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Background: Ginseng (Panax ginseng Meyer) is one of the world’s most valuable medicinal plants with
numerous pharmacological effects. Ginseng has been cultivated from wild mountain ginseng collections
for a few hundred years. However, the genetic diversity of cultivated and wild ginseng populations is not
fully understood.
Methods: We developed 92 polymorphic microsatellite markers based on whole-genome sequence data.
We selected five markers that represent clear allele diversity for each of their corresponding loci to
elucidate genetic diversity. These markers were applied to 147 individual plants, including cultivars,
breeding lines, and wild populations in Korea and neighboring countries.
Results: Most of the 92 markers displayed multiple-band patterns, resulting from genome duplication,
which causes confusion in interpretation of their target locus. The five high-resolution markers revealed
3 to 8 alleles from each single locus. The proportion of heterozygosity (He) ranged from 0.027 to 0.190,
with an average of 0.132, which is notably lower than that of previous studies. Polymorphism infor-
mation content of the markers ranged from 0.199 to 0.701, with an average of 0.454. There was no
statistically significant difference in genetic diversity between cultivated and wild ginseng groups, and
they showed intermingled positioning in the phylogenetic relationship.
Conclusion: Ginseng has a relatively high level of genetic diversity, and cultivated and wild groups have
similar levels of genetic diversity. Collectively, our data demonstrate that current breeding populations
have abundant genetic diversity for breeding of elite ginseng cultivars.
� 2019 The Korean Society of Ginseng. Publishing services by Elsevier B.V. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Ginseng (Korean ginseng or Asian ginseng, Panax ginseng
Meyer), which belongs to the Araliaceae family consisting of about
1,500 species, has been an important medicinal plant in North-
eastern Asia for centuries [1,2]. This perennial plant is well known
for its remarkable pharmacological effects including improving the
cardiovascular [3] and immune systems [4], prevention of
Alzheimer disease [5], and functioning as an anticancer agent [6].
Because of its multifunctional therapeutic effects, ginseng has been
cultivated continuously as a high-value crop for hundreds of
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years and has recently attracted attention in international markets
[7]. The therapeutic effects have led many research studies to study
the efficacy of its medicinal compounds, but fundamental breeding
and genetic studies lag behind this efficacy research. Increased
interest in ginseng genomics has recently led to reports of the
karyotype [8,9], genome structure and characteristics [10,11],
transcriptome profile [12], and evolutionary model [13].

Ginseng grows slowly (wfour years/generation) and yields few
seeds (w40 seeds/plant), which makes hybridization breeding
difficult [14]. It is also sensitive to environmental factors such as
light and soil moisture, so maintaining individual plants requires
titute, and Research Institute of Agriculture and Life Sciences, College of Agriculture
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Table 1
Summary of 147 P. ginseng germplasms used in this study.

Serial numbers Germplasm type Number of germplasms Remarks

1e14 Korean cultivar 14 Registered in Korea Seed & Variety Service
15-118 Breeding line 104 Bred and maintained in the Rural Development Administration, Korea
119-121 Japanese cultivar 3 Collected from Japan (cv. Mimaki)
122-144 Korean wild collection 23 Collected from various areas in Korea
145-147 Russian wild collection 3 Collected from Vladivostok, Russia
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considerable effort. In addition, ginseng has a large genome size,
estimated to be 3.6 Gbp [15], and complex genome structure, which
resulted from recent allotetraploidization and subsequent rapid
amplification of diverse repetitive sequences such as retro-
transposons [10,16]. Owing to these genome complexities, devel-
opment of DNA markers for ginseng is difficult. Most simple
sequence repeat (SSR) markers used in previous studies showed
multiband patterns, which cause confusion in the interpretation of
the target locus [17,18]. These problems result in a need for more
accurate and useful marker development in ginseng breeding
research.

Crop improvement is the objective of plant breeding research,
and diversity studies using various genetic resources support
exploration of potential genetic resources. Genetic diversity of
germplasms can be investigated by numerous techniques,
including analysis of morphological and agricultural traits,
isozymes, biochemical characteristics, composition of
metabolites, and allele analysis using DNA markers. Of those
techniques, DNA markers are the most reliable in distinguishing
the variation of alleles because they are not influenced by envi-
ronmental and physiological factors [19]. Specifically, micro-
satellites, also called SSRs, are distributed in most eukaryotic
genomes and have multiallelic forms that provide useful poly-
morphism information for a locus [20]. Moreover, because of
their high reproducibility and codominant properties, SSRs have
been broadly applied to diverse studies including phylogenetic
analysis [21], authentication of cultivars and related species [18],
construction of genetic maps [22], and analysis of genetic
diversity [23].

Most of the ginseng cultivars registered in Korea have been bred
by selection of individual plants from arable fields of mixed local
landrace population [24]. Although the registered cultivars have a
generally uniform phenotype, relatively higher heterogeneity is
observed in ginseng compared with other annual crops because it
takes so long to develop pure inbred lines by self-pollination. For
example, it takes at leastw32 years to develop eight generations of
a single-seed descent self-pollinated progeny. Consequently,
ginseng germplasms are expected to be highly diverse and het-
erogeneous. Although several studies have been performed to
analyze genetic diversity among accessions, only small populations
were used [17,25].

In this study, a total of 92 polymorphic microsatellite markers
were developed based on ginseng whole-genome sequence data.
Five markers with high-resolution allele diversity for a single locus
were selected and used to investigate the genetic diversity of 147
ginseng genetic resources including cultivated and wild pop-
ulations. The relationship between cultivated and wild groups was
elucidated in more detail than previous studies from this compre-
hensive analysis of diversity in various ginseng resources. These
results will provide valuable understanding about the genetic
diversity and relationships between ginseng populations. The SSR
markers developed here will be useful for further research
including analysis of the population structure, genetic map con-
struction, seed purity testing for specific cultivars [26], and marker-
assisted selection for breeding.
2. Materials and methods

2.1. Plant material and DNA isolation

A total of 147 ginseng individual plants were used for analysis
of genetic diversity, including various cultivars, breeding lines,
and wild collections (Table 1; Supplementary Table 1). Among
these resources, 14 cultivars and 104 breeding lines of ginseng
were provided from the Rural Development Administration
(Eumseong, Korea), and three “Mimaki” cultivars originating in
Japan were collected from the research field of Seoul National
University (Suwon, Korea). Twenty-three wild collections were
collected from Hwacheon, Hamyang, and Yeongjongdo in Korea,
and the remaining three wild resources were collected from
Vladivostok, Russia.

The fresh leaves were frozen in liquid nitrogen and ground using
a mortar and pestle. Genomic DNA was isolated through modified
cetyltrimethylammonium bromide methods [27]. The quantity and
quality of the extracted DNA was measured using a NanoDrop ND-
1000 (Thermo Scientific Inc., Wilmington, DE, USA). For polymerase
chain reaction (PCR) analysis, the DNA concentration of each
sample was adjusted to 10 ng/mL.

2.2. Microsatellite primer design

Scaffold sequences generated from P. ginseng cv. Chunpoong
(CP) as a part of the ginseng genome project were used for devel-
opment of microsatellites [15]. Assembled sequences of longer than
200 Kbp were selected, and SSR motifs inside these long sequences
were explored using the Pear script Microsatellite identification
tool (http://pgrc.ipk-gatersleben.de/misa/misa.html) with default
parameters. Primer pairs of 23 to 28 nucleotides were designed in
the regions flanking the SSR motifs using the Primer3 version 0.4.0
web program (http://bioinfo.ut.ee/primer3-0.4.0/). The PCR prod-
uct size was adjusted to be between 150 and 500 bp.

2.3. PCR amplification and electrophoresis

PCR amplification was carried out in a 25-mL volume con-
taining 1U Taq polymerase, 1 � reaction buffer, 0.2 mM dNTPs,
and 0.2 � Enhance solution (Inclone Biotech, Yongin, Korea), 20
ng genomic DNA, and 10 pmole of each primer. The following
thermal cycle conditions were used: 10 min at 94�C; 35 cycles of
20 s at 94�C, 20 s at 54�C, and 20 s at 72�C; and 7 min at 72�C for
final extension. The PCR products were separated using 1%
agarose gel to confirm amplification. The polymorphism of
microsatellites and genotype of ginseng genetic resources was
identified by electrophoresis for 2 hours using 3% agarose and
12% nondenaturing polyacrylamide gels. The gels were stained
with ethidium bromide and destained for 15 min with distilled
water. The products were visualized under UV light. In the case
of the gws1070 marker, amplified fragments were separated on a
Fragment Analyzer� 96 platform that has an automated capillary
electrophoresis system using the dsDNA 905 Reagent Kit
(Advanced Analytical Technologies Inc., Ankeny, IA, USA), and the
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Table 2
Five high-resolution SSR markers used for diversity analysis.

Marker name Repeat motif Primer sequence (50 -> 30) Melting temperature (�C) Product size (bp) Target genome
sequence position1

gws218 (CCTTTTT)n F TCAAATAATCATATCACACCCATCA 60.3 130 - 160 S Pg_scaffold0784
R ACCAAAATAAAGATTAGCGACAATG 59.8 P 259,244 - 259,376

gws450 (CCACAA)n F TGGTAATAGTTGAGACAAAATTGCAT 60.2 190 - 250 S Pg_scaffold1503
R GGTTTGTTCATTGTATATGCTCCTG 61.0 P 193,908 e 194,098

gws454 (ATAG)n F AAAGGAATACAAGAAAGAGGGAGAA 60.0 100 - 130 S Pg_scaffold3767
R TAAAGAATTTGGATCCACCTACAAA 60.1 P 30,965 - 31,069

gws936 (AGGCAGA)n F AGAGTAGCAGACTAGCAGTGGAGAG 59.9 160 - 190 S Pg_scaffold2001
R TGTTCTTTTAGGCATTCGGTATGTA 61.0 P 458,078 e 458,257

gws1070 (GAAGCAT)n F TTCCAAACATAAAAGAAAACTGACC 59.8 230 - 290 S Pg_scaffold1638
R GTCTTGAAAACTTACCGAATTGAAA 59.9 P 69,551 e 69,790

F, forward; P, position; R, reverse; S, scaffold name; SSR, simple sequence repeat.
1 Target genome sequence position was estimated based on the published genome assembly sequence of P. ginseng cv. Chunpoong [15].
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genotype of each samples was confirmed using PROSize� 2.0
version 1.3.1 software included in the analyzer.

2.4. Microsatellite selection and analysis of genotyping data

Two main cultivars, cv. CP and cv. Yunpoong, were used in
prescreening all primers for polymorphism. Among the confirmed
polymorphic microsatellites, five high-resolution markers were
selected for genetic diversity analysis of the 147 individuals
(Table 2). The genotype of each locus was determined by precise
manual verification of several repetitions (Supplementary Table 1).
The number of alleles and genotypes, major allele frequency (MAF),
gene diversity (GD), proportion of heterozygosity (He), poly-
morphism information content (PIC), and Nei’s genetic distance
[28] of each microsatellite locus were calculated using a Power-
Marker version 3.25 program [29]. Phylogenetic analysis between
ginseng germplasms was carried out based on Nei’s genetic dis-
tance and the unweighted pair group method with arithmetic
mean using the MEGA 7.0 program [30].
Fig. 1. Representative genotypes in each locus between the cultivated and wild ginseng grou
the top of bands represent the genotype determined for each sample. The brown box arou
C, cultivated ginseng group; W, wild ginseng group.
3. Results and discussion

3.1. Development of microsatellites in polyploid ginseng

A ginseng reference genome assembly was recently published,
composed of 3.0 Gbp from 9,845 scaffolds using the CP cultivar [15].
This genome assembly was used in this work to identify SSR
motifs from the scaffold sequences. Polymorphic SSR markers
were identified by screening for polymorphisms between CP and
Yunpoong cultivars. Out of a total of 1,215 primer pairs containing
various SSR motifs, only 92 SSRs were verified to show poly-
morphism between the two cultivars (Supplementary Table 2). The
polymorphism rate was estimated at 7.57%, lower than that of other
plants [31,32] but similar to previous research on ginseng [33].

Many of the 92 polymorphic markers showed complex
multiple-band patterns, which makes it difficult to identify geno-
types when applied to large germplasm collections (Supplementary
Table 2). Consequently, we selected five high-resolution markers
that distinguish genotypes for their corresponding single locus. The
ps. (A) gws218, (B) gws450, (C) gws454, (D) gws936, and (E) gws1070. The characters at
nd the upper bands in (A) gws218 represents the target locus.



Fig. 2. Intraspecies diversity among 147 ginseng germplasms identified by the gws936 marker. Each sample is represented by the abbreviation defined in Supplementary Table 1.
The label at the bottom of the bands indicates the genotypes of each sample.

Table 3
Characteristics of the five high-resolution SSR loci among ginseng germplasms.

Marker name Number
of alleles

Number of
genotypes

MAF GD He PIC

147 ginseng germplasms
gws218 3 4 0.878 0.218 0.027 0.199
gws450 3 6 0.697 0.462 0.122 0.410
gws454 3 6 0.534 0.597 0.163 0.526
gws936 3 6 0.575 0.527 0.156 0.432
gws1070 8 20 0.435 0.734 0.190 0.701
Mean 4 8.4 0.624 0.508 0.132 0.454
121 cultivated individuals only
gws218 3 4 0.880 0.214 0.025 0.197
gws450 3 6 0.669 0.491 0.140 0.436
gws454 3 6 0.550 0.593 0.165 0.524
gws936 3 5 0.566 0.515 0.149 0.409
gws1070 8 18 0.467 0.711 0.198 0.677
Mean 4 7.8 0.626 0.505 0.136 0.449
26 wild individuals only
gws218 2 3 0.865 0.233 0.038 0.206
gws450 3 3 0.827 0.292 0.038 0.259
gws454 3 6 0.462 0.582 0.154 0.491
gws936 3 6 0.615 0.544 0.192 0.484
gws1070 8 9 0.288 0.802 0.154 0.774
Mean 3.8 5.4 0.612 0.491 0.115 0.443

GD, gene diversity; He, heterozygosity; MAF, major allele frequency; PIC, poly-
morphic information content.
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representative genotypes of each locus are shown in Fig. 1. Among
the selected markers, gws218 showed additional bands around 100
bp, common to all samples (Fig. 1A). This phenomenon was
frequently observed in previous studies on ginseng SSR markers
[17,18,33,34] and did not disappear after altering PCR conditions and
extending primer lengths. This characteristic confounds the inter-
pretation of allelic diversity for a marker as correct genotyping can
be confused by coamplification of other duplicated chromosomal
regions. Actually, previous works on ginseng have reported too
many alleles in a locus and high He values for SSR markers [25,35].
Because of the complex duplicated genome structure of ginseng, it is
necessary to use high-resolution markers that can clearly distin-
guish single target locus, as shown in this study.

3.2. Allele diversity among 147 ginseng germplasms

The genotypes of 147 ginseng germplasms were surveyed for
the loci of the five SSR primers (Fig. 2). Statistical analysis of each
locus was performed using the determined genotype data of each
individual to evaluate the intraspecific diversity (Table 3A; Fig. 3).
All five markers showed clear polymorphic amplification products
that provided unambiguous genotyping data for each individual. A
total of twenty alleles were identified, and the number of alleles per
locus ranged from three to eight. The four loci, gws218, gws450,
gws454, and gws936, had three alleles, whereas gws1070 had eight
different alleles among the 147 germplasms. The MAF at each locus
ranged from 43.5% for gws1070 to 87.8% for gws218. On average,
62.4% of the germplasms contained a commonmajor allele. The GD
of each locus broadly ranged from 0.218 to 0.734, with an average of
0.508. The He of germplasms ranged from 2.7 % to 19.0 %, with an
average of 13.2%. The PIC value, which indicates the usefulness of a
marker, ranged from 0.199 to 0.701, with an average of 0.454.

Ginseng has abundant genetic diversity at polymorphic loci. All
five loci had more than three alleles, and most of the possible
heterozygous genotypes were observed. The MAF for the five loci
suggests that there is no predominant allele, but there is relatively
even allele distributionwithin the population. Moreover, GD values
were higher than 0.5 in the three loci, gws454, gws936, and
gws1070. Although ginseng had low frequency of SSR poly-
morphism compared with other plants, the polymorphic loci had
an abundance of intraspecies allele diversity [17,18]. The genetic
diversity may have originated from ecological characteristics of



Fig. 3. Genotype distribution of each SSR locus among 147 ginseng germplasms. Unidentified genotypes in each locus were not included in this graph.
SSR, simple sequence repeat.
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ginseng and its unique cultivation environment. Ginseng grows
very slowly (wfour years/generation); therefore, homogenization
of genotypes by self-pollination takes longer than that in other
annual plants. In fact, the registered cultivar showed approximately
10% of off-type alleles in previous research [17].

Markers with PIC values greater than 0.4 are usually consid-
ered informative for genetic studies [36]. Four of our five markers
had PIC values more than 0.4. In particular, gws1070 is regarded
as a “highly informative” marker. These markers could provide
helpful information for diversity analysis including construction
of a genetic map, quantitative trait mapping, and evolutionary
studies.

3.3. Paralogous targets derived from genome duplication result in
overestimation of heterozygosity

Of the 92 polymorphic markers identified here, 77 micro-
satellites (83.7 %) showed complex multiple-band patterns that
cause confusion in the interpretation of the genotype for the target
locus (Supplementary Table 2). In fact, several previous studies
have reported that ginseng has a heterozygosity of more than 0.5
[25,35]. However, in this study using single-locusmarkers, the He of
the population was determined to be 2.7e19.0%, which is lower
than that of previous reports. Most plants showed homozygous
genotype distribution for the microsatellite loci included in this
study. The markers with multiple bands must be handled carefully
because of the possibility of misinterpretation, wherein an inde-
pendent locus is obscured by the interference of paralog sequences
derived from different loci.

A multiple-band pattern is presumed to reflect the genome
structure. Recent studies have shown that P. ginseng has a complex
genome structure, derived from several rounds of whole-genome
duplication [8,10]. Because of the recent allotetraploidization,
most of the euchromatic regions are two copies with an almost
identical sequence [13]. This sequence similarity increases the
chance for coamplification of two paralogs that confuse correct
genotyping. Therefore, organisms such as ginseng with a complex
or polyploid genome structure require more careful approaches to
develop markers that have locus-specific amplification and
eliminate nontarget, paralogous, noisy regions [37].

3.4. Genetic relationship between cultivated and wild groups

Statistical analysis of diversity was carried out on 121
cultivated (Table 3B) and 26 wild ginseng groups (Table 3C). All
alleles were identified in both groups, with the exception of the
B allele of gws218, which was not identified in any wild groups
(Fig. 1). For three loci, gws218, gws454, and gws936, the ge-
notypes were evenly distributed within both groups. Although
the cultivated ginseng groups exhibited slightly more variations
than the wild groups, there was a similar pattern of variability
between the two groups (Table 3). Phylogenetic analysis
showed that wild and cultivated groups were intermingled
(Fig. 4). These results imply that there is no significant differ-
ence in genetic diversity between the wild and cultivated
ginseng groups.

Typically, higher genetic variations are identified in wild
populations compared with cultivated populations because of the
homogenizing effects of domestication [38,39]. However, in
ginseng, polymorphic alleles were evenly distributed in the two
groups evaluated. This phenomenon could be explained by
examining the cultivation process of the plant. In the domesti-
cation process, ginseng is cultivated from diverse collections of
wild mountain ginseng, and local landrace cultivars are main-
tained by bulky seed harvest [2]. These methods have maintained
the genetic diversity from the wild populations in cultivated
ginseng populations.

The preservation of genetic diversity in cultivated populations is
important because it allows breeders to ensure genetic resources
for crop improvement, adaptable to diverse environments and
climate changes [40]. This study found that ginseng had a high level
of intraspecific diversity in both groups, which means that the
cultivated ginseng populations and breeding collections have suf-
ficient diversity to be developed by further selection of agricultural
characteristics, such as in recently developed ginseng cultivars in
Korea [24,41].



Fig. 4. Genetic relationship among 147 ginseng germplasms including cultivated and wild groups. The phylogenetic tree was constructed using the UPGMA method by five SSR
markers. Abbreviations for each sample are described in Supplementary Table 1.
SSR, simple sequence repeat; UPGMA, unweighted pair group method with arithmetic mean.
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4. Conclusions

We developed 92 polymorphic SSR markers in ginseng and
selected five high-resolution SSR markers that show distinguish-
able alleles for single target locus. Genetic diversity analysis
including 147 ginseng genetic resources showed a high level of
polymorphism and diversity in the populations. Previous studies of
ginseng variability may have overestimated the He value because of
duplex bands that resulted from the duplicated genome structure.
In addition, statistical and phylogenetic analysis demonstrated that
there are no significant differences in genetic diversity between the
wild and cultivated ginseng groups. This indicates that abundant
genetic variation has been maintained in local landrace and
breeding populations. These results extend our understanding of
the genetic structure of populations and domestication in ginseng.
Furthermore, the markers developed here will provide valuable
information for further research including diversity studies, genetic
mapping, cultivar authentication, seed purity testing for a cultivar,
and marker-assisted selection.
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