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Regulation‑based probabilistic 
substance quality index 
and automated geo‑spatial 
modeling for water quality 
assessment
Artyom Nikitin1*, Polina Tregubova2, Dmitrii Shadrin2, Sergey Matveev3,4, 
Ivan Oseledets1,4 & Maria Pukalchik2

Natural environments are recognized as complex heterogeneous structures thus requiring numerous 
multi-scale observations to yield a comprehensive description. To monitor the current state and 
identify negative impacts of human activity, fast and precise instruments are in urgent need. This 
work provides an automated approach to the assessment of spatial variability of water quality using 
guideline values on the example of 1526 water samples comprising 21 parameters at 448 unique 
locations across the New Moscow region (Russia). We apply multi-task Gaussian process regression 
(GPR) to model the measured water properties across the territory, considering not only the spatial 
but inter-parameter correlations. GPR is enhanced with a Spectral Mixture Kernel to facilitate a hyper-
parameter selection and optimization. We use a 5-fold cross-validation scheme along with R2-score to 
validate the results and select the best model for simultaneous prediction of water properties across 
the area. Finally, we develop a novel Probabilistic Substance Quality Index (PSQI) that combines 
probabilistic model predictions with the regulatory standards on the example of the epidemiological 
rules and hygienic regulations established in Russia. Moreover, we provide an interactive map of 
experimental results at 100 m2 resolution. The proposed approach contributes significantly to the 
development of flexible tools in environment quality monitoring, being scalable to different standard 
systems, number of observation points, and region of interest. It has a strong potential for adaption to 
environmental and policy changes and non-unified assessment conditions, and may be integrated into 
support-decision systems for the rapid estimation of water quality spatial distribution.

Freshwater—probably the most precious resource on the planet—plays a crucial role for humans since it is 
exploited in farming, industry, domestic consumption, and power supply1–4. Yet, in the light of drastically chang-
ing environmental conditions freshwater resources are highly vulnerable. They are affected both by natural cli-
matic shifts as well as by anthropogenic impact manifested in pollution and catchment disturbance. To enhance 
freshwater storage protection active monitoring and quality assessment are required.

A freshwater quality assessment is complicated at both spatial and temporal scales and in terms of data collec-
tion. In other words, numerous points of observation are needed, some flows are partly hidden or even unavail-
able for the observers without specific equipment5. Another bottleneck for assessment is the high complexity and 
heterogeneity of water composition. It consists of a number of parameters of distinctive nature-physicochemical 
(such as acidity, alkalinity, turbidity, the content of cations and anions, including toxic chemicals, such as pes-
ticides and toxic trace metals) and biological (presence and structure of living organisms’ community). These 
characteristics are highly interconnected with each other and sensitive to the external stressors and processes at 
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the same time. Multiple factors, ranging from natural to anthropogenic ones, determine the significant spatial 
variability of water characteristics and the overall quality on large territories. The former includes aquifer char-
acteristics heterogeneity, substance migration patterns, while the latter—diverse sources of potential pollution 
from different land-use types in urbanised and developed lands6–8.

In order to monitor complex natural systems, such as freshwater reservoirs, an investigator has to answer 
two key questions: (1) how to contemplate as much information as possible in a most conscientious way and 
(2) how to cover maximal territory using the available data, which tends to be quite limited. A wide-spread 
approach to tackle the first problem is to evaluate the water system state by reducing the overall complexity, e.g. 
by calculating one integrative parameter, such as Water Quality Index (WQI). The idea of introducing a single 
aggregated parameter, such as WQI, was firstly proposed by Horton, 19659. It has been significantly elaborated 
since then10–13, being used even by some governmental agencies, such as National Sanitation Foundation Water 
Quality Index (NSFWQI), Canadian Council of Ministers of the Environment Water Quality Index (CCMEWQI), 
British Columbia Water Quality Index (BCWQI)14,15. The quality index approach is widespread in assessing other 
complex natural environments, e.g. soil16–18. The main objective of classic WQI is the aggregation of multiscale 
data, based on the relative importance of parameters, and further categorisation according to the obtained results. 
However, the applicability of WQI raised a number of concerns as it lacks unity and coherence in estimation 
workflow and evaluating the parameters.

As a consequence, these factors led to a high divergence in interpreting the obtained results15,19–22. The existing 
aggregation outlooks rarely reflect the normative thresholds directly23, and often miss other than “less is better” 
possible motivations for parameters’ consideration. Thus, the cases of the optimum range, when the permis-
sible parameter content is defined by some lower and upper bounds, are underrepresented. Significant part of 
the recent developments focuses on to the approaches of picking up the most important features to construct 
the index from them via assigning different weights24–26 in the contrast to subjective recommendations27, or 
systematizing them, using such tools as Multi-Criteria Decision Analysis, Analytic Hierarchy Process, Fuzzy 
Logic10,14,28. In case of implementing the expert opinion systematization techniques the authors identified several 
significant uncertainties accompanying a non-stable data aggregation process and a high risk of misinterpreta-
tion. Some of the new approaches are based on implementing numerical tools to consider the overall variability 
of characteristics across the territory of study, e.g. use of the Principal Component Analysis (PCA). However, 
if the high variance reflects noticeable parameter changes from an excellent to an appalling state, low variance 
does not allow to distinguish whether conditions are very poor or not. Finally, one may doubt whether it is 
expedient to aggregate the information into one index value at all after measuring tens of parameters. Specifi-
cally, considering that monitoring observations and private assessments are already based on the plethora of 
different characteristics29. Thus, the development of the new unified (i.e. non-specific to study sites) approaches 
to quality assessment are needed30,31.

In terms of observation and monitoring water quality spatial dynamics, data imputation, and prediction of 
possible system shifts, modeling approaches are in common use. Among them, two modeling approaches can be 
distinguished: process-based (PB) and data-driven solutions. Classic PB solutions are widely used for the tasks 
such as description of transport and fate of contaminants in water flows32, recharge-depletion and consumption 
dynamics33. These approaches, built on structural equations, are connected with the description of stochastic pro-
cesses underlying visible outputs with specified initial and boundary conditions34. Despite being comprehensive 
and fundamental, i.e. based on the observed dependencies in exploratory researches, the PB solutions are often 
considered as too complicated. Such models are usually limited by the demand of complex explanatory infra-
structure related to various natural environments to describe the principles behind the processes; up-scaling chal-
lenges, slow and clumsy calculations, as well as biases caused by the established assumptions and conditions34–36.

A suitable solution in the environmental modeling and assessment is using the data-driven modeling solu-
tions, to be more specific, machine learning (ML) to supply and improve PB techniques and as a self-contained 
approach. In the last few decades the popularity of ML-based approaches used for the modeling the water 
characteristics’ distribution, including over-all water quality, has been increasing. The ML techniques have been 
successfully introduced in the evaluation of the most important aspects of freshwater reservoirs, e.g. surface 
water quality and its mapping37, determining the key parameters for accurate quality estimation38, predicting 
groundwater contamination39,40 and level dynamics41. Although ML approaches require relatively large train-
ing sets and leave behind the physical mechanisms of processes, combined with geostatistical techniques, they 
allow to establish the distribution of characteristics more precisely and in higher resolution on both spatial and 
temporal scales. As compared to the PB modeling techniques, the ML approaches allow to model complex non-
linear relationships between independent and target parameters using black-box approaches42,43. Thus, there is 
no need to rely on any empirical models that are not always able to embrace all aspects of the considered system. 
This in turn opens an avenue for geo-spatial modeling automatization.

One of the most popular tools for successful predicton of the spatial distribution of parameters related to the 
natural environment (e.g. water quality, groundwater level, soil organic matter, air pollutant) is the implementa-
tion of Gaussian Process (GP)44–47. GP is a kernel-based model able to handle different types of input data without 
any limitations of the particular parametric form of relation to the output. The flexibility of GP allows to use it 
for the most frequent tasks in environmental studies such as regression (also called kriging) or classification48 
with the ability to perform simultaneous multi-parameter predictions giving confidence for the predicted values. 
Apart from the advantages of GP, a list of weaknesses is normally mentioned: limited computational efficiency 
with the growing number of samples, poor scaling with increasing data dimensionality. Additionally, it requires 
to choose variogram and mean (trend) functions structure and make some assumptions about the data distribu-
tion type (e.g., normality)49. To handle the efficiency problems several approaches may be exploited, including 
batch-learning50, kernel approximation51 and dimensionality reduction techniques52. Therefore, considering a 
high popularity of GP in the environmental science community, the studies applying GP to environmental issues 
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and showing the ways to decrease handcrafting (i.e., through the automated kernel structure selection) and 
increase computational efficiency are of paramount interest and practical importance. It should be noted, that 
there are other ML tools potentially capable of obtaining similar results, e.g. Support Vector Regression53, neural 
networks54–56.These models may give reasonable results, however black-box approaches are usually reported to be 
difficult in interpretation. At the same time, GP benefits over the above mentioned approaches due to the results 
of GP applications are usually easier interpreted. Still, the comparison between different modeling frameworks 
to solve the multi-task problems might be the promising direction in advancing assessment approaches.

This paper presents a part of the project aimed to implement the ML techniques to the environmental moni-
toring issues. Considering the above-mentioned developments of the community, the objective of this research 
is to show an automated Geographical Information Systems (GIS) approach for the freshwater assessment and 
spatial modeling applied to the existing sample network based on the data including 1526 samples obtained 
from 448 unique points across the New Moscow region described by 21 parameters and spatial coordinates57.

The detected concentrations of parameters used in the modeling vary significantly across the territory. Some 
of them, e.g. Cl, NO3 , PO4 ions, as well as metal ions, Fe, Mn, Ni, may exceed established permissible limits 
2-8 times while their content in other locations may be equal to 0. Our proposed modeling workflow is based 
on the multi-task Gaussian process regression (GPR) featured by the automatic kernel structure selection and 
hyper-parameter optimization. An important advantage of the developed approach is that it enables predicting 
the spatial distribution of all of the measured properties in one consistent procedure. Particularly, it considers 
both spatial and inter-parameter dependencies and allows to assess not only the precise values of water proper-
ties but also their probabilistic ranges as well as enables the accuracy control with the minimal user efforts. This 
modeling framework is supplied with a limit-driven assessment system: one can easily check whether the selected 
parameter is in the permissible range (considering the diapason, not only the upper limit) in the selected location. 
Considering the convenience of the joint concise characteristic to describe the overall system state, we propose a 
probabilistic substance quality index (PSQI). It incorporates both observations and the established regulations, 
denoting the probability that all of the characteristics lie in permissible diapasons. The presented approach is 
devised to meet the requirements to enhance reproducibility and fairness of the assessment. It is open to scal-
ing to different standard systems, set of points of observation, region of interest and has a strong potential for 
adaption to environmental and policy changes and non-unified conditions of assessment. Therefore, it ensures 
direct integration into support-decision systems.

Modeling tools and water quality index
In the following section the key concepts and stages of the proposed assessment approach are described in detail. 
Firstly, the theory behind the Gaussian process regression is explained and the modeling objectives are formu-
lated. In order to deal with one of the key difficulties of the natural systems quality assessment—representative 
consideration of the overall complexity in spatial modeling—the concept of multi-task Gaussian process regres-
sion is given. It is supplied with an explanation of the automatization procedure (hyper-parameter selection) 
and details for reproducibility: data pre-processing, model validation, and technical requirements to handle 
calculations. Finally, the definition of the proposed Probabilistic Substance Quality Index is given. The general 
scheme of the workflow is presented in Fig. 1.

Figure 1.   Main steps of the workflow: from data pre-processing to final Probabilistic Substance Quality index 
mapping.
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Gaussian process regression.  In order to perform geo-spatial modeling of multiple water properties 
from the collected dataset, we refer to the Gaussian process regression (GPR) framework49, known as kriging in 
geostatistics. Mean µ(·) and covariance (or kernel) k(·, ·) functions completely determine a Gaussian process:

where E is a mathematical expectation and x ∈ R
d is a vector of d input parameters, which are 2D coordinates 

in our case (for instance, represented in the Mercator projection). As an example, consider a simple GP model:

where ǫ ∼ N(0, σ 2) accounts for noise in measurements, hence, helping to avoid model over-fitting. Given the 
training samples X = (x1, . . . , xN )

⊺ ∈ R
N×d , Y =

(

y1, . . . , yN
)

⊺
∈ R

N , where N denotes the number of avail-
able measurements and (·)⊺ denotes a transpose, the predictive distribution at arbitrary point x∗ can be found as

where Kx = kx(X,X) = k(xi , xj), i, j = 1, . . . ,N  and kx∗ = kx(X, x∗) are spatial covariance matrices 
between all of the training points and between training points and the single prediction point, respectively; 
µ(X) = µ(xi), i = 1, . . . ,N  is the mean vector-function evaluated at the training points; and I is an identity 
matrix. A choice of the mean and kernel functions depends on the assumptions about the model and the par-
ticular application. An example of a kernel function is a widely used Gaussian kernel, which corresponds to 
Gaussian variogram in kriging. The kernel hyper-parameters are usually optimized using Maximum Likelihood 
Estimation (MLE)58 or its variations.

Figure 2 illustrates an example of GPR using the Gaussian kernel and the constant mean over the sigmoid 
function with noisy measurements. Predictive variance increases notably at the points with missing measure-
ments. Moreover, outside of the interpolation region, a predictive mean fails to capture the behavior of the 
underlying model due to the structure of its mean and kernel functions.

There are several issues that should be addressed to perform efficient modeling:

•	 Basic approach allows modeling only a single output or multiple independent outputs, whereas our aim is 
to capture both geo-spatial and inter-feature dependencies at once.

•	 Naive GPR computational requirements increase cubically with the dataset size, as it requires matrix inver-
sion.

•	 GPR model requires selection of multiple hyper-parameters, e.g., kernel and mean functions.

Multi‑task Gaussian process regression.  Let’s consider a more complex model than in the Eq. (2):

where y is a vector of M measured properties, ǫ ∼ N(0,D) with D being an M ×M diagonal noise matrix. In 
order to capture both inter-feature and geo-spatial dependencies in covariance function construction, we refer 
to multi-task approach59:

(1)
f (x) ∼ G P (µ(x), k(x, x′)),

µ(x) = E f (x),

kx(x, x′) = E [(f (x)− µ(x))(f (x′)− µ(x′))],

(2)y(x) = f (x)+ ǫ,

(3)

f̂ (x∗) ∼ N(µ̂, σ̂ 2),

µ̂(x∗) = µ(x∗)+ kx∗�(y − µ(X)),

σ̂ 2(x∗) = k(x∗, x∗)− (kx∗)
T�−1kx∗ ,

� = Kx + σ 2I ,

(4)y(x) = f(x)+ ǫ,

Figure 2.   Example of Gaussian process regression (red dashed line stands for the predictive mean and orange 
fill stands for the standard deviation intervals) with noisy measurements (blue dots) of a sigmoid function (solid 
green line) using Gaussian kernel and constant mean function.
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where Kf  is an M ×M inter-feature covariance matrix and �·, ·� denotes a scalar product. Then, given the train-
ing data X = (x1, . . . , xN )

⊺ ∈ R
N×d , Y =

(

y1, . . . , yN
)

⊺
∈ R

N×M , the predictive distribution at the unobserved 
point x∗ is found as

where ⊗ denotes a Kronecker product, y and µ are flattened N ·M-dimensional vectors obtained from N ×M 
matrices y and µ(X) , respectively. As a “side-effect” of this approach, after the model is built and hyper-param-
eters are optimized, we can analyze the dependencies between modeled properties using matrix Kf .

Decreasing computational complexity.  One of the main disadvantages of the proposed multi-task GPR approach 
is that it induces a lot of additional calculations. In the naive case it becomes O(N3M3) instead of O(N3) , and to 
alleviate it, we turn to GPU computations. We perform modeling using Python programming language, GPy-
Torch library60 based on the PyTorch framework61 and NVIDIA Tesla K80 GPU. However, to further improve 
performance and to easily account for the possibly correlated components, we parametrize covariance matrix Kf  
using low-rank approximation as follows:

where B is an M × r matrix, v is an M-dimensional positive vector and r is the supposed rank of Kf .

Hyper‑parameter selection.  In order to simplify the hyper-parameter selection, we refer to Spectral Mixture 
Kernel62, which can be represented as:

where Q is the number of components in the mixture, wq is a weight of the qth component, v(q)p  and µ(q)
p  are pth 

variance and mean of the qth mixture component, respectively. The weights influence the importance of each 
separate component in the mixture, whereas variance and the mean allow to model effects of different scales. 
Hence, we are able to model arbitrary stationary kernels and control the complexity with a number of compo-
nents Q in the mixture. Depending on the size and structure of the input data, the number of model parameters 
may require certain tuning. The main advantage of this approach is that it does not require any handcrafting 
of the potentially effective kernels, but instead, enables automatic hyper-parameter selection and optimization. 
Since the kernel assumes stationarity, we use a quadratic polynomial in two variables as the mean function to 
eliminate potential trend in data:

where c0, c1, c2, c12, c11, c22 are vectors of size M also being optimized during the model training. Optimiza-
tion of the hyper-parameters is performed with MLE approach by solving the following maximization problem 
numerically:

where θ denotes all hyper-parameters of the model.

Data normalization.  Spatial coordinates first were converted from EPSG:4326 (latitude, longitude) format 
to EPSG:32637 (UTM zone 37N) and, then, scaled down to [0, 1] range using the min-max normalization.

The scaling of the measured properties required a more complex approach. All of the properties are limited 
from below by zero and from above with some reasonable values, e.g., concentration can not be more than 100%, 
and, as another example, pH values can lie only in [0, 14] range. Unfortunately, a direct GPR does not consider 
such limits on outputs as the predictive distribution is normal and has infinite support. To incorporate such 
bounds we follow a warping approach63,64, which allows to map measurements from bounded space to unbounded 
and apply GPR directly. First, let M-size vectors bL and bU denote bounds of parameters dictated by regulatory 
documents from the Table 1. For every modeled parameter without the explicit value domain (all, except for pH 
in our case) we calculate their maximum values across all of the measurements ymax = max

1≤i≤N
yi . Then, we choose 

the maximum between the obtained values and bU and multiply it by 10 (to certainly avoid out-of-bounds 
problem), thus, defining upper limits as 10 ·max{ymax , bU } . The boundaries for pH are set as [0, 14] and the 
obtained limits are used for the min-max scaling, mapping all of the parameters to [0, 1] region. Furthermore, 
to map the scaled parameters to an unbounded space we use the inverse cumulative-distribution function (ICDF) 

(5)kkl(x, x
′) = �fk(x), fl(x

′)� = K
f
klk

x(x, x′), k, l = 1, . . . ,M

(6)

f̂ (x∗) ∼ N(µ̂, �̂),

µ̂(x∗) = µ(x∗)+ (Kf ⊗ kx∗)
T�−1(y − µ(X)),

�̂(x∗) = Kf kx(x∗, x∗)− (Kf ⊗ kx∗)
T�−1(Kf ⊗ kx∗),

� = Kf ⊗ Kx + D ⊗ I ,

(7)Kf = BTB+ diag(v),

(8)kx(x, x′) = kx(x − x′) = kx(τ ) =

Q
∑

q=1

wq

d
∏

p=1

exp{−2π2τ 2p v
(q)
p } cos

(

2πτpµ
(q)
p

)

,

(9)µ(x) = c0 + c1 · x1 + c2 · x2 + c12 · x1x2 + c11 · x
2
1 + c22 · x

2
2

(10)max
θ

log p(Y|X, θ) = −
1

2
(y − µ(X))T�−1(y − µ(X))−

1

2
log |�| −

NM

2
log 2π ,
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of the standard normal distribution. Unfortunately, it can not be applied straightforwardly, because our dataset 
contains strict zero values (which coincide with lower bounds), thus, yielding −∞ values after the transforma-
tion. To tackle this issue, we simply replace zeros with sufficiently small values of 10−10 before applying ICDF. 
Finally, we use another min-max scaling to end up with [0, 1] range of values. Thus, GPR predictive mean ends 
up in the required bounds after the appropriate inverse steps. Noteworthily, predictive distribution is Gaussian 
in the transformed measurement space, however, it is different in the original space and heavily depends on the 
warping function.

Validation.  To validate and compare the trained models we apply a standard cross-validation scheme with 5 
random splits, with 80% and 20% of a train and test data, respectively. For each split we (i) perform the model fit-
ting on training data, (ii) obtain predictions for each modeled property for the test data points and (iii) calculate 
R2-score (or the coefficient of determination). This quality metric shows the proportion of the observed variation 
explained by the variation in the input data using the model. It is equal to one (1) if a predictive error is zero (0), 
zero (0) if a predictive error equals the test data variance, and negative if it is larger. The particular choice of the 
metric based on the Mean Square Error (MSE) is justified by our model selection. The predictive mean of GPR 
is tightly connected with a solution of Kernel Ridge Regression65, which involves the minimization of the exact 
MSE of the training data with additional regularization. As the model is intrinsically trained to minimize the 
Euclidean error, it is natural to use the MSE-based metrics for its evaluation. To select the best model we have to 
disregard the poorly modeled properties. Thus, we average R2-scores over all splits and remove all of the proper-
ties for which the maximum, calculated over every model, yielded a negative value. Then, we average the scores 
over all kept properties and splits and select the model with the highest value.

Probabilistic substance quality index.  To evaluate the water quality we propose a new technique that 
takes advantage of GPR and allows to incorporate regulatory standards into assessment procedure directly. First, 
we note that the output of the GPR model is not just a vector of predicted values of properties, but a probabilistic 
distribution. Namely, at any location it gives a multi-dimensional normal distribution 
z ∼ p̂(z | x∗) = N

(

µ̂(x∗), �̂(x∗)

)

 described by the mean vector and covariance matrix from the group of Eqs. 
(6). Second, we appeal to the fact that the water quality is considered high if concentrations of different elements 
are located in admissible safe bounds, defined by governmental standards. Taking into account the above men-
tioned, we propose a measure coined Probabilistic Substance Quality Index (PSQI), which depicts the probabil-
ity that all the measured properties will be within the admissible bounds. Therefore, it seems natural to integrate 
the probability density function p̂(z | x∗) over these bounds. Unfortunately, due to the “curse of dimensionality”, 
an increase in the number of properties leads to a drastic decrease of the integral value and overall interpretabil-
ity. Thus, we utilize the marginalization approach instead and define PSQI as follows:

where wi denotes the importance of each individual property in water quality and bL , bU are admissible bounds 
for parameters from Table 1. By its construction, it is normalized to [0,1] interval, where zero value corresponds 
to zero possibility that properties are within the admissible bounds (bad quality) and one corresponds to the 
opposite (good quality). Since the integral in Eq. (11) does not have an analytical solution for the arbitrary 
bounds, we use SciPy library66 to perform numerical integration of multivariate Gaussian probability density.

Unfortunately, PSQI alone does not allow us to distinguish between the following cases of the index values 
being small: (a) predictive mean lies outside of the bounds and predictive variance is small (i.e., water is bad and 
we are certain about it); and (b) predictive mean lies inside of the bounds and predictive variance is large (i.e., 
water is good, but we are uncertain about it). To tackle this issue, we propose an additional confidence metric:

Confidence is calculated similarly to PSQI, although with an important difference—predictive distribution is 
centered within the bounds. This way, the confidence value is high, if the standard deviation is much smaller 
than the bounds and low, otherwise. One can note that PSQI and confidence values are interconnected, e.g., if 
the predictive distribution is already centered within admissible bounds, then, they match. Figure 3 shows PSQI 
and confidence calculations for a single modeled parameter ( M = 1).

The selection of weights wi can be governed by the hazardousness of deficiency or excess of individual prop-
erties. Unfortunately, it may be not very straightforward to choose particular values of the weights with such an 
approach. Instead, we use the model training results to determine the “importance” of model properties for PSQI 

(11)

PSQI(x∗) =

M
∑

i=1

wi · p̂i(x∗),

M
∑

i=1

wi = 1,

p̂i(x∗) =

∫ +∞

−∞

. . .

∫ bUi

bLi

. . .

∫ +∞

−∞

p̂(z | x∗)dz1 . . . dzM ,

(12)

conf (x∗) =

M
∑

i=1

wi · q̂i(x∗),

M
∑

i=1

wi = 1,

q̂i(x∗) =

∫ +∞

−∞

. . .

∫ bUi

bLi

. . .

∫ +∞

−∞

q̂(z | x∗)dz1 . . . dzM ,

q̂(z | x∗) = N

(

(bL + bU )/2, �̂(x∗)
)

.
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computation. During training, we apply five-fold cross-validation and select the best model based on average 
R2-scores for each modeled property. It is worth noting that R2-score computed in transformed and original 
measurement space is different due to the non-linear nature of transformation (see in “Data normalization” 
section). Thus, we perform the model selection based on R2 computed in the original state space. For some of 
the properties the model can perform poorly and yield negative R2-score values, which implies that the simple 
mean has a better predicting capacity than the model. In this case, the properties with non-positive R2-scores 
of their predictive means and variances are replaced with respective dataset means and variances, and all their 
inter-parameter correlations are considered zero. Further, to deal with the discrepancy of prediction accuracy 
among different properties, we propose to compute weights from Eqs. (11) and (12) using R2-scores and softmax 
function:

where R2
i  denotes R2-score obtained for ith property during training. This way, we incorporate modeling accuracy 

into PSQI computations directly and reduce potential over- or under-estimations of the index. Moreover, it is 
still possible to incorporate ad-hoc importance of particular properties with an additional re-weighting.

Results
The source code, data, and results can be found in our repository67 with available interactive visualization via 
kepler.gl platform.

Experiment.  To apply and analyze the proposed approach we used a dataset obtained from a large environ-
mental investigation in the New Moscow area, Russia. Firstly, we modeled spatial distribution of multiple avail-
able parameters, Alkalinity, Hardness, Mineralization, pH, ions of sodium (Na), potassium (K), calcium (Ca), 
magnesium (Mg), manganese (Mn), iron (Fe), copper (Cu), nickel (Ni), chrome (Cr), zinc (Zn), bicarbonate 
(HCO3 ), ammonium (NH4 ), nitrate (NO2 ), nitrite (NO3 ), chloride (Cl), orthophosphate (PO4 ), and sulfate 
(SO4 ), implementing multi-task GPR framework (see in “Gaussian process regression” section).

To avoid serious over-fitting during the training phase, we bounded the corresponding length-scales of the 
mixture components within [0.1, 100] interval. We trained several models with different number of mixtures Q 
(from 1 to 5) in the spatial kernel (see Eq. 8) and different ranks r (3, 5, 7, 10, 15) of the inter-feature covariance 
matrix Kf  (see Eq. 7). To select the best model, we considered prediction accuracy only for 20 components, 
except for Cr as it yielded very poor results for every model. Figure 4 shows the average R2-score over every 
kept component and split for each model for different values of Q and r. It can be seen, that increasing model 
complexity does not necessarily lead to model improvements, as it can bring about over-fitting. Moreover, it 
typically causes time-performance degradation. The best model corresponds to a single mixture component and 
rank-10 covariance matrix. Training of the best model took 6.8 s, whereas evaluation over test data took 0.6 s.

Modeling.  Figure 5a illustrates per-parameter performance with average, min, and max values of R2-score 
over splits for different properties obtained using the best selected model. We can see that some of the proper-
ties were predicted very poorly, such as Cr, Fe, Ni, Cu, NH4 , NO2 with the best average score of 0.635 for SO4 . 
One of the reasons for the low accuracy may be a high level of noise in the data. It is accounted in the model 
and estimated during the training phase as an additive Gaussian component with the covariance matrix D from 
Eq. (4). Large noise values tend to correspond to a poor fit of the model given the training data for a particular 
water property. Unfortunately, it is not possible to illustrate the noise values in the original state space straight-
forwardly. The reason is that the modeling is done in normalized parameter state space (see in “Data normaliza-
tion” section), therefore, in the original space normal noise is not obliged to be normal anymore. We illustrate 
it with Fig. 5b in a more comprehensive way, dividing the inter-quartile range for each noise component by the 

(13)wi =
exp

(

max(R2
i , 0)

)

∑M
i=1 exp

(

max(R2
i , 0)

) ,

Figure 3.   Example of PSQI (left) and confidence (right) calculation procedures for a single parameter. Dotted 
vertical lines denote admissible bounds bL and bU , green and blue solid lines denote obtained predictive 
distribution and its centered variant, respectively. Both PSQI and confidence values are calculated as the area 
under the respective distribution curves between the bounds.
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respective normalized normative range. For water properties without established restrictions, i.e., K, HCO3 , Ca, 
relative noise is zero, and for poorly modeled properties relative noise is very high.

As a “side-effect” of the model construction we obtained the optimized Kf  covariance matrix describing 
interconnections of water properties, for which, corresponding correlation matrix is shown in Fig. 6. General 
characteristics such as Alkalinity, Hardness and Mineralization rates are highly correlated with HCO3 , Ca, Mg, 
correlation coefficients ( ρ ) lay in diapason from 0.63 to 0.99, while the presence of SO4 mostly correlates with 
ions of Na, Mg, correlations are 0.79 and 0.65, respectively. Apart from that, highest correlations (more than 0.6) 
are observed in pairs: ρ(Cr & Fe) = 0.81, ρ(Cr & Cu) = 0.73, ρ(Cr & Ni) = 0.75, ρ(Cr & Mn) = 0.74, ρ(Cr & K) = 
0.68, ρ(NH4 & Fe) = 0.63, ρ(Cu & Ni) = 0.85, ρ(Cu & Zn) = 0.77.

PSQI.  In order to calculate the PSQI values, we have used admissible bounds reflected in local regulations of 
the Russian Federation (see Table 1). Some of the parameters do not have any regulatory restrictions (Ca, K and 
HCO3 ), thus, we excluded them from the calculation of PSQI to avoid overestimation. As could be noted earlier 
from Fig. 5, the prediction quality of our model differs across the properties and for some of them even yield 
negative R2-scores. Calculation of PSQI at a single point comprises two steps: (a) evaluation of the predictive 
distribution; (b) computations from Eqs. (11) and (12) (see in “Probabilistic substance quality index” section). 
We chose the best performing model during the validation stage, fixed all of its hyper-parameters, and used the 
whole dataset to make predictions at locations of interest. They were uniformly selected across the New Moscow 
region with 100 m2 resolution, giving 151 447 points. The evaluation of the predictive distribution took 5.8 hours 
with approximately 130 ms per point. The subsequent computation of PSQI took only 95 seconds, which can be 
considered negligible. Figure 7 shows the spatial distribution of PSQI values obtained from predicted distribu-
tions, where outlined points denote collected samples. To additionally validate that PSQI indeed corresponds 
to the fraction of measured parameters being in admissible bounds, we, (i) evaluated PSQI at each sampling 
location, (ii) calculated such fraction directly for each measurement, and finally (iii) computed Pearson correla-
tion coefficient between them, resulting in the reasonably large value of 0.68. The spatial distribution of PSQI 
confidence appeared to be of no practical interest, due to its very small scatter from 0.935 to 0.956 with 55% 
points yielding values less than 0.936.

Discussion
A typical modeling task consists of several pre-processing steps, one of which may be dimensionality reduction 
used to disregard the non-informative features or find the most “independent” combinations of the features 
to build the model for. It may help to decrease the computational complexity, but requires a careful dataset 
pre-processing and leads to information losses. Multi-task GPR allows to perform simultaneous geospatial 
modeling and capture the inter-feature dependencies while being able to control complexity using parametriza-
tion techniques. However, the computational overhead may reach as much as O(N3M3) , thus, requiring further 
considerations of performance improvements50,51,68–71.

One of key issues for geo-spatial modeling is the model construction process itself. On the one hand, manual 
selection of the kernel function based on domain knowledge allows to adapt to different areas of application. On 
the other hand, it limits automatization and scalability of the modeling significantly and causes some difficulty 
for integrating it into support-decision systems. Spectral Mixture Kernel facilitates the task of model construc-
tion, giving the ability to approximate arbitrary stationary kernels and control the accuracy with the number of 
mixtures. Since the number of mixtures is discrete, it can not be effectively optimized using MLE. In this case 

Figure 4.   R2-score averaged over every split and well-modeled property (left) and complete training time of 
a model in seconds (right) for different numbers of mixture components Q and ranks r of the inter-feature 
covariance matrix Kf  . Increase in number of mixtures leads to over-parametrization and degradation in both 
accuracy and computational speed. Whereas, increase of the rank improves accuracy with a reasonable increase 
of computational time.
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multiple models (for the different number of mixtures) can be trained and compared using the Cross-Validation 
technique to pick the best overall solution. However, the increase in the model complexity may lead not only to 
accuracy improvements, but on the contrary to the over-parametrization and degradation of both computational 
speed and the quality of predictions. Therefore, effective model construction still requires thorough consideration 
of both domain knowledge and the dataset structure.

Freshwater characteristics usually depend on various factors such as the intensity of geological and hydro-
geological settings due to dissolution processes and ion exchanges; seasonal fluctuations and climate change 
in global, being also affected by anthropogenic loads72. The modeled properties show reasonable correlations 
(Fig. 6), adequate for the natural freshwater resources and explainable for those influenced by urbanization 
and agricultural activity widespread across the territory of sample net. Ions of HCO3 , Ca, Mg, SO4 , Na, Mg, 
being major macro constituents, are always presented in groundwater, their concentrations depend mostly on 
the mineral composition of rocks, although surrounding lands as well73. The presence of nitrogen forms in the 
ground and surface water can accompany the agricultural and landfill sites, relating to the migration of prod-
ucts of fertilizers, pesticides or domestic sewage decay74–77. The observed correlations between NH4 , NO2 , NO3 
are ranged according to the stages of oxidation transformation of NH4 . Additionally, substantial correlations 

Figure 5.   Modeling results.
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between Cr, Fe, Cu, Ni, Mn, K, as well as between PO4 and K also often are explained by the migration of ferti-
lizers’ degradation residuals across the landscape and into water sources. Apart from that, high intercorrelation 
between trace elements in the water samples can be linked to the objects with a high pollution potential, such as 
landfills, transport systems, industry. Among them, Ni demonstrates a remarkable negative correlation of -0.52 
with pH, which can be explained by the reduced migration ability in alkaline conditions and can be supported 
by the noticeable correlation of -0.48 between pH and Alkalinity.

Although more sophisticated variations of WQI have been recently proposed (e.g. based on multi-criteria 
decision analysis (MCDA)28, entropy-weighted indices30, modified by principal component analysis for optimized 
parameter selection29), most of the existing WQI solutions have limitations, e.g. low independence of expertise 
and, as a consequence, site and case specificity as well as low robustness. In general, estimation of WQI includes 
the following steps: scaling of the selected parameters if they have different dimensions; selection of the most 
important parameters according to some rule, including an a priori knowledge; determining the relative weight of 
each parameter; calculating the sub-index of each parameter from the relative weight, and, finally, summarizing 
the results and determining the quality rating scale78–80. However, subjective judgments may cause certain confu-
sion, e.g., in the determination of parameters importance, in the choice of the weight values for each parameter, 
in comparing the sum with expert-opinion-based ranges, as well as different limits scales of parameters.

As compared to the methodologies discussed above the proposed PSQI is directly linked to the established 
water quality guideline standards for each characteristic itself. PSQI does not rely on the subjective judgments 
about parameters’ importance neither on the structure of the input data. Additionally, PSQI covers admissible 
limits not only as single values, e.g., when properties must be lower than specific upper bound, but allows to 
consider an optimal range, such as for pH or alkalinity. This is an important improvement of the currently used 
techniques and it makes the proposed solution applicable for the assessment of other environmental media, 
e.g. in the case of soils favorable content of macro and micro-nutrients or physical properties are expressed as 
optimum ranges81,82.

Materials
Study area.  The data was collected in the 2017–2018 years. A detailed description of the territory and the 
sample net is provided in Shadrin et al83. In a nutshell, the sample net is mostly located across the New Moscow 
region, Russia. According to the official statistics and research reports New Moscow is characterized by the rapid 
rise of both urban areas and density during the last 10 years84,85. The New Moscow is located close to the bottom 
boundary of southern taiga, in the Central European part of Russia (55◦ N, 37◦ E) and extends over 1480 km 2 
in area. The mean annual temperature of this region is about 3-4◦ C. The territory includes all of the common 

Figure 6.   Pearson correlation matrix for the modeled properties derived from the optimized Kf  covariance 
matrix. Yellow (dark blue) color denotes positive (negative) correlation, whereas wide (narrow) boxes represent 
strong (weak) correlation.
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Figure 7.   Geo-spatial map of predicted PSQI values. Dark violet color represents low PSQI values, whereas 
light yellow - high PSQI values. Outlined points are sampled measurements with color representing the fraction 
of properties that appear to be in admissible bounds. The map was created with Kepler.gl platform (v2.5.1).

Table 1.   List of parameters of study dataset and their basic statistics: minimum (Min.), first quartille (1st 
Qu.), median, mean, third quartile (3rd Qu.), maximum (Max.) and normative range, represented according 
to sanitary regulations in Russia.

Parameter Dimension Min. 1st Qu. Median Mean 3rd Qu. Max. Normative range

pH – 5.50 6.73 7.10 7.04 7.40 8.40 6–9

Alkalinity mg-eq/L 0.50 3.45 4.50 4.68 5.84 12.00 0.5-6.5

Hardness mg-eq/L 0.60 4.20 5.60 5.74 6.90 21.90 7

Mineraliz mg-eq/L 37.00 281.80 366.00 402.60 481.00 1586.00 1000

Ca mg/L 8.85 63.60 82.17 85.74 101.90 340.00 –

Mg mg/L 1.48 12.01 16.81 17.67 22.04 60.44 50

Na mg/L 0.00 9.99 16.19 26.22 31.22 245.00 200

K mg/L 0.00 1.09 2.59 8.56 6.94 181.80 –

NH4 mg/L 0.00 0.00 0.06 0.54 0.40 38.00 2

HCO3, mg/L 31.00 210.00 275.00 285.70 356.20 732.00 –

Cl mg/L 0.00 12.26 26.07 53.96 59.29 748.41 350

NO3 mg/L 0.00 5.18 17.16 27.20 37.61 352.81 45

NO2 mg/L 0.00 0.00 0.00 0.02 0.00 2.25 3

PO4 mg/L 0.00 0.00 0.00 0.35 0.00 15.32 3.5

SO4 mg/L 0.80 20.53 34.08 40.44 52.20 246.14 500

Cr mg/L 0.00 0.00 0.00 0.00 0.00 0.04 0.05

Cu mg/L 0.00 0.00 0.00 0.00 0.00 0.13 1

Fe mg/L 0.00 0.04 0.14 0.34 0.32 18.52 0.3–1

Mn mg/L 0.00 0.00 0.01 0.06 0.04 3.12 0.1

Ni mg/L 0.00 0.00 0.00 0.00 0.00 0.27 0.1

Zn mg/L 0.00 0.01 0.04 0.15 0.11 4.90 5
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types of land-uses, including urban fabric, forests, and green urban areas, arable lands, industrial cites. The pre-
dominant types of natural vegetation are coniferous and broad-leaved forests, while agricultural lands include 
pastures and arable land mostly growing feed crops and cereals86. The mean temperature in the coldest month of 
the year (January) ranges between -9.5◦ C and -11.5◦ C, while in the warmest month, July, mean temperatures 
are between +17◦ C and +18.5◦ C. The average annual precipitation is approximately 400-500 mm, with around 
two-thirds by rainfall and the rest by snow, according to recent observations from weather stations’ net across 
the territory (available at https://​www.​ncdc.​noaa.​gov/​cdo-​web/​datat​ools/​finds​tation). The territory has a plain 
topographic relief, and the bedrock consists of glacial and fluvioglacial loams and sands with the inclusion of 
sandy alluvial deposits.

Dataset description.  The analytical samples were collected from different sources of freshwater, namely: 
wells, rivers, and springs from the territories of private households. Some of the sample points included the rep-
licated measurements, which have been taken into account at both modeling and results’ interpretation stages. 
Overall, the dataset includes 1569 samples at 460 unique points, each sample consists of longitude, latitude, and 
list of chemical compounds content and properties, commonly used for water quality assessment. The norma-
tive ranges for measured properties are given according to the Russian regulation documents—SanPiN (Sani-
tary Rules and Norms), number 1.2.3685-21 being in force at the time of the manuscript preparation. These 
values were given as an example for study support and can be changed according to any other guideline source. 
Although being measured, Hg, Cd, Co, Pb were eliminated from further work as having very low variability 
across the dataset. The data points sampled too far from the main research area were removed. Finally, for fur-
ther modeling, we used 1526 data vectors of 21 properties, namely Alkalinity, Ca, Cl, Cr, Cu, Fe, HCO3 , Hard-
ness, K, Mg, Mineralization, Mn, NH4 , NO2 , NO3 , Na, Ni, PO4 SO4 , Zn, pH (see Table 1).

Code availability
The source code, data, and results are provided in our publicly accessible repository67 with available interactive 
visualization via kepler.gl platform and step-by-step instructions.
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