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Abstract

To identify genetic risk loci for major depressive disorder (MDD), two broad study design
approaches have been applied: (1) to maximize sample size by combining data from different
phenotype assessment modalities (e.g. clinical interview, self-report questionnaires) and (2) to
reduce phenotypic heterogeneity through selecting more homogenous MDD subtypes. The
value of these strategies has been debated. In this review, we summarize the most recent find-
ings of large genomic studies that applied these approaches, and we highlight the merits and
pitfalls of both approaches with particular attention to methodological and psychometric
issues. We also discuss the results of analyses that investigated the heterogeneity of MDD.
We conclude that both study designs are essential for further research. So far, increasing sam-
ple size has led to the identification of a relatively high number of genomic loci linked to
depression. However, part of the identified variants may be related to a phenotype common
to internalizing disorders and related traits. As such, samples containing detailed clinical
information are needed to dissect depression heterogeneity and enable the potential identifi-
cation of variants specific to a more restricted MDD phenotype. A balanced portfolio recon-
ciling both study design approaches is the optimal approach to progress further in unraveling
the genetic architecture of depression.

Introduction

The advent of the genomic era represents a turning point in unraveling the biological under-
pinnings of depression. The term depression, if not otherwise specified, is used throughout this
review in its broadest meaning, from relevant symptoms assessed via self-report methods to
clinical diagnosis ascertained by psychiatric interview. Specific definitions adopted in different
studies will be described when discussing the related results. The heritability estimate for major
depressive disorder (MDD), defined as psychiatric diagnosis established according to the cri-
teria based on the Diagnostic and Statistical Manual of Mental Disorders (DSM, American
Psychiatric Association, 2000, 2013) or the International Statistical Classification of Diseases
and Related Health Problems (ICD, World Health Organization, 2018), is around 40%
(Sullivan et al., 2000). Initial failures to reliably detect associations of single genetic variants
with MDD were attributed to underpowered studies with small sample sizes and to the clinical
heterogeneity of the psychiatric trait, further compromising the power of association studies.
Levinson et al. (2014) summarized the challenges facing the initial genome-wide association
studies (GWAS) of MDD and proposed two, non-mutually exclusive, strategies to overcome
them.

The first suggestion was to maximize the number of cases and controls, a strategy that has
been successfully applied to schizophrenia (Schizophrenia Working Group of the Psychiatric
Genomics Consortium, 2014) and many other complex diseases (Visscher et al., 2017). Due to
the higher prevalence and lower heritability of MDD, it was estimated that three to five times
as many cases would be required to detect the same number of genome-wide significant
single-nucleotide polymorphisms (SNPs) as compared to schizophrenia (Wray et al., 2012).
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The second proposed strategy was to enhance GWAS statistical
power by reducing heterogeneity through selecting clinically
more homogenous depression phenotypes.

In recent years, both strategies have been applied. To increase
power by increasing sample size, subjects with self-reported diag-
noses for depression and/or continuous measures of the whole
phenotypic range of depression were included in the analyses
(e.g. Wray et al., 2018). An advantage of this approach is that
this leads to an increased sample size without having to face the
logistical and financial challenges of collecting large clinical
MDD samples. However, the validity of this procedure has been
criticized (Abbasi, 2017). For example, it has been argued that a
self-reported clinical diagnosis cannot be transferred one to one
to a psychiatric assessment, resulting in the inclusion of misclas-
sified and/or clinically non-relevant cases.

To increase power by decreasing heterogeneity, studies have
been specifically designed to recruit depression cases with more
severe profiles (e.g. with recurrent MDD or with diagnosis
made in hospital settings) (CONVERGE consortium, 2015;
Pedersen et al., 2018). Other researchers have tried to decrease
heterogeneity by stratifying MDD patients according to relevant
clinical features, such as age of onset, symptom profiles, or post-
partum depression (Viktorin et al., 2016; Milaneschi et al., 2017;
Power et al., 2017). A relatively small number of replicated loci
have been identified in the studies that applied these procedures.

Greater awareness of the merits and pitfalls of both strategies is
instrumental for their effective application in the next generation
of studies aimed at advancing our understanding of the genetics
of depression. This review summarizes the evidence emerging
from the application of the two strategies in the context of large
genomic studies. After reporting the most recent findings, we
highlight the main strengths supporting their rationale and
major points of criticism, with a particular attention to methodo-
logical and psychometric issues. The review concludes with a dis-
cussion of future opportunities and challenges.

GWAS in depression

Table 1 gives an overview of all GWAS on depression that has been
published so far. The table is restricted to GWAS with a sample size
of at least 10 000, but a complete list can be found in the online
Supplementary material. For every study, details of the study popu-
lation and the used assessment instrument(s) are provided.
Different definitions of depression were used across different stud-
ies, based on clinical diagnosis, self-reported clinical diagnosis, or
self-reported symptom/questionnaire data. For example, the first
study that successfully identified genetic variants for depression
selected a population with a relatively homogeneous phenotype.
The CONVERGE consortium restricted the phenotype to recurrent
severe MDD (patients from clinical settings with at least two epi-
sodes) in Han Chinese women (5303 cases and 4337 controls).
Two independent and replicable genetic risk loci were significantly
associated with this phenotype (CONVERGE consortium, 2015).
Secondary analyses were restricted to cases who met the DSM-IV
criteria for melancholia (4509 cases and 5377 controls), a more
severe subtype of MDD (Kendler, 1997). Although this sample
was smaller, the association with the two significant variants was
found to be stronger. So far, these associations have not been iden-
tified in European samples (Major depression Working Group of
the Psychiatric GWAS consortium et al., 2013; Wray et al., 2018),
possibly because these variants occur at low frequency in indivi-
duals of European ancestry.

Another group of studies tried to capitalize on maximizing
sample size to identify significant genetic variants. For example,
in order to assemble very large samples to increase statistical
power, a number of collaborative studies combined data that relies
on instruments based on self-report, potentially resulting in large
differences in phenotypic depth among the different combined
samples. At the time of writing, one of the largest published
GWAS meta-analyses consisted of 135 458 cases and 344 901 con-
trols (Wray et al., 2018). The data structure included an ‘anchor
PGC29 cohort’ from the PGC combining 29 samples using mostly
standard methods for assessing lifetime MDD (i.e. personal
interviews by trained interviewers using structured diagnostic
methods). These data were combined with those of six ‘expanded’
cohorts that used different methods to identify clinically-significant
depression: deCODE, GERA, and iPSYCH used electronical
medical records, Generation Scotland structured diagnostic inter-
view for MDD, UK Biobank both self-report of symptoms or
help-seeking and electronic records, and 23andMe self-reported
clinical diagnosis or treatment by a medical professional.
Subjects meeting MDD formal clinical criteria and those self-
identified with minimal phenotyping were classified as cases of
a broader phenotype labeled ‘major depression’ (MD). The
GWAS identified 44 genome-wide significant independent loci
(Wray et al., 2018). More recently, this GWAS was combined
with the latest data released from UK Biobank, which included
a phenotype labeled ‘broad depression’ which was based on two
self-report questions on help-seeking for mental health difficul-
ties, totaling 246 363 cases and 561 190 controls (Howard et al.,
2019). This resulted in the identification of 101 independently
associated loci at a genome-wide significant level.

Studies on heterogeneity

With the exception of CONVERGE, no large GWAS has investi-
gated genetic risk factors of a more homogenous MDD definition,
but various studies have aimed at dissecting depression hetero-
geneity by analyzing existing large-scale genomics datasets. One
of the approaches used so far is to stratify cases along relevant
clinical features, which are then compared in terms of their gen-
etic profile to establish whether they form more homogenous
subgroups.

The selection of clinical features relevant for stratification, so far,
has been based on the results of family and twin studies.
Early-onset MDD, defined as MDD with the first episode taking
place before the age of 30 years, has been observed to be associated
with a higher risk of MDD in relatives, while late onset has been
related to a higher risk of vascular diseases in relatives (Kendler
et al., 2009). Furthermore, two major twin studies have found a
higher heritability for MDD in women than in men (approximately
40% v. 30% and 42% v. 29%, respectively) and clear evidence for
sex-specific genetic effects with an estimated genetic correlation
in liability to MD in men and women at approximately 0.55 and
0.63, respectively (Kendler et al., 2001, 2006). Moreover, unaffected
co-twins of patients endorsing atypical ‘reversed vegetative symp-
toms’ (e.g. hyperphagia, weight gain, and hypersomnia) had a
higher body mass index (BMI) (Kendler et al., 2009). Lastly, the
differential impact of environmental risk factors has been consid-
ered to be another major source of heterogeneity, as the variance
in liability to MDD has a comparatively large environmental com-
ponent (Sullivan et al., 2000).

Analyses based on GWAS results showed moderate to high
genetic correlations between subgroups of cases stratified
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Table 1. Overview of the number of significant loci and H2
SNP in genome-wide association studies on depression (sample size >10 000 subjects)

Study Population
Depression phenotype/sa

(main cohorts included)

Ascertainment

N Total N cases
N

controls
GWS
loci H2

SNP (S.E.)

Clinical
diagnosis/
diagnostic
interview

Self-reported
diagnosis/
treatment

Self-reported
questionnaires/

symptoms

Kohli et al.
(2011)

European MDD (MARS plus 6
additional replication
cohorts)

x 15 089 4088 11 001 0 *

Wray et al.
(2012)

European MDD (MDD2000 + plus 2
additional cohorts)

x 12 664 5763 6901 0 *

PGC-MDD
(2013)

European MDD (PGC-MDD) x 18 759 9240 9519 0 *

Hek et al.
(2013)

European Depressive symptoms
(CHARGE)

x 34 549 − − 0 *

CONVERGE
consortium
(2015)

Han Chinese
women

Recurrent MDD (CONVERGE) x 10 640 5303 5337 2 0.21 (0.030)

Okbay et al.
(2016)

European Depressive symptoms (UK
Biobank + PGC-MDD)

x x 180 866b 16 471 58 835 2 0.04 (0.004)

Hyde et al.
(2016)

European Major depression (23andMe
+ PGC-MDD)

x x 478 240 130 620 347 620 15 0.06 (*)

Direk et al.
(2016)

European Broad depression
meta-analysis of PGC-MDD
(2013) and Hek et al. (2013)

x x 70 017b 9240 9519 1 0.30 (0.040)

MDD x 18 759 9240 9519 0.21 (0.020)

Depressive symptoms x 51 258 – – 0.04 (0.010)

Power et al.
(2017)

European Age at onset stratified MDD: x 18 439 8920 9519

Late-onset (adult-onset)
MDD (PGC-MDD)

x ∼ 13 519
(octiles
5-8)

∼4000 9519 1 0.23 (0.046)

Milaneschi
et al. (2017)

European MDD (all cases) x 26 628 11 837 14 791 na 0.14 (0.08)

MDD with increased
appetite/weight

x 16 662 1871 14 791 0 0.11 (0.03)

MDD with decreased
appetite/weight

x 20 138 5347 14 791 0 0.11 (0.02)

MDD with no change in
appetite/weight (PGC29)

x 18 212 3421 14 791 na 0.08 (0.02)
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Hall et al.
(2018)

European Major depression (all cases) x x x 43 062 10 851 32 211 0 0.12 (0.02)

Recurrent major depression x x x 39 556 7345 32 211 0 0.12 (0.02)

Male major depression x x x 19 886 3852 16 034 1 0.13 (0.03)

Female major depression
(UK Biobank + Generation
Scotland)

x x x 23 169 6997 16 172 0 0.05 (0.03)

Peterson et al.
(2018)

Han Chinese
women

Recurrent MDD (all cases) x 9599 4785 4814 0 0.31 (0.037)

Recurrent MDD with
exposure to adversity

x 2628 1646 982 0 0.34 (0.159)

Recurrent MDD with no
exposure to adversity
(CONVERGE)

x 6971 3139 3832 3 0.38 (0.048)

Howard et al.
(2018)

European Help-seeking for mental
health difficulties (Broad
depression)

x 322 580 113 769 208 811 14 0.10 (0.004)

Probable major depression x x 174 519 30 603 143 916 2 0.05 (0.006)

MDD (ICD-coded) (UK
Biobank)

x 217 584 8276 209 308 1 0.10 (0.012)

Wray et al.
(2018)

European Major depression (PGC29 +
23andMe + UK Biobank +
Generation Scotland + 3
additional cohorts)

x x x 461 134 135 458 344 901 44 0.09 (0.004)

Li et al. (2018) European (n =
326 113) and
Han Chinese
women (n =
10 640)

Major depression
meta-analysis of Hyde et al.
(2016), Ripke et al. (2013),
and Cai et al. (2015)

x x 336 753 90 150 246 603 10 *

Dunn et al.
(2018)

Hispanic/
Latino

Depressive symptoms x 12 310 – – 0 0.04 (0.031)

Depressive symptoms
adjusted for anti-depressant
use

x 12 310 – – 0 0.03 (0.031)

Depressive symptoms
excluding anti-depressant
users (HCHS/SOL)

x 11 486 – – 0 0.04 (0.033)

Howard et al.
(2019)

European Major depression
meta-analysis of Hyde et al.
(2016), Howard et al. (2018),
and Wray et al. (2018)

x x x 807 553 246 363 561 190 101 0.09 (0.003)

Cai et al.
(2018)

European Help-seeking from
psychiatrist

x 333 412 36 286 297 126 5 0.13 (0.018)

Help-seeking from GP x 332 622 113 260 219 362 24 0.14 (0.008)

(Continued )
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according to the clinical features listed above. A genetic correl-
ation, commonly denoted as rg, represents a correlation between
the true effect sizes of SNPs affecting the different subgroups
(or two different traits). A high correlation implies that, on aver-
age, SNPs have directionally similar effects on the two subgroups
(see, e.g. Maier et al., 2018 for more details). In data from the
anchor cohort of the PGC, rg between early-onset and late-onset
MDD was approximately 0.99 (Power et al., 2017), and around
0.82 between MDD patients with atypical symptoms of increased
appetite and/or weight and those with more typical symptoms of
decreased appetite and/or weight (Milaneschi et al., 2017). In data
from CONVERGE, rg between MDD cases exposed to early stress-
ful life events and childhood sexual abuse and unexposed cases
was around 0.62 (Peterson et al., 2018).

However, the results of polygenic risk score analyses also indi-
cated genetic heterogeneity. In PGC data, cases with earlier-onset
MDD had a higher polygenic risk for schizophrenia and bipolar
disorder (Power et al., 2017). After stratification by age of
onset quantiles, one replicated genome-wide significant locus
for the oldest quartile (adult-onset, >27 years) was identified.
Furthermore, also in PGC data, MDD patients with atypical
increased or typical decreased appetite and/or weight were diver-
gent in the extent of overlap with genetic variants for immune-
metabolic features: only MDD with atypical symptoms showed
a specific overlap (rg = 0.53) with BMI (Milaneschi et al., 2017).
Compared to the control group, only depressed patients with
atypical symptoms carried significantly higher polygenic risk bur-
den for increased BMI, and circulating high levels of CRP, leptin,
and BMI-adjusted leptin. In stratified GWAS analyses, the direct
comparison between the two subgroups of cases yielded one
genome-wide significant association. Lastly, to estimate the degree
of heterogeneity due to exposure to adversity, the genomic rela-
tionship matrix (GRM) of the CONVERGE data was extended
to include an interaction with a measure of adversity exposure
(e.g. early stressful life events and childhood sexual abuse) in
the SNP-based heritability (h2SNP) estimation. The GRM estimates
the genetic relationship between individuals based on SNP infor-
mation and h2SNP denotes the variance explained by all SNPs used
in a GWAS in conventionally unrelated individuals (Yang et al.,
2017). Results suggested that 13.2% of MDD liability could be
attributed to genome-wide interaction with adversity exposure.
Furthermore, an adversity exposure-stratified GWAS comparing
MDD cases against controls detected three associated loci only
in participants with no history of adversities. Appropriate replica-
tion was however not feasible due to unavailability of samples
with similar features (Peterson et al., 2018). Sex-stratified analyses
in the UK Biobank and Generation Scotland: Scottish Family
Health Study (GS:SFHS) yielded a similar h2SNP estimate (∼0.2)
across males and females and showed no detectable discrepancies
in genetic overlap with health-correlated traits, but stratified
GWAS analysis revealed one, non-replicated, genome-wide sig-
nificant locus for MDD in male patients (Hall et al., 2018).

Another strategy to investigate heterogeneity is to apply an
analytical technique called Buhmbox, which aims to verify
whether the genetic correlation between two traits can be
explained by the presence of a subgroup in the first trait (i.e. het-
erogeneity) that is genetically similar to the second trait (Han
et al., 2016). This method was applied in preliminary analyses
on >30 000 samples from UK Biobank and GS:SFHS showing
that genetic correlations of MDD with high triglycerides, choles-
terol, and blood pressure might be explained by heterogeneity
among MDD cases. This provides further evidence for theTa
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presence of a subgroup of MDD cases in which metabolic altera-
tions may represent a specific pathophysiological pathway
(Howard et al., 2018).

Merits and pitfalls of the two approaches

The strategy of maximizing sample size by expanding the pheno-
type of MDD as defined by the DSM or ICD to include self-
reported diagnosis of depression and/or continuous measures of
depression is based on the assumption that the underlying liabil-
ity to depression is a normally distributed severity continuum in
the population – with MDD representing the extreme tail of this
distribution. The demarcation line that delineates MDD is thus
somewhat arbitrary and not being an entirely separate entity
that is in accordance with the ‘multiple-threshold model’ (Reich
et al., 1972), asserting that different syndromes reflect only differ-
ent levels of severity on a single dimension, not distinct etiologies.
Under this conceptualization, combining different measures of
depression, also when ‘sampled’ at different points in the under-
lying distribution (at the normal and at the clinical range) sub-
stantially increases the statistical power to detect common risk
variants. Evidence for the multiple threshold model was found
in a recent twin study showing that MDD and minor depression
(characterized by at least two but fewer than five of the symptoms
of MDD) lie on the same single dimension of liability with differ-
ent levels of severity (Corfield et al., 2017). It is important to note
that the study by Corfield et al. (2017) considered two similar
clinically-ascertained syndromes mainly differentiated by the
number of endorsed symptoms.

In contrast, it has been argued that depression diagnoses phe-
notypes obtained with clinical v. self-report assessment represent
different entities rather than different thresholds on the same
liability, and this is indicated by the difference in h2SNP estimates
for the different phenotypes. In particular, lower h2SNP estimates
obtained using self-report phenotyping have been considered as
a result of misclassification of subjects with other conditions
than depression (Cai et al., 2018). In the PGC GWAS (Wray
et al., 2018), h2SNP estimated on the liability scale for depression
varied from 0.26 in the GenScot cohort (clinically ascertained)
to 0.08 in 23andMe data (self-report), although the confidence
intervals largely overlapped. In a preliminary analysis of UK
Biobank data, Cai et al. (2018) reported an SNP-heritability of
26% for a DSM-based diagnosis of lifetime MDD derived from
an online Mental Health questionnaire, and lower h2SNP estimates
(<15%) for alternative definitions based on minimal phenotyping.
Previous results of the UK Biobank study (Howard et al., 2018) on
the other hand did not reveal highly divergent h2SNP between dif-
ferent depression phenotypes, with estimates of ∼10% for self-
report broad depression and ICD-9 or 10 coded MDD based on
hospital records. Note that the findings of lower heritability esti-
mates of MDD based on self-report symptom/questionnaire data
could possibly also be explained by an attenuation in heritability
estimates due to random noise (e.g. higher unsystematic measure-
ment error) resulting from a more noisy phenotype (van den Berg
et al., 2007; van der Sluis et al., 2010; Schwabe et al., 2014, 2019)
rather than from measuring a different phenotype.

Those in favor of the strategy of combining different depression
phenotypes consider the presence of a strong genetic correlation
between depression phenotypes measured with different instruments
as empirical evidence of the validity of this approach. For example, in
the PGC GWAS meta-analysis of major depression (Wray et al.,
2018), the genetic correlations for the clinically-ascertained

PGC29 cohort varied from 0.97 in the deCODE sample (includ-
ing cases from electronical medical records) to 0.67 in the
23andMe sample (self-report assessment) and the weighted
mean of all pairwise genetic correlations between cohorts was
high (weighted mean rg = 0.76, S.E. = 0.03). A formal test of het-
erogeneity between rg estimates was found to be statistically non-
significant, and the authors interpreted this result as an indication
of a strong overlap in the common genetic architecture of the dif-
ferent phenotypes supporting the comparability of assessment via
different measurement methods. Furthermore, Wray et al. (2018)
found very high genetic correlations (close to +1) between the
MD phenotype of their GWAS meta-analysis and two previous
GWAS that focused on current depressive symptoms measured
with self-report-based questionnaires. Similar high genetic
correlations between clinically defined cases and current symp-
toms in the general population have been reported for other dis-
orders such as ASD, ADHD, and OCD (Middeldorp et al., 2016;
Martin et al., 2018).

Nevertheless, others argue that the reported genetic correla-
tions may arise mainly from the overlap across different depres-
sion phenotypes of a large portion of non-specific liability to
poor mental health (Cai et al., 2018). The finding of high genetic
correlations with different traits such as neuroticism and anxiety
(Okbay et al., 2016; Cai et al., 2018; Wray et al., 2018) may be
interpreted as emerging from shared non-specific vulnerability,
while the multicomponent construct of MDD may be also influ-
enced by specific genetic risk factors. As a consequence, the broad
phenotype of MDD used in recent GWAS (Wray et al., 2018;
Howard et al., 2019) may result in a substantive increase of
power to detect shared genetic risk variants, but not be suitable
to detect specific risk factors for MDD (McIntosh et al., 2019).
Furthermore, the validity of interpreting the genetic correlation
as a parameter to establish equivalency between phenotypes has
been questioned. Some have highlighted the need to, instead,
focus on the more conservative alternative of using the squared
value (i.e. rg

2) reflecting the percentage of SNP effects on one
phenotype that can be explained by the SNP effects on other phe-
notypes (Cai et al., 2018).

Overall, the major point of concern raised about combining
different depression diagnosis phenotypes (e.g. clinical ascer-
tained diagnoses, self-reported diagnoses/treatment, or self-report
questionnaires) might not capture the same quantitative or quali-
tative psychopathological entity (see Fig. 1 for an illustration of
this issue).

Instead, MDD might underlie a distinct construct and mis-
classification can occur when participants state ‘yes’ to the ques-
tion whether they have ever experienced a depression without ever
having fulfilled the criteria for MDD. Their symptoms, for
instance, may better fit with conditions with overlapping clinical
features, such as dysthymia, anxiety disorders, somatic illnesses,
substance use, and even normal bereavement. An in-depth clinical
assessment, through detailed differential diagnoses probing, will
provide different results than a self-reported clinical diagnosis
(e.g. endorsing the question ‘Have you ever been diagnosed for
depression’) or a diagnosis based on a questionnaire (e.g. a self-
reported symptom score based on a cut-off). Similarly, the self-
report of the indication for antidepressant use may represent a
poor proxy for actual MDD. These concerns are strengthened
by the results of some studies, showing for instance poor agree-
ment between self-report v. psychiatry-lead interviews (Eaton
et al., 2000), or that the majority of US adults that are or were
treated with antidepressants did not actually screen positive for
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MDD (Olfson et al., 2016). Furthermore, differences between
clinical interview and self-report measures may emerge from the
different timeframe of the assessments: while lifetime is the time-
frame for clinical diagnosis, measures based on self-report often
focus on current symptoms.

One final issue closely related to the possibility of misclassifi-
cation is that combining phenotypic data from multiple consortia
generally comes with a number of psychometric issues at the
phenotypic level. For example, aggregating questionnaire data
from different consortia will most likely result in a violation of
measurement invariance, meaning that the perception of the
(severity) of the symptoms might depend on factors other than
the severity of the illness-like properties of the questionnaire
(e.g. choice of items or wording) or characteristics of the respond-
ent that are not relevant for the disease (e.g. cultural or language
background) (van den Berg et al., 2014).

The strategy focused on selecting a more homogeneous depres-
sion phenotype is based on the assumption that the clinical hetero-
geneity in depression may emerge from an aggregation of different
underlying liabilities expressed through partially distinct biological
pathways (see Fig. 2 for an illustration).

Researchers who have applied this strategy argue that narrowing
the phenotype and increasing phenotypic homogeneity may tag
higher underlying genetic homogeneity and, hence, heritability,
compensating for the related drop in sample size. This approach
has been shown to be effective in the CONVERGE study that
focused on recurrent severe depression in Han Chinese women
and resulted in two significant hits. Furthermore, polygenic ana-
lyses provide evidence for the existence of heterogeneity in the
depression phenotype. Nevertheless, applying this strategy can be
challenging. First, the best criterion for stratification, allowing to
accurately identify more homogenous subtypes, is a matter of
debate. Second, few large genomic datasets include complete mea-
sures of the potential features of interest, such as specific symptom

profiles. Overall, while different studies showed an increase in
point-estimates for h2SNP – in particular when moving from
self-report-based instruments to clinically-ascertained depression
and in some instances when stratifying MDD cases for certain fea-
tures – the confidence intervals surrounding those estimates did
not allow to formally confirm that the differences in h2SNP were
of statistical significance. An under-investigated area in this respect

Fig. 1. A major point of criticism of combining different depression diagnosis phenotypes is that different assessment methods might identify different parts of the
‘latent depression’ population.

Fig. 2. MDD is likely caused by multiple different etiopathological mechanisms.
Studies investigating distinct subtypes of depression aim at reducing the underlying
pathophysiological heterogeneity.
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is the use of repeated measures. Twin studies have shown that the
stability in depression is largely explained by genetic factors (see,
e.g. Nivard et al., 2015). Moreover, the factor reflecting the stability
or agreement over measures has been reported to have a higher
heritability than the individual measures (Foley et al., 1998;
Lubke et al., 2016). Cheesman et al. (2018) estimated twin and
h2SNP of a stable emotional problems phenotype that was con-
structed based on 12 measures from three ages and three raters
using confirmatory factor analysis and item response theory mod-
eling. They found that SNP heritability rose from 5% (not signifi-
cant) on average for individual measures to 14% (S.E. = 0.049; p =
0.002) by focusing on stable trait variance.

Discussion

Genetic discoveries in depression have lagged behind for a long
time, due to several challenges unique to this phenotype (e.g.
modest heritability, a high prevalence, the role of environmental
influences, and phenotypic heterogeneity). To forward the field
and increase power to find meaningful genetic associations,
Levinson et al. (2014) proposed to apply two different non-
mutually exclusive strategies to accelerate genetic discovery for
depression: (1) to substantially increase the sample size of
GWAS and (2) to reduce phenotypic heterogeneity by selecting
clinically more homogenous subgroups of cases. The present
review summarized the main findings, and the strengths and
pitfalls of these two strategies.

In the light of the discussion to which extent the different
depression phenotypes measure the same entity, it is important
to acknowledge that we cannot directly observe MDD as we can
other human characteristics (such as a person’s height or some-
one’s hair color). Consequently, in order to make MDD measur-
able, we need to specify an underlying (psychometric) model to
operationalize it. As for every other latent (unobservable) psychi-
atric trait, the ‘correct’ model is unknown and we can adopt dif-
ferent frameworks. Those in favor of broadening the phenotype
adopt a model that suggests that the difference in MDD among
people is a matter of degree (e.g. MDD being represented by a
dimension on which people can be ordered). On the other
hand, those in favor of decreasing heterogeneity adopt a model
where the difference in MDD is a matter of ‘type’ one belongs
to or not (e.g. MDD being a different entity than other depressive
disorders or subthreshold). This is an enduring issue in psych-
ology (can psychological attributes be best represented as dimen-
sions or categories?) that further complicates choosing between
the two strategies. The findings that are discussed in this review
provide evidence for both frameworks: strong and consistent gen-
etic correlations across studies using different depression pheno-
types provide empirical support for a common underlying
internalizing trait and specific polygenic signatures for subgroups
of depressed patients provide empirical support for the presence
of distinct pathophysiological processes acting under the same
diagnostic label. Overall, results from large-scale genetic studies
draw a composite picture of the underlying liability of depression.

The aforementioned debate is closely related to what has been
referred to as the ‘reification problem’ by Kendler (2014) stating
that diagnostic criteria have been misinterpreted as the actual
dimension they are designed to assess. The definition of MDD
is not based on a fundamental biomarker or pathophysiology.
Consequently, the diagnostic criteria currently used to evaluate
the presence of MDD or, for that matter, any other psychiatric
disorder, are based on descriptive signs, often selected from

clinical tradition rather than from empirical evidence. In the
absence of biological markers reflective of etiopathological
mechanisms, major updates of psychiatry nosology have, so far,
been revolving around the debate whether psychiatric disorders
should be conceptualized as fewer broad categories or as more
fine-grained categories. As Kendler (2014) highlighted, the abso-
lute reliance on these criteria and the loss of awareness of their
indexical function leads to reification and diagnostic literalism,
confusing diagnostic criteria with the actual trait they are designed
to assess.

Despite indications of detectable heterogeneity, so far the stud-
ies applying the strategy aimed at maximizing sample sizes iden-
tified a higher number of genome-wide replicated loci compared
to those that focused on increasing homogeneity. The number of
significantly associated genetic variants has been steadily increas-
ing with increasing sample sizes, indicating that combining differ-
ent depression phenotypes increases power to detect a large
number of common genetic variants shared across similar but dis-
tinct phenotypes. In contrast, with the exception of CONVERGE,
no other GWAS so far identified specific genetic variants reliably
associated with MDD phenotypes defined more strictly. Given the
high co-morbidity between MDD and other psychiatric disorders,
such as anxiety disorders (Kessler et al., 2003) and personality
traits such as neuroticism, and the prediction of MDD by sub-
threshold depression (Lee et al., 2018) these identified genetic var-
iants may not be specific for MDD, but may be shared with the
vulnerability for anxiety disorders, other depressive disorders,
such as dysthymia and with subthreshold symptoms. We think
that identifying these variants is evenly useful as identifying var-
iants underlying specific more homogeneous MDD subtypes.
This discovery base may be subsequently leveraged to disentangle
divergent genetic effects for specific traits.

The availability of increasing numbers of samples with geno-
type–phenotype data in expanding cohorts and biobanks do pro-
vide the opportunity to apply different approaches without
decreasing or even increasing power and also give justice to the
heterogeneity. These approaches make the most efficient use of
all data collected in the samples. For instances, the results of
recent papers leveraging UkBiobank data suggest that specific
genetic variants differentially influence individual items used to
asses neuroticism (Nagel et al., 2018) and depressive symptoms
(Thorp et al., in press). Population-based birth, child, and adoles-
cent cohorts also provide excellent resources to make optimal use
of the already available data by investigating genetic variants that
influence stability over time (Middeldorp et al., 2019).

Recent initiatives introduced the application of efficient and
scalable electronic instruments to assess psychiatric disorders,
which may reconcile the need of both a larger number of persons
screened and a more refined phenotyping of the trait of interest.
For example, the comprehensive online mental-health question-
naire used in UK Biobank identifies operationally defined syn-
dromes such as lifetime depression, mania, anxiety disorder,
psychotic-like experiences and self-harm, post-traumatic stress
disorder, and substance use disorders. Another example is the
Lifetime Depression Assessment Self-report (LIDAS, Bot et al.,
2017), which is largely based on the Composite International
Diagnostic Interview (CIDI) short form for lifetime depression
(CIDI-SF; Kessler et al., 1998; Hamilton et al., 2011) and assesses
lifetime history of MDD according to DSM criteria. In feasibility
studies, the LIDAS has shown adequate sensitivity (0.85) and spe-
cificity (0.80), and has a short median completion time (Bot et al.,
2017). These tools hold the potential to provide reliable measures
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of depression at low cost in large (existing) cohorts and biobanks
with genetic data. Furthermore, such instruments may provide
information on specific clinical features along which cases can
be stratified to identify more homogeneous subgroups, such as
endorsement of single or specific combinations of symptoms.
An important application of genetic stratification may also involve
trials testing the efficacy of different treatments for depression: the
identification of interactions between specific genomic risk pro-
files of various traits only with a certain class of treatments may
provide interesting insights in the complex underlying patho-
physiological mechanisms active in depression.

Finally, further developments in analytical methods and knowl-
edge on depression heterogeneity may enhance the strengths of the
two main strategies reviewed here. For instance, by leveraging
the identified shared genetic liability across different phenotypes,
the newly developed multi-trait analysis of GWAS (MTAG) has
been shown to substantially increase statistical power to detect gen-
etic association for each trait in a joint analysis of multiple traits
using GWAS summary statistics (Turley et al., 2018). Pooling data
on depression, neuroticism, and subjective well-being, the applica-
tion of MTAG substantially increased the number of significantly
associated loci for each trait, compared to single-trait analyses,
with depression-associated loci going from 32 to 64 loci. Recently,
multivariate methods were proposed that allow the identification
of variants with effects on common cross-trait liability and variants
that cause divergence, such as genomic structural equation model-
ing (GenomicSEM, Grotzinger et al., 2019) and genome-wide asso-
ciation meta-analysis (GWAMA, Baselmans et al., 2019).

To conclude, so far increasing the sample size by carefully and
thoughtfully adding samples with non-traditional diagnostic
approaches has enabled the identification of a large number of
genetic variants for depression, but this must be done with
great care. Part of these variants probably also influence other
internalizing disorders and related traits. As sample sizes increase,
further increases in the number of genetic loci robustly associated
with depression will likely be achieved.

At the same time, it is also important to collect samples with
genotype data and detailed clinical information. These samples
will be essential to dissect clinical and biological heterogeneity
using genetic instruments. Eventually, the achievement of larger
sample sizes as compared to those available nowadays may
allow to reliably identify genetic loci specifically linked to depres-
sion phenotypes defined more strictly. Adoption of a balanced
portfolio reconciling the two main strategies discussed in the pre-
sent review is probably the optimal approach to progress further
in unraveling depression genetic architecture.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291719002502.
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