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Abstract: Background: The study developed accurate explainable machine learning (ML) models for
predicting first-time acute exacerbation of chronic obstructive pulmonary disease (COPD, AECOPD)
at an individual level. Methods: We conducted a retrospective case–control study. A total of
606 patients with COPD were screened for eligibility using registry data from the COPD Pay-for-
Performance Program (COPD P4P program) database at Changhua Christian Hospital between
January 2017 and December 2019. Recursive feature elimination technology was used to select the
optimal subset of features for predicting the occurrence of AECOPD. We developed four ML models
to predict first-time AECOPD, and the highest-performing model was applied. Finally, an explainable
approach based on ML and the SHapley Additive exPlanations (SHAP) and a local explanation
method were used to evaluate the risk of AECOPD and to generate individual explanations of the
model’s decisions. Results: The gradient boosting machine (GBM) and support vector machine (SVM)
models exhibited superior discrimination ability (area under curve [AUC] = 0.833 [95% confidence
interval (CI) 0.745–0.921] and AUC = 0.836 [95% CI 0.757–0.915], respectively). The decision curve
analysis indicated that the GBM model exhibited a higher net benefit in distinguishing patients at
high risk for AECOPD when the threshold probability was <0.55. The COPD Assessment Test (CAT)
and the symptom of wheezing were the two most important features and exhibited the highest SHAP
values, followed by monocyte count and white blood cell (WBC) count, coughing, red blood cell
(RBC) count, breathing rate, oral long-acting bronchodilator use, chronic pulmonary disease (CPD),
systolic blood pressure (SBP), and others. Higher CAT score; monocyte, WBC, and RBC counts; BMI;
diastolic blood pressure (DBP); neutrophil-to-lymphocyte ratio; and eosinophil and lymphocyte
counts were associated with AECOPD. The presence of symptoms (wheezing, dyspnea, coughing),
chronic disease (CPD, congestive heart failure [CHF], sleep disorders, and pneumonia), and use
of COPD medications (triple-therapy long-acting bronchodilators, short-acting bronchodilators,
oral long-acting bronchodilators, and antibiotics) were also positively associated with AECOPD.
A high breathing rate, heart rate, or systolic blood pressure and methylxanthine use were negatively
correlated with AECOPD. Conclusions: The ML model was able to accurately assess the risk of
AECOPD. The ML model combined with SHAP and the local explanation method were able to
provide interpretable and visual explanations of individualized risk predictions, which may assist
clinical physicians in understanding the effects of key features in the model and the model’s decision-
making process.
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1. Introduction

Chronic obstructive pulmonary disease (COPD) is the third leading cause of mortality
worldwide and imposes a substantial burden on health care systems, primarily because
of the occurrence of acute exacerbation [1,2]. Acute exacerbation of COPD (AECOPD) is
defined as the substantial worsening of respiratory symptoms in excess of normal day-to-
day variations, thus requiring additional therapy [3]. AECOPD increases a patient’s risk of
mortality, accelerates the decline of pulmonary functions, harms a patient’s general health,
and impairs activities of daily living; it is also a main driver of health care use, such as
emergency department visits and hospitalizations [4,5]. In addition, studies have reported
that a patient’s prognosis is poor after their first hospital admission for AECOPD [6,7].
Moreover, nonlower respiratory serious adverse events are more frequent after a patient’s
first exacerbation [8]. Therefore, establishing accurate methods for predicting exacerbation
risk to identify patients at high risk for AECOPD is imperative because such predictions
can be valuable in the timely initiation of preventive measures and in facilitating early
treatment in clinical settings.

In clinical practice, the strongest identified risk factor for future AECOPD is a history
of prior exacerbations; however, the use of this factor as an indicator is clinically restricted
due to heterogeneity in patients’ risk of AECOPD [3]. Moreover, this risk factor cannot
be used to predict a patient’s first exacerbation [9]. Machine learning (ML) algorithms
have recently been used to predict AECOPD by using the real-world data available in
electronic medical records (EMRs) or health care administrative data [5,10]. These ML
models have exhibited predictive abilities superior to those of a reference model that
considered only patient history of AECOPD as a risk factor, which affected the model’s
discrimination and calibration [11]. Despite the promising performance of ML in previous
studies, evidence of the ability of explainable risk prediction models to assist in disease
prognosis is limited [12]. Due to the black-box nature of ML algorithms, explaining the
logic behind predictions is often difficult [13]. The lack of interpretability of ML models
is a major obstacle to implementation of ML in the medical field [14]. Although several
ML models for predicting the onset of AECOPD events have been developed, research
on interpretable and personalized models for predicting the risk of first-time AECOPD is
still scarce.

In the present study, we established an accurate explainable prediction model to
predict first-time AECOPD at an individual level. We combined the ML algorithm with
a framework based on SHapley Additive exPlanations (SHAP) and local explanation to
provide both algorithmic and biological explainability; our approach can yield a personal-
ized risk profile for each patient to help physicians to optimize their decision-making with
respect to COPD exacerbation prevention and to tailor treatment regimens to the individual
needs of patients.

2. Materials and Methods
2.1. Study Participants

This retrospective case–control study was conducted at Changhua Christian Hospital
(CCH) in Changhua, Taiwan. A total of 606 patients with COPD were screened for eligibility
using registry data from the COPD Pay-for-Performance Program (COPD P4P program)
database at CCH between January 2017 and December 2019. The COPD P4P program
provides standardized comprehensive COPD care including COPD assessments, modified
Medical Research Council (mMRC) dyspnea scores, clinical symptom evaluations, physical
examinations, laboratory evaluations, and COPD management education (including that
related to smoking cessation, pulmonary rehabilitation, and medication). Comprehensive
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COPD care is delivered by a coordinated multidisciplinary team comprising physicians,
respiratory therapists, and registered nurses specialized in COPD care. A detailed descrip-
tion of the program has been reported in a previous paper [15]. COPD diagnosis was based
on the criteria established by the Taiwan Society of Pulmonary and Critical Care Medicine;
whether patients met the criteria was determined on the basis of International Classification
of Diseases, Tenth Revision (ICD-10) diagnostic codes J41–44, with confirmation made
through spirometry (postbronchodilator forced expiratory volume at 1 s [FEV1]/forced
vital capacity [FVC] < 70%) during the 90-day period when patients received outpatient
care from CCH.

Patients with a history of AECOPD before enrollment in the COPD P4P program
(n = 95) and those younger than 40 years (n = 2) were excluded. Ultimately, 509 eligible pa-
tients were included in our analysis (Figure 1). We first provided a seed number (1234 was
used in this study) for the random number generator in the software R programming,
and then performed the “sample” function in R to split the data frame into training and
test data. We split the data into 80% training dataset and 20% testing dataset. Finally,
patients were randomly divided into a training set (80%, n = 407) to develop ML models
and a test set (20%, n = 102) to evaluate the performance of each model. The Institutional
Review Board of CCH waived the requirement for informed consent and approved the
study (IRB No: 191246). Data in the accessed database were deidentified. The researchers
conducted the study in accordance with the Computer-Processed Personal Data Protection
Law and privacy regulations of Taiwan.
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Figure 1. Flowchart of the study population.

2.2. Outcome

The study outcome was to early predict the first-time AECOPD after enrollment in a
P4P program, which is defined as outpatient visits, emergency room visit, or admission with
an ICD-10 code of COPD (J43.x–44.x, except J430, within the fifth secondary diagnosis in
outpatient or emergency room visits or as the primary diagnosis upon hospital admission)
at which time systemic steroid medication (ATC code: H02) with or without antibiotics
(ATC code: J01) was prescribed [10,16].

2.3. Feature Engineering

The features were obtained from the CCH clinical research database, which is a
collection of data and databases from all the CCH EMR systems, including the COPD
P4P database, prescription data, laboratory data, and clinical visit records. We collected
90 features from the outpatient clinical records dated within six months before a patient’s
last visit prior to their first AECOPD; these features included demographics (age, gender,
BMI), clinical characteristics (e.g., postbronchodilator test results, CAT scores, mMRC dysp-
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nea scores, COPD Global Initiative for Chronic Obstructive Lung Disease [GOLD] scores,
respiratory symptoms), vital signs, laboratory test measurements, medication use, and
comorbidities. To ensure the variability of features and improve the predictive accuracy of
the models [17], 32 features with a prevalence <5% were excluded from the model. In addi-
tion, we used recursive feature elimination (RFE) technology to select the optimal subset
of features for predicting the occurrence of AECOPD. In total, 38 features were selected
using RFE with ten-fold cross-validation repeated five times (Figure S1). Of the 38 features,
the postbronchodilator FEV1/FVC ratio, eosinophil-to-lymphocyte ratio, hemoglobin, and
COPD GOLD score were excluded for collinearity (variance inflation factor > 2); the num-
ber of included features was thereby reduced to 34 after consulting with expert COPD
physicians. The descriptive statistics of the selected features for the training set and test set
are listed in Table 1.

Table 1. Patients’ features in overall cohort and split datasets.

COPD Patient Data SPLIT DATA

Non-
AECOPD
(n = 354)

AECOPD
(n = 155) p-Value Train Data

(n = 407)
Test Data
(n = 102) p-Value

Demographic

Age 72 ± 10 73 ± 10 0.557 73 ± 10 72 ± 11 0.882

BMI 24 ± 4 24 ± 4 0.593 24 ± 4 24 ± 4 0.962

Vital sign

Pulse 84 ± 13 86 ± 15 0.081 84 ± 14 84 ± 13 0.817

Breathing 19 ± 1 19 ± 1 0.490 19 ± 1 19 ± 1 0.650

SBP 135 ± 18 135 ± 17 0.856 135 ± 18 137 ± 17 0.184

DBP 75 ± 10 76 ± 11 0.110 75 ± 11 77 ± 10 0.072

Lung function

FEV1/FVC_post 60 ± 10 57 ± 11 0.014 59 ± 11 60 ± 10 0.289

CAT 4 ± 2 6 ± 3 <0.001 4 ± 3 4 ± 3 0.678

Symptoms

Cough 177(50%) 111(71.6%) <0.001 230(56.5%) 58(56.9%) 0.949

Dyspnea 142(40.1%) 87(56.1%) 0.001 193(47.4%) 36(35.3%) 0.028

Wheeze 112(31.6%) 93(60%) <0.001 170(41.8%) 35(34.3%) 0.170

Comorbidity within 1 year

Chronic pulmonary disease 163(46.2%) 101(65.2%) <0.001 211(51.8%) 53(52.5%) 0.909

Congestive heart failure 17(4.8%) 17(11%) 0.011 31(7.6%) 3(3%) 0.094

Sleep disorder 112(31.7%) 68(43.9%) 0.008 140(34.4%) 40(39.6%) 0.328

anxiety 26(7.4%) 15(9.7%) 0.378 33(8.1%) 8(7.9%) 0.951

Pneumonia 35(9.9%) 41(26.5%) <0.001 61(15%) 15(14.9%) 0.973

Hypertension 159(44.9%) 85(54.8%) 0.039 196(48.2%) 48(47.1%) 0.843

Cancer 46(13%) 31(20%) 0.044 63(15.5%) 14(13.9%) 0.685

COPD medication within 6 months

Short-acting bronchodilators 216(61%) 111(71.6%) 0.022 259(63.6%) 68(66.7%) 0.568

Dual bronchodilator 58(16.4%) 49(31.6%) <0.001 84(20.6%) 23(22.5%) 0.672

Triple bronchodilator 204(57.6%) 118(76.1%) <0.001 262(64.4%) 60(58.8%) 0.298
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Table 1. Cont.

COPD Patient Data SPLIT DATA

Non-
AECOPD
(n = 354)

AECOPD
(n = 155) p-Value Train Data

(n = 407)
Test Data
(n = 102) p-Value

Chronic disease medication within 1 year

Antibiotic 44(12.4%) 47(30.3%) <0.001 78(19.2%) 13(12.7%) 0.130

Oral long-acting bronchodilator 14(4%) 25(16.1%) <0.001 31(7.6%) 8(7.8%) 0.939

Methylxanthines 217(61.3%) 122(78.7%) <0.001 267(65.6%) 72(70.6%) 0.340

Lab data within 6 months

WBC count 7.7 ± 3.1 9.1 ± 3.9 <0.001 8.3 ± 3.6 7.4 ± 2.4 0.003

RBC count 4.5 ± 0.7 4.5 ± 0.5 0.165 4.5 ± 0.6 4.5 ± 0.7 0.910

Mean platelet volume 8.1 ± 0.9 8.2 ± 1 0.480 8.1 ± 1 8.1 ± 0.8 0.606

Monocyte 2.6 ± 3.2 2.5 ± 2.7 0.753 9 ± 3.5 8.7 ± 3.8 0.424

Eosinophil 21.9 ± 11.3 20.5 ± 13.2 0.249 2.4 ± 2.5 3 ± 4.4 0.224

Lymphocyte 5.3 ± 7.1 7.2 ± 11.8 0.091 21.7 ± 12.2 20.5 ± 10.7 0.421

Neutrophil/Lymphocyte 8.9 ± 3.5 9 ± 3.7 0.716 5.9 ± 8.6 6 ± 10.1 0.887

Outcome

AECOPD 121(29.7%) 34(33.3%) 0.479

2.4. Statistical Analysis and ML Algorithms

The categorical and continuous variables are expressed herein as proportions and
means ± standard deviations, respectively. A chi-square test was used to compare the
categorical variables, and Student’s t-test was used to compare the continuous variables.

Figure 2 presents the framework for establishing the predictive models for first-time
AECOPD, including data preprocessing, feature engineering, ML model construction, and
model training. Four ML algorithms—support vector machine (SVM), random forest (RF),
gradient boosting machine (GBM), and extreme gradient boosting (XGB)—were used to
develop the models. The exhaustive grid search algorithm was implemented as a hyperpa-
rameter tuning tool (Table S1), and five-fold cross-validation was performed on the training
set to select the optimal combination of hyperparameters. We selected the hyperparam-
eter corresponding to the highest area under the receiver operating characteristic curve
(AUC) for the validation set of each ML model. To develop the SVM model, we used
linear, polynomial, sigmoid, and radial kernels as the basis functions; for each kernel, the
cost, gamma, degree, and epsilon hyperparameters were used to tune the model. A total
of 182,000 combinations of hyperparameters were constructed for the SVM. To develop
the RF model, a total of 65,322 combinations of hyperparameters, including ntree, mtry,
and nodesize, were used. To develop the XGB model, a total of 163,180 hyperparameters
were used, and the optimal hyperparameters comprised eta, gamma, nrounds, and the
maximum depth of a tree. To develop the GBM model, a total of 163,180 hyperparameters,
including shrinkage, interaction.depth, n.minobsinnode, and bag.fraction, were compared
to determine which yielded the highest AUC for the validation set. When developing these
four ML models, we performed one-hot encoding for the categorical data and standard-
ized all the continuous features for analysis. Once we developed the final models using
the training set, we calculated the AUC and five evaluation metrics, namely, sensitivity,
specificity, positive predicted value (PPV), negative predicted value (NPV), F1 score and
accuracy, of the test set to measure the predictive ability of each model. To calculate these
evaluation metrics, we used the Youden’s index to determine the optimal threshold for
classifying the occurrence of AECOPD. Because our focus is on predicting the occurrence
of AECOPD as a means to assist patients, higher predictive accuracy and F1 scores were
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our main priorities. The F1 score (value: 0–1) accounts for both sensitivity and PPV. The
formula for the F1 score is

F1 = 2 × (precision × recall)/(precision + recall) (1)
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Figure 2. Study framework for AECOPD risk assessment model and feature engineering.

A raincloud plot is a data visualization approach that was employed for summarizing
the distribution of AECOPD and the predicted scores; it included individual data points
(horizontally jittered), density distributions, and statistical inferences of box plots with
medians and interquartile ranges, with whiskers at the 5th and 95th percentiles. The
clinical of models was assessed through decision curve analysis. Calibration, which is the
agreement between predicted probabilities and observed frequencies of AECOPD, was
represented using calibration belts.

The aim of the study was to develop a predictive model to help clinicians with the early
detection of risk factors and with decision-making to prevent the occurrence of AECOPD.
Therefore, we used SHAP, an explainable artificial intelligence technology, to understand
the results of ML model fitting.

All descriptive statistical analyses were performed using SPSS, and the development
of the ML models was conducted using R software (version 3.6.2; The Comprehensive R
Archive Network: http://cran.r-project.org, accessed on 12 December 2019). Two-sided
p values < 0.05 were considered statistically significant.

3. Results
3.1. Study Population Characteristics

A total of 509 patients met the inclusion criteria for analysis, of whom 155 (30.45%)
experienced their first AECOPD after enrollment in the COPD P4P program. The patients
with AECOPD exhibited poor lung function test results; higher CAT scores; more frequent
symptoms of coughing, dyspnea, and wheezing; and a higher prevalence of chronic disease
(hypertension, CHF, CPD, sleep disorders, pneumonia, and cancer). The patients with
AECOPD were more likely to use COPD medications (such as mono-, dual-, or triple-
therapy long-acting bronchodilators and short-acting bronchodilators, antibiotics, oral
long-acting bronchodilators, and methylxanthines) and exhibited higher lymphocyte and
white blood cell (WBC) counts. The prevalence of AECOPD and distributions of features
were similar between the training and test sets, except for the symptom of dyspnea and
WBC count. Table 1 displays the selected features used to develop the ML model.

http://cran.r-project.org
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3.2. Model Prediction of AECOPD

As indicated in Table 2, the XGB and RF models exhibited moderate discrimination
ability (AUC = 0.770 [95% confidence interval (CI) 0.745–0.921] and AUC = 0.751 [95% CI
0.642–0.859], respectively). The GBM and SVM models exhibited higher discrimination
ability (AUC = 0.833 [95% CI 0.745–0.921] and AUC = 0.836 [95% CI 0.757–0.915], respec-
tively). The SVM model exhibited the highest sensitivity (82.35%); however, its specificity
and PPV for predicting AECOPD were low (69.12 and 57.14%, respectively), and its F1
score (67.47%) and accuracy (73.53%) were insufficient for clinical practice. By contrast, the
GBM model exhibited an balanced performance in predicting AECOPD, with a sensitivity
of 79.41%, a specificity of 77.94%, and a PPV of 64.29%; its F1 score and prediction accuracy
were thus the highest (71.05 and 78.43%, respectively).

Table 2. Comparison of various models’ performance for predicting AECOPD using test data.

Model AUC Threshold Sensitivity Specificity PPV NPV F1 Score Accurate

Gradient boosted machines (GBMs) 0.8326 0.2614 79.41% 77.94% 64.29% 88.33% 71.05% 78.43%

Extreme Gradient Boosting (XGBoost) 0.7703 0.2961 58.82% 86.76% 68.97% 80.82% 63.49% 77.45%

Random Forest (RF) 0.7509 0.3237 64.71% 83.82% 66.67% 82.61% 65.68% 77.45%

Support Vector Machine (SVM) 0.8361 0.3913 82.35% 69.12% 57.14% 88.68% 67.47% 73.53%

The sensitivity, specificity, PPV, and NPV were calculated using Youden’s index.

The raincloud plot presented in Figure 3 summarizes the distribution of the predicted
scores for the AECOPD and non-AECOPD groups. Significant differences were identified
between the predicted scores of the groups in all four ML models (all p values < 0.001 by
the Kolmogorov–Smirnov test), and the median of the AECOPD group was higher than
that of the non-AECOPD group (all p values < 0.001 by the Wilcoxon rank-sum test). No
two boxes in the GBM model overlapped with one another.
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The discrimination performance of each of the four ML models, as represented by
the receiver operation characteristic and decision curves, is presented in Figure 4. The
decision curve analysis revealed that the GBM model exhibited the highest net benefit in
distinguishing patients at high risk for AECOPD when the threshold probability was <0.55,
whereas the SVM model exhibited the highest net benefit if the threshold probability was
>0.55 (Figure 4). Furthermore, the GBM models overlap on the 45◦ dotted line, indicating
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good agreement between the ML-predicted and actual probabilities in the calibration plots
(p value of GBM model = 0.223; Figure 5).
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(a) GBM; (b) XGB; (c) Random Forest; (d) SVM.

3.3. Model Explanations

SHAP values are useful in revealing the contribution of each feature to an individual
prediction. Figure 6a presents a plot of features important to the GBM model in order of
importance according to the average absolute value of the SHAP values. The beeswarm
plot in Figure 6b provides an overview of the effects of individual features on the prediction
of AECOPD, with the dots representing the SHAP values of each feature for all individual
patients and the colors ranging from yellow (low feature value) to purple (high feature
value). The dots are distributed in relation to a vertical line at zero; all the features on
the left side of zero exert a negative effect on AECOPD, whereas those on the right side
exert a positive effect on AECOPD. The features on the right indicated by purple dots are
positively correlated with AECOPD, whereas the features indicated by yellow dots are
negatively correlated with AECOPD.

The patients’ CAT scores and symptoms of wheezing were determined to be the
two most important features with the highest SHAP values (0.57 and 0.54, respectively;
Figure 6a), followed by monocyte count, WBC count, cough, RBC count, breathing rate,
oral long-acting bronchodilator use, CPD, SBP, and others. Age, use of dual-therapy bron-
chodilators, anxiety, cancer, and hypertension did not affect the prediction of AECOPD. As
indicated in Figure 6b, higher CAT scores; monocyte, WBC, and RBC counts; BMI; DBP;
neutrophil-to-lymphocyte ratio; and eosinophil and lymphocyte counts were positively
correlated with AECOPD. The presence of symptoms (wheezing, dyspnea, coughing),
chronic diseases (CPD, CHF, sleep disorders, and pneumonia), and COPD medication use
(triple-therapy bronchodilators, short-acting bronchodilators, oral long-acting bronchodila-
tors, and antibiotics) were positively associated AECOPD. A high breathing rate, heart rate,
and SBP and methylxanthine use were negatively correlated with AECOPD. Although
the SHAP value distribution was highly dispersed, the correlations of the features with
AECOPD were still consistent with domain knowledge of most of the features.
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Figure 6. Summary SHapley Additive exPlanations (SHAP) plot. (a) Global feature importance in
final GBM model output. (b) Relationship between features and AECOPD in GBM model.

Local explanation results in feature shifts in predictions from base values to model
output values. Features that exert and do not exert a significant effect on AECOPD are
encoded in red and green, respectively; four local explanation plots of randomly chosen
patients are presented in Figure 7. Our proposed model correctly predicted the risk of
AECOPD for patients A and B, but incorrectly predicted the risk for patients C and D.
Patient A experienced AECOPD, and the ML-predicted probability of AECOPD for patient
A was 0.828. The patient’s oral long-acting bronchodilator use; exhibited symptoms
(wheezing, dyspnea, coughing); chronic diseases (CPD, CHF, pneumonia, sleep disorders);
SBP (116); lab data including Mean platelet volume (MPV) (9.4), RBC count (4.44), and
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WBC count (8.3); and neutrophil-to-lymphocyte ratio (8.3) were significantly positively
associated with AECOPD. By contrast, patient B did not experience AECOPD, and the
ML-predicted probability of AECOPD for patient B was 0.128. The patient’s lack of COPD
medication use (triple-therapy bronchodilator, short-acting bronchodilator, oral long-acting
bronchodilator, and antibiotics), symptoms (wheezing, dyspnea, and cough), and chronic
diseases (CHF, pneumonia, sleep disorder), as well as the patient’s regular lab data (MPV;
WBC, monocyte, lymphocyte, and eosinophil counts; and neutrophil-to-lymphocyte ratio)
contributed to the patient’s relatively low risk of AECOPD.
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Figure 7. Local explanation plots for individuals with various AECOPD statuses and GBM model
predictions. (a) AECOPD and AI predicted AECOPD; (b) Non-AECOPD and AI predicted non-
AECOPD; (c) AECOPD but AI predicted non-AECOPD; (d) Non-AECOPD but AI predicted AECOPD.
Green and red bars correspond to the contribution of the features to the prediction. Green represents a
negative value, which decreases the predicted value; Red represents a positive value, which increases
the predicted value. x-axis represents model prediction value; y-axis lists the features and their
observed values.

The predictions for patients C and D are examples of ML mispredictions. The local
explanations are presented in Figure 7c,d. The predicted probabilities of AECOPD for



J. Pers. Med. 2022, 12, 228 14 of 19

the patients were 17.3 and 49.2%, respectively. Although predictions may be incorrect,
local explanations can nevertheless provide clinicians with information to increase their
awareness of a patient’s condition, which may help prevent AECOPD and address relevant
potential risk factors. Furthermore, local explanations are crucial for making personalized
health care recommendations.

4. Discussion

In this study, we developed and validated an interpretable ML-based risk assess-
ment tool for predicting first-time occurrence of AECOPD. Our findings indicated that
the ML models exhibit high discrimination performance, with an average AUC of 0.80.
This indicates that ML has the potential for clinical implementation in risk assessment
and prediction of first-time AECOPD. Of the ML models, the GBM model achieved the
highest performance in this study; therefore, we used this model to develop the inter-
pretable ML-based exacerbation risk assessment tool. Moreover, we used an ML algorithm
with a framework based on SHAP and local explanation to assess the key features and
establish a modestly accurate model for predicting acute exacerbation in patients with
COPD. Providing a visually interpretable feature importance score can help physicians
understand the key features of AECOPD in the GBM model, which may support their
decision-making processes.

In the outpatient setting, preventing acute exacerbation and avoiding adverse out-
comes are the major goals of COPD care. Although a history of AECOPD was determined
to be a relatively highly reliable predictor of future exacerbations, it is nevertheless an
inadequate basis for a reliable clinical features for informing treatment decisions and meth-
ods of AECOPD prevention [18]. Moreover, the discrimination ability of a model that
accounted for a history of AECOPD alone was reported to be worse than that of an ML-
based model [11]. For example, Tavakoli and colleagues conducted a study that developed
an ML-based model to determine which patients were at high risk for hospitalization for
AECOPD. Their findings indicated that the GBM model was more effective than a predic-
tion model that employed a history of AECOPD as the only predictor (AUC = 0.82 and 0.68,
respectively) [5,17]. A patient history of AECOPD is also not suitable for assessing the risk
of first-time AECOPD, and some patient records may lack information regarding prior
exacerbations. Hussain et al. developed a GBM prediction model that excluded a history
of AECOPD, and the model achieved high discrimination performance, with an AUC of
0.96 [19]. For the framework of the present study, we adopted ML-based modeling as the
basis and then incorporated various clinical features using real-world data to account for
local population characteristics, and our findings indicated that the GBM exhibited the
highest prediction accuracy, with an AUC of 0.83. Similar to the model constructed by
Hussain et al., our ML-based model enables the accurate prediction of AECOPD without
including exacerbation history as a risk factor. Although our model exhibited lower discrim-
inatory power than did the prediction model developed by Hussain et al., comparing our
results to those of their study is difficult because the definition of AECOPD and information
about the study population were not included in their paper. Nevertheless, taken together,
these results suggest that ML-based models—especially GBM models—are a feasible and
accurate method for predicting AECOPD without relying on exacerbation history as the key
indicator. These ML-based models have potential to be used as clinical decision-making
tools that can help identify patients at high risk of AECOPD who might benefit from adjust-
ment of treatment or referral to a specialist. Moreover, although our GBM model did not
include exacerbation history as a feature, the model’s accuracy is comparable with that of
previous GBM models that have accounted for exacerbation history. These findings suggest
that our prediction model is suitable for assessing a patient’s risk of first-time AECOPD or
the risk of patients whose records lack information on prior exacerbations—for instance,
patients with new diagnoses of COPD or those with mild COPD.

A recent systematic review of AECOPD prediction models included 27 prediction
models that have been developed to account for different variables, such as patient demo-
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graphics, lung function, symptoms, and COPD risk factors, by using traditional statistical
techniques. The models’ performance levels in terms of AUC ranged from 0.58 to 0.78.
Compared with traditional statistics, ML provides an alternative method that improves
the accuracy of AECOPD prediction models. ML emphasizes performance optimization
and is based on a minimum of assumptions about data-generating systems, whereas tra-
ditional statistical methods are usually employed to verify specific hypotheses [20]. To
compare ML with traditional statistical methods in AECOPD risk assessment, Wang et al.
developed AECOPD prediction models by using traditional logistic regression and several
ML algorithms, including RF, SVM, logistic regression, k-nearest neighbors, and naïve
Bayes algorithms, and the results indicated that the ML-based models achieved higher
accuracy [21]. Tavakoli et al. reported that the GBM model exhibited the highest accuracy in
predicting AECOPD, exceeding the accuracy of logistic regression, RF, and neural network
models [11]. Our findings are consistent with those of previous studies and verified the
superior accuracy of the GBM model in AECOPD prediction. These findings indicate that
ML-based models, especially GBM models, exhibit high discriminatory accuracy in the
prediction of AECOPD.

Feature selection is a key process that involves selecting the optimal subset of features
to improve the performance of an ML model. Hussain et al. and Tavakoli et al. devel-
oped GBM prediction models that accounted for a range of patient characteristics, namely
demographics, vitals, symptoms, questionnaire responses, and laboratory data and de-
mographics, vitals, hospitalizations, and outpatient services and medication dispensation
records, respectively. The performance of the prediction models yielded AUCs > 0.80. In
our study, the features in the GBM model comprised clinical data, demographics, vital
signs, symptoms, prescribed medications, comorbidities, laboratory data, and CAT scores.
Compared with previous models, our model included more robust clinical parameters
and exhibited comparable performance. In a previous study, asthma exacerbation was
predicted on the basis of hundreds of single nucleotide polymorphisms in an RF model [22].
We propose that integrating genomic information into ML models may achieve superior
prediction results for AECOPD as well.

COPD is complex and heterogeneous, meaning that it comprises various compo-
nents with nonlinear dynamic interactions that are not all present in all patients or in a
given patient at all times [23]. This dynamic complexity and heterogeneity illustrate the
need for a precision medicine approach to improve COPD assessment, treatment, and
outcomes [24–26]. As ML becomes increasingly integrated into the world of precision
medicine, it can help deepen knowledge about the origins and courses of chronic diseases,
including COPD [27]. Several studies have reported promising results of using ML ap-
proaches in predicting AECOPD. However, black-box logic remains a major obstacle to
the application of AI in medicine because a physician will have little to communicate to a
patient without an explainable AI model, which may lead to a loss of patient confidence
and satisfaction [13]. To overcome this barrier, we applied SHAP and local explanation to
improve the predictive effect and interpretability of our model. SHAP is a game-theoretic
approach proposed by Lundberg and Lee [28] to interpret feature contribution for a change
in the machine learning model (ML) output. The SHAP values reflect the importance of
features and provide consistent and locally accurate attribute values for each feature in
the prediction model. Using SHAP, we can use it for data visualization, making it easier
for users to understand complex black-box integration models. Recently, many studies
have been conducted that apply SHAP techniques to various clinical problems, such as
coronary artery calcification, venous thrombosis in osteoarthritis patients, and so on [29,30].
To our knowledge, this is the first study to apply SHAP to a GBM black-box integration
model. We visually illustrated the interpretability of the complex GBM model by plotting
individual risk predictions. Our model indicated that CAT score and wheezing were the
most two influential global features with the highest SHAP values, followed by monocyte
count, WBC count, coughing, RBC count, breathing rate, oral long-acting bronchodilator
use, CPD, SBP, and others. The results of the correlation analysis of the features and AE-
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COPD indicated that higher CAT scores; monocyte, WBC, and RBC counts; BMI; DBP;
neutrophil-to-lymphocyte ratios; and eosinophil and lymphocyte counts were positively
correlated with AECOPD. Our ranking of the importance of variables broadly corresponded
to differences in clinical variables observed in patients with and without AECOPD in our
study and is also consistent with previous studies. In addition, local explanation results in
feature shifts in the prediction from the base values to the model output values that allows
for visual presentation of predicted result to clinical physicians.

Monocyte and oral bronchodilator were selected as key feature for predicting of AE-
COPD, which are rarely mentioned in their association with AECOPD. For monocytes,
despite the mechanism is unclear, the number of monocytes was significantly increased in
AECOPD patients compared with healthy subject has been reported in previous study [31].
The evidence supports that monocyte might have the potential role in AECOPD. Although
oral bronchodilators are currently rarely. However, it still be selected as a feature for
predicting AECOPD by using feature engineering. Moreover, the SHAP value demon-
strate that oral bronchodilators are positively correlation with the probability of AECOPD,
which means patient who received oral bronchodilator may have high risk of AECOPD.
Previous studies indicated that the relative risk of hospitalization was slightly higher in
oral bronchodilator compared with inhaled long-acting bronchodilators [32]. There are
some factors associated with use of oral bronchodilator in COPD management has been
reported. First, although oral bronchodilators are not recommended for COPD treatment,
that is except when the use of any inhaled medications is impossible such as patients with
disability or patient refuse inhale bronchodilator [33]. Another possibility is that physicians
with poor adherence to GOLD guidelines who use oral bronchodilator-based regimens
as the mainstay for management of COPD. Taken together, although oral bronchodilator
is not recommended as a critical variable in the development of AECOPD, inappropriate
use of oral bronchodilators may lead to poor quality of management of COPD, which
contribute to AECOPD. Our model provides a history of oral bronchodilators use and
its correlation of AECOPD, which can help physicians to review and surveil the inap-
propriate bronchodilator uses to decrease inadequate oral bronchodilators and optimize
inhaled treatments.

The risk prediction features are used to identify the patients with COPD for whom
targeted interventions may significantly affect treatment outcomes. In addition, the detailed
interpretable information and explainable risk factors included in the results may provide
physicians with more insight, helping them to understand personalize the management of
patients with COPD; moreover, physicians are not being asked to blindly trust the results
of the model. In further application scenarios, our model may not only help physicians
determine which patients are at high risk for AECOPD, but also allow physicians to
understand the influence of key features that exert a significant effect on a patient’s risk for
AECOPD. To our knowledge, our study is the first to establish a personalized explainable
ML-based model for predicting AECOPD using local explanations, which are crucial for
making personalized health care recommendations for preventing AECOPD.

The predicted probability of AECOPD is around 0.27–0.52 and the local explanations
plots with balanced patterns in green and red bars hint at the likelihood of a false positive
prediction. When a positive prediction is made, it will prompt physicians to review a
patient’s clinical symptom and treatment strategy. Additionally, the registered nurses
specialized in COPD care can call the patient a few days after this outpatient clinic to keep
concerns about the patient’s condition. Instead, patients will appreciate the caring call and
feel like they are being cared for by the clinical facility. Therefore, there is less a threat to
patient safety due to the use of inappropriate predictions.

Our study has some limitations. First, we used data from a single health care system,
and although the results may be useful for local patients, they may not be generalizable to
patients receiving care in other health care institutions. Multicenter external validation is
required to optimize the models’ predictive performance. Second, we used only structured
data for developing the prediction model in the present study; further research is necessary
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to investigate the integration of multidimensional data, including unstructured data such
as images as well as environmental factors, individual habits, activities, and other factors,
to enhance the accuracy of the prediction models. Third, we only used common ML
techniques for constructing the prediction model. Recent studies have reported the use of
deep learning for constructing medical models, and the establishment of a deep learning
model for predicting first-time AECOPD is worth investigating in the future. Fourth,
seasonal variation in AECOPD incidence is a common phenomenon, but the rapid changes
in temperature were shown to be responsible for AECOPD incidence in two Taiwanese
studies [34,35]. COPD patients may be more sensitive to temperature change than the
general healthy population, and the trigger for exacerbations is short-term exposures to
such temperature changes. However, our current study may not be able to collect real-time
data on seasonal temperature changes, which is a limitation of this study.

5. Conclusions

In this study, the GBM model was able to accurately evaluate the risk of acute exacer-
bation in patients with COPD. Applying SHAP and local explanation allowed the model
to provide interpretable and visual explanations of individualized risk predictions, which
may assist clinical physicians in understanding the effects of key features in the model
and in understanding the model’s decision-making process. In conclusion, our model
provides an objective and interpretable prediction result that accounts for each patient’s
unique characteristics and can help clinicians tailor their treatment of patients with COPD
according to the patients’ individualized prognoses.
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