
6, 7 

45.9 

VR 3, 7, 10, 
11 

19.8 Language 1, 2, 3, 
7 

40.5 

Cognitive test 
score 

2, 3 18.3 Memory 1, 3, 5, 
9 

36.8 

Combined      
CBFv 3, 4, 5, 

6, 8, 12 
33.6 Fluency  1, 2, 6, 7, 

10 
CCF 3, 4, 5, 

6, 8, 12 
33.6 Visuospatial 1, 2, 4, 

10 
39.7 

BP 2, 6, 7, 
8, 11 

29.7 Language 1, 5, 7 27.8 

Cognitive test 
score 

1, 9 21.2 Memory 1, 3, 9, 
11 

33.3 

VR 10, 12 6.3 Attention 2, 8, 9, 
12 

23.7  
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4. Discussion 

4.1. Summary of results 

From a total of 35 potential markers of NVC efficacy, PCA revealed 
twelve significant factors for each of the three datasets (healthy, patient, 
and combined), which accounted for approximately 78% of the vari-
ance. Similarly, the first factor accounted for the majority of the vari-
ance in each of the three datasets (17–19%). However, the variables 
contributing to each factor differed considerably. In the healthy and 
combined datasets, variables within the same task (e.g. CBFv, CCF) 
tended to load on the same factor, suggesting minimal overlap in the 
variance explained between cognitive domains. However, this pattern 
was not replicated in the patient dataset suggesting greater overlap in 
the information provided by different cognitive domains. 

4.2. Variable contributors to NVC responses 

To our knowledge, this is the first study to use PCA to identify the 
relative contributions of different physiological variables derived from 
NVC metrics measured using cognitive paradigms in the MCA, from a 
large dataset of both healthy and cognitively impaired data. Previous 
studies have characterised NVC responses according to the percentage 
change, [6,22], presence and absence of response [3,5], time to peak 
[24], and subcomponents [13,17], but few have specifically examined 
the proportion of the variance explained by different physiological 
variables and the extent of redundancy is these variables. In a study by 
Chiarelli of NVC in mild AD as measured by EEG and fNIRS, PCA was 
used to provide a global EEG signal from timecourses which explained 
the majority of the variance for each frequency band [7]. However, the 
study did not specifically investigate or report which timecourses or 
physiological signals were redundant and could be eliminated for future 
studies, and the PCA approach was not extended to the haemodynamic 
data or responses. However, Squair et al studied data from 130 partic-
ipants who underwent visual light stimulation with simultaneous re-
cordings of CBFv in the posterior cerebral artery, and PCA was used as 
part of a larger network analysis to determine the most stable NVC 
metrics derived from the gain, rate time, and natural frequency of the 
NVC response [21]. Consistent with the findings recorded here, peak 
percentage change was found to be a highly stable marker of NVC, and 
accounted for the majority of explained variance in the dataset reported 
here. The findings reported in this study extend those by Squair et al by 
examining CBFv and physiological data obtained in the middle rather 
than posterior cerebral artery and using cognitive rather than visual 
stimuli across a range of five key domains. Furthermore, the data pre-
sented here include both healthy and cognitively impaired participants 
and we were able to identify differences in the pattern of variance 
explained by NVC metrics according to diagnosis. In the study by Squair 
et al, new NVC metrics derived from PCA and cluster analysis were able 
to discriminate between able bodied individuals and those with spinal 
cord injury, which were not identified using traditional NVC metrics. 
However, it remains unclear whether these variables which have been 
derived from the posterior cerebral artery using light stimulation can be 
applied to measurements taken in other vessels (e.g. anterior and mid-
dle), and other stimuli (e.g. cognitive, motor, sensory). The results from 
this analysis suggest that those based on the peak percentage change in 
CBFv are likely to be applicable to other datasets, but this remains to be 
formally tested. Interestingly, cognitive test scores contributed the least 
variance in two of the datasets, suggesting physiological parameters 
such as the peak percentage change may provide additional information 
on cerebral function beyond those routinely tested in the clinic. Of the 
cognitive domains studied, visuospatial was a consistent contributor 
across the three datasets, which is likely to reflect a robust and stable 
response across participants. However, in the combined and healthy 
datasets variables loaded onto factors separated by task, suggesting 
limited overlap between cognitive domains and tasks studied, indicating 

a lack of redundancy in data across cognitive domains. This may reflect 
that NVC responses occurring in different brain regions and cognitive 
domains have different physiological profiles, thus limiting their overlap 
in terms of variance in the dataset. CBFv and CCF tended to load on the 
same factors within tasks, and thus limited information is gained from 
combining CCF and CBFv metrics. However, VR and BP load on different 
factors from CBFv and CCF, providing potentially useful information 
beyond these variables. Finally, we included peak percentage change in 
CBFv and BP at two time points (T2 and T3), however these variables 
frequently loaded on the same factor and therefore using two time points 
is unlikely to provide benefit above using a single time frame of peak 
percentage change. 

4.3. Limitations and future directions 

This study was limited to a set of 35 NVC metrics and did not account 
for all available or previously studied markers of NVC (e.g. time to 
peak). Future studies could consider examining additional metrics 
beyond those included in this analysis. This study focussed on NVC re-
sponses obtained from the MCA using cognitive paradigms and it re-
mains unclear how easily findings can be extrapolated to measurements 
taken in other vessels, using different types of stimuli. Finally, future 
studies should consider using the findings from this study to refine NVC 
metrics used in cognitive experiments, particularly to ensure protocols 
are tolerable for patients with cognitive dysfunction, simultaneously 
maximising information obtained whilst minimising protocol duration. 
The loadings from this study could be applied to future datasets to 
investigate the discriminant ability of the derived loadings between 
dementia and healthy ageing. 

4.4. Conclusions 

Using PCA, we identified which physiological variables from a larger 
physiological dataset that contribute the majority of variation in NVC 
data, and therefore may provide better information and reduce the 
volume of data collection in future protocols for clinical applications. 
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