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Abstract
What cellular and network properties allow reliable neuronal rhythm generation or firing that

can be started and stopped by brief synaptic inputs? We investigate rhythmic activity in an

electrically-coupled population of brainstem neurons driving swimming locomotion in young

frog tadpoles, and how activity is switched on and off by brief sensory stimulation. We build

a computational model of 30 electrically-coupled conditional pacemaker neurons on one

side of the tadpole hindbrain and spinal cord. Based on experimental estimates for neuron

properties, population sizes, synapse strengths and connections, we show that: long-last-

ing, mutual, glutamatergic excitation between the neurons allows the network to sustain

rhythmic pacemaker firing at swimming frequencies following brief synaptic excitation; activ-

ity persists but rhythm breaks down without electrical coupling; NMDA voltage-dependency

doubles the range of synaptic feedback strengths generating sustained rhythm. The net-

work can be switched on and off at short latency by brief synaptic excitation and inhibition.

We demonstrate that a population of generic Hodgkin-Huxley type neurons coupled by glu-

tamatergic excitatory feedback can generate sustained asynchronous firing switched on

and off synaptically. We conclude that networks of neurons with NMDARmediated feed-

back excitation can generate self-sustained activity following brief synaptic excitation. The

frequency of activity is limited by the kinetics of the neuron membrane channels and can be

stopped by brief inhibitory input. Network activity can be rhythmic at lower frequencies if the

neurons are electrically coupled. Our key finding is that excitatory synaptic feedback within

a population of neurons can produce switchable, stable, sustained firing without synaptic

inhibition.

Author Summary

Rhythmic actions like chewing, scratching and walking need to be switched on and off.
Once started, rhythms are generated by networks of neurons in the brain and spinal cord
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which drive muscles. We use computer models of the swimming network in young frog
tadpoles to ask how electrically-coupled brainstem neurons with feedback excitation gen-
erate rhythmic activity and how this can be switched on and off by sensory stimuli. Young
tadpoles swim for several seconds when touched and stop when they contact a solid object.
Swimming rhythms can be generated by minimal populations of ~30 reticulospinal neu-
rons on each side of the brainstem. The sensory pathways providing excitatory start and
inhibitory stop signals are known. In our model network, based closely on biological evi-
dence, brief synaptic excitation can activate a stable swimming rhythm sustained by
mutual excitation among the reticulospinal neurons; swimming can be stopped by brief
inhibition. Model networks of more generic neurons with mutual excitation can produce
switchable, sustained non-rhythmic firing. We conclude that mutual excitation, providing
positive feedback, can enable stable rhythmic or non-rhythmic firing in small neuron pop-
ulations that can be rapidly turned on and off by sensory inputs.

Introduction
Many rhythmic motor patterns are generated within the nervous system by networks of neu-
rons [1–6]. The mechanisms generating activity are well studied across vertebrates and inverte-
brates and computer network simulations can produce sustained output patterns similar to
those in real animals: locust flight [7], salamander walking [8] and swimming in sea slug [9,
10], leech [4, 11], lamprey [12] and tadpole [13]. Despite this, key questions remain: the relative
importance of cellular pacemaker properties versus network properties for rhythm generation;
the roles of electrical coupling in neuronal synchronisation; whether feedback from mutual
excitatory synapses can sustain activity; and finally, how rhythmic activity is controlled by sen-
sory stimuli.

Our model organism, the hatchling Xenopus tadpole, responds to brief touch stimulation
with several seconds of swimming which stops when it contacts a solid object. The sensory
pathways controlling swimming and the specific populations of CNS neurons involved in gen-
erating the swimming rhythm have been defined in detail anatomically and physiologically
[14,15]. During swimming, neurons fire once per cycle in antiphase with those on the opposite
side and drive the firing of motor neurons. This produces alternating bends at frequencies
from 10 to 25 Hz [16]. A population of reticulospinal hindbrain neurons (descending INter-
neurons—dINs) play a critical role. They fire first on each side on each cycle and provide syn-
chronous, glutamatergic excitation to both their own population and to other neurons on the
same side [17, 18, 19]. Mutual excitation within the dIN population underlies the self-sus-
tained, pacemaker-like rhythmic firing which drives swimming [19]. Lesion studies have
shown, firstly, that neurons in a short, 0.3 to 0.4 mm region of the hindbrain and spinal cord
(grey in Fig 1A and 1B; [17]) are sufficient to generate a basic swimming rhythm and, secondly,
that a single side of the CNS can generate sustained rhythm in a slightly higher frequency
range (15 to 30 Hz; [20]).

Using tadpole swimming as the specific case study, we build a computational model to try
to understand how small populations of electrically-coupled neurons act as pacemakers to gen-
erate a self-sustaining rhythm of firing which can be turned on and off by brief external synap-
tic input from experimentally defined neuronal pathways. We use a biologically based model of
the minimal population of 30 electrically-coupled reticulospinal dIN neurons [17,19,21,22].
We ask whether: 1) mutual NMDAR-mediated excitation, including the ability of NMDAR
activation to induce pacemaker firing, is a basis for sustained rhythm generation; 2) brief
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synaptic input can switch sustained activity on and off; and 3) rhythm generation based on
mutual NMDAR-mediated synaptic connections can occur in networks of simpler, generic
neurons. The results are of relevance to many other brain networks generating episodic rhyth-
mic activity or the sustained firing required to control eye or limb position [23].

Methods

Neuron and synapse model details
A custom Python toolbox ('morphforge’) was used to perform simulations of small networks
[24]. A dIN neuron model was built with a multicompartmental axon. This had a single com-
partment for the soma and dendrites since previous work [25] had shown that the short extent
of dendrites in these young neurons means that they form an electrotonically compact unit
with the soma. The axon had many compartments and an axo-axonal gap junction distribution
scheme for a population of 30 dINs was used to produce a network of 30 electrically-coupled
dIN neurons as in our previous study [21]. Briefly, the dINs were arranged in a column, with a
spacing of 10 μm between adjacent somata. The dINs have descending axons, and gap junc-
tions with 600 MO resistances were created between overlapping axons close to the soma of the
more caudal neuron. The dINs contain leak, sodium, calcium and fast and slow potassium
channels. The sodium and potassium currents are modelled as Hodgkin-Huxley-type currents,
and the calcium model uses the Goldman-Hodgkin-Katz formulation [26–28]. Synaptic con-
ductance at chemical synapses are calculated as the difference between two decaying exponen-
tial functions (A and B, for opening and closing) with time constants (τo,τc). 1ms after the
presynaptic action potential crosses a threshold of 0mV in the soma (to introduce a synaptic
delay), a step increase of 1 occurs in the values of A and B[13]. AMPAR and NMDAR synaptic
conductance rise and fall times were taken from 13. The GABA mediated inhibitory synaptic
potential times were fitted to current clamp data [29]. A scaling factor, (tcmax) was included
which is based on the time constants so that the maximum value of the difference was 1, allow-
ing us to express all synaptic strengths as peak-conductances. AMPA and NMDA synapses

Fig 1. The hatchling tadpole CNS with a population of electrically-coupled dIN neurons. (A) Top view
diagram of tadpole showing skin (blue), swimming muscles (pink), and CNS with hindbrain and spinal cord.
The CNS region able to generate swimming rhythm when isolated (grey) contains a population of*30 dINs
(brown) on each side. (B) On each side of the nervous system, the electrically-coupled population of ~30 dINs
in the isolated region make excitatory feedback NMDAR synapses onto each other.

doi:10.1371/journal.pcbi.1004702.g001
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were modelled using Eqs 1–7.

gsyn ¼ gpeak �
B� A
tmax

ð1Þ
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where gsyn is synaptic conductance with a peak of gpeak and Esyn is the reversal potential for the
synaptic current. The voltage-dependence of the NMDAR synapse was modelled by introduc-
ing an additional voltage dependent term vdepMg2+(V) which had no temporal dynamics, as
given in Eqs 6 & 7.

isyn ¼ gpeak �
B� A
tcmax

� ðV � EsynÞ � vdepMg2þðVÞ ð6Þ

vdepMg2þðVÞ ¼ 1

1þ Z� ½Mg2þ�o � expð�gVÞ ð7Þ

where η = 0.1 mM−1, γ = 0.08 mV-1 and [Mg2+] o = 0.5 mM. In simulations of the network in
zero extracellular Mg2+, the vdepMg2+(V) term was set to 1. Feedback synaptic connections
were made with a fixed probability of 0.2 between dINs.

In experiments to generalise conclusions from our models of tadpole neurons we used a
population of 30 simpler, single-compartment Hodgkin-Huxley neurons with direct soma to
soma electrical connections. These neurons had leak, sodium and potassium currents [27,30].
NMDAR and AMPAR mediated synaptic feedback connections were present between neurons
in the population, with a connection probability of 0.2 between any pair of neurons. Inhibitory
input to the population was modelled using synapses with a reversal potential of -70 mV and a
peak-conductance of 3 nS. It was activated ten times at 7 ms intervals starting at 300 ms and
1400 ms. The gap junctions were modelled as resistors of 100 MO connecting the somata, and
a pair of somata had a 0.2 probability of forming an electrical connection. The neurons had
noise in the conductance densities of the membrane channels, as in [21,24] and the peak con-
ductances of the synapses were normally distributed (σ2 = 0.1).

Model of synaptic input to activate the swim network
Data from whole-cell recordings showing responses of trigeminal sensory pathway neurons
(tINs) to head-skin stimuli [31] were used to model the synaptic input which reticulospinal
dINs receive following head skin stimulation (see Results section for further details of this path-
way). In life a tIN will fire between 0 and 5 spikes depending on the stimulus level, so a simple
model was built that generated a set of spike times for a single tIN in response to graded sti-
muli. The stimulus strength, s, was normalised so that s = 100% corresponded to a head-skin
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stimulus at the threshold level required to initiate swimming. This model was used to drive
EPSPs in the dINs to model sensory excitation from a biologically-realistic population of 20
tINs. In the tIN spike time model, the number of spikes fired, n, at a given stimulus level, s, was
generated from the probability distribution p(N = n, S │ S = s) (Fig 2A). This simple model was
based on the observations that: a) the mean threshold stimulus that leads tINs to fire a single
spike is ~95% (94 ± 6%), (i.e. p(N = 1, S │ S = 95%) = 0.5); b) at 100% stimulus all tINs fire a
single spike (i.e. p(N = 1, S │S = 100%) = 1.0); c) as stimulus strength increases above 100%,
some tINs begin to fire multiply, but some always fire only a single spike (10/34) (p(N = 1 S│
S> 120%) = 0.3); and d) the distributions for the number of spikes firing at high stimuli
(S> 120%) were estimated based on counts of spikes at higher stimulation levels [31]. Next,
the number of spikes, n, fired by a model tIN was converted into timings, {t1, t2. . .tn}. The time
of the kth spike, tk was generated from a normal distribution tk = N(μ = μk, σ = σ k), where μk
and σ k are the means and standard deviations of the kth spike (Fig 2B). The values of μk and σ k

were calculated from experimental data taken at all levels of stimulation. The modelling
assumed that connections were monosynaptic with 100% tIN-dIN connectivity and that a
spike in a tIN had a 50% chance of causing an EPSP in each dIN [31]. A set of spike timings
was constructed for the population of 20 tINs and a simple model of unreliable synaptic trans-
mission was implemented in NEURON [32].

Results
In all tests we used the same basic model of a linear population of 30 reticulospinal dINs on
one side of the CNS and arranged in a longitudinal column (Fig 1B; [21]). All chemical synap-
ses with defined channel opening and closing times and reversal potentials were made onto the
single soma/dendrite compartment. The neurons were coupled via gap junctions between their
multicompartment descending axons. In experimental work, a curious property has been
observed in the dINs. They reliably fire a single action potential in response to in situ step cur-
rent injections but they fire repetitively at low frequencies (once per cycle) during swimming.
Modelling the dIN population has already shown how the single spiking behaviour could be a
result of their electrical coupling, rather than their individual membrane properties [21]. The
model dINs here have the same ion channels used in this previous study, including voltage-
gated sodium, calcium and fast and slow potassium channels as well as passive leak channels.

Fig 2. A simple generative model of spike times for a single tIN. (A) The probability distribution of a single
tIN firing different numbers of spikes at levels of head-skin stimulation. (B) The times of the spikes measured
experimentally are shown as coloured crosses and the means and standard deviations (μk and σk) used to
generate the spike times of a model tIN. Means are shown as coloured circles, standard deviations are
shown as horizontal error bars.

doi:10.1371/journal.pcbi.1004702.g002
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Since the dINs are electrically coupled, voltage clamp experiments are difficult so the models of
the active channels are based on voltage-clamp recordings of other spinal neurons.

Pacemaker responses of the dIN population to NMDA perfusion
During tadpole swimming dINs fire once on each cycle and release glutamate to excite each
other [17]. The glutamate activates NMDARs and summation is proposed to produce a sus-
tained background depolarisation. The effects of NMDAR activation have previously been
examined experimentally by perfusing NMDA over one half of the tadpole CNS while record-
ing from a dIN [19]. It was found that NMDA perfusion led to depolarisation and, if this was
sufficient or combined with positive current injection, rhythmic, pacemaker-like firing at fre-
quencies of 5–30 Hz were seen in the recorded dINs so long as Mg2+ was present (Fig 3B). The
Mg2+ confers a voltage dependence on the NMDAR-mediated current [33] which is not seen
during other synaptic currents or simple current injection and is not seen when extracellular
Mg2+ is removed. During swimming, inward currents underlying the sustained depolarisation
produced by summation of NMDAR excitation in the tadpole have been measured in dINs
under voltage clamp and significantly correlate with swim frequency [34]. These currents
(measured with Mg2+ present and with dINs clamped at a holding potential of -55 mV) corre-
spond to conductances of 0.6–1.5 nS for a range of swimming frequencies of 15–20Hz.

To model rhythm generation induced experimentally by NMDA perfusion over the dIN
population on one side of the tadpole CNS, we implemented a model (Fig 3A) where each dIN
had a single synapse at the soma/dendrite whose NMDAR channels [13] had slow opening (5
ms) and very slow closing (10 s) time-courses. The NMDAR conductance could be simple
(without extracellular Mg2+; modelled by setting vdepMg2+(V) to 1) or have voltage dependency
(with extracellular Mg2+; Fig 3D). To investigate the underlying effects of NMDAR activation
on dINs, their firing was turned off by removing their sodium channels. Modelling NMDA per-
fusion by increasing NMDAR activation in all dINs together caused increasing steady-state
depolarisation in each neuron (Fig 3E, yellow symbols) which was larger without NMDAR
voltage-dependence (Fig 3E, pink symbols).

Just as in experiments [19], modelling NMDA perfusion by an activation of the dIN
NMDARs within the physiological conductance range (< 2 nS), and including NMDAR volt-
age dependence, could cause the whole dIN population to fire repetitively and synchronously
at frequencies like those observed during tadpole half-CNS swimming (15–30 Hz; [20]) (Fig
3A and 3C and 3H). Interestingly, robust rhythmic firing continued to increase with NMDAR
activation (= synaptic input strength) for a wide range of conductances beyond the physiologi-
cal level, eventually reaching frequencies much higher than observed in the tadpole (Fig 3F and
3H). Unlike the experimental findings, sustained firing also occurred in simulations without
NMDAR voltage dependence (Fig 3H). Here, a lower level of NMDAR activation was required
for dINs to reach firing threshold, since the resulting conductance at each synapse was higher.
As synaptic input strength was increased above firing threshold, the dIN population firing fre-
quency again increased (Fig 2H), also reaching levels higher than found experimentally in the
tadpole. Firing was robust, but over a narrower range of conductances than with NMDAR volt-
age dependence present; at higher NMDAR conductances, dINs became unable to repolarise
sufficiently to allow firing of more than one action potential (Fig 3G and 3H). We conclude
that, with voltage dependence present, physiological levels of sustained NMDAR activation in
the model dIN population can lead to rhythmic firing within the tadpole half-CNS swimming
frequency range, and that this rhythm is sufficiently robust to continue, at higher frequencies,
even at levels of synaptic input strength beyond the physiological range.

Modelling Rhythmic Brainstem Neurons

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004702 January 29, 2016 6 / 19



Fig 3. Perfusing NMDA onto the dIN populationmodel. (A) The population of electrically-coupled dINs, onto which NMDAwas perfused. (B) In life,
perfusion of NMDA onto a dIN causes depolarisation and repetitive firing (black traces from Fig 2 in Li et al., 2010 [19]) where hatched bar denotes NMDA
perfusion. Red box shows region expanded below. (C) Similar firing is seen in a model dIN (blue trace) where green line shows the NMDA activation reaching
a maximum conductance of 1 nS. (D) Current-voltage curve of a single model dIN NMDA synapse, with (yellow) and without (pink) voltage dependence. (E)
The steady state membrane potentials of dINs as a function of NMDAR conductance (with sodium channel conductance set to zero to prevent firing) with and
without voltage dependency of the NMDAR as in D. (F—H) The response of the network of 30 dINs to NMDA perfusion with (F) and without (G) voltage
dependency. Top: somatic membrane voltages (all dINs overlapped), middle: somatic membrane voltage of dIN number 15, bottom: conductance of NMDAR
synaptic channels. (H) Plots of dIN firing frequency vs NMDAR conductance with (yellow) and without (pink) voltage dependence. Grey bar shows synaptic
strength used in plots F and G (7.5nS). Blue bar shows estimated total synaptic conductance to a neuron during swimming, based on voltage clamp
recordings (0.6–1.5nS). Green area shows the range of swimming frequencies observed in the tadpole.

doi:10.1371/journal.pcbi.1004702.g003
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Effects of mutual glutamate excitation on dIN responses to brief synaptic
excitation
A brief stimulus to the tadpole skin is normally sufficient to initiate swimming which can last
for many seconds [15]. Recently, a simple pathway has been identified in the tadpole, which
can initiate swimming in response to head skin stimulation [31]. Sensory neurons innervate
the tadpole’s head skin, and form excitatory synapses onto a population of hindbrain trigemi-
nal interneurons (tINs) which fire briefly to excite dINs in the hindbrain. At low levels of head
skin stimulation, Excitatory Postsynaptic Potentials (EPSPs) are seen in the dIN population,
but as stimulus intensity increases the whole dIN population is recruited to fire and swimming
starts. This raises the question: what keeps swimming going after input from the tINs declines?
Recordings have shown that dINs in the hindbrain and rostral spinal cord make reciprocal, glu-
tamatergic, excitatory synaptic connections with each other [17]. It was therefore proposed
that when the dIN population fires, these mutual synapses activate the NMDARs on other
members of the dIN population, and the result acts like a perfusion of NMDA to turn on their
pacemaker firing as described above (see Fig 2B of [19]). The NMDAR synaptic conductances
between dINs are expected to sum from cycle to cycle during swimming to maintain a level of
depolarization [17,35]. We investigated the effect of summation by driving a single NMDAR
synapse with spike trains of different frequencies (Fig 4) and found that, while considerable
summation was possible at high frequencies, the conductances for typical swimming frequen-
cies of 10 to 25 Hz would sum to reach a maximum of only between 2 and 3 times the peak-
conductance of a single synaptic event. Summation therefore allows the mutual excitation
between dINs to be sustained from cycle to cycle without becoming excessive.

We then asked if the glutamate mediated feedback excitation between members of the dIN
population would allow the network to switch from rest to sustained swimming following brief
synaptic excitation from a ‘sensory’ pathway? To model the sensory activation of the dIN net-
work we introduced excitatory glutamatergic synapses mimicking those from trigeminal inter-
neurons (tINs) onto dINs (Fig 5A). The timing and synaptic strengths of this excitation were
based on experimental measures of tIN firing times in response to head skin stimulation, and
EPSP amplitudes measured in dINs when tINs fired ([31]; see Methods). This synaptic input to
the dINs produced long-lasting conductance increases, resulting in long-duration EPSPs (Fig
5B and 5C). If these were large enough, then the whole dIN population was recruited and fired
action potentials that were synchronised by their electrical coupling [21].

Fig 4. Summed conductance of feedback NMDAR synapses as a function of frequency. (A) Spike
trains of different frequencies were delivered to a model NMDAR synapse with a closing time of 80 ms, and
the maximum conductance recorded experimentally. (B) Faster spike trains produced a larger maximum
conductance. At the frequencies of tadpole swimming, the conductances did not rise above ~3 times the
conductance of a single NMDAR synaptic event (yellow trace).

doi:10.1371/journal.pcbi.1004702.g004
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To investigate whether synchronised dIN initial firing could lead to continued rhythmic fir-
ing, the electrically-coupled network of 30 dINs was used, as before. Mutual glutamatergic syn-
aptic connections were added, with a connection probability of 0.2 between pairs of dINs (Fig
5A; glutamate feedback). We modelled these glutamate synapses with a fast AMPA component
and a slow, voltage-dependent NMDA component [13,19]). The resulting EPSPs decayed in
300 to 400 ms (Fig 5C) and so could sum when dINs fired even at low rates (see above; Fig 5D
blue trace). If their mutual synapses were made sufficiently strong the dINs could maintain
their own rhythmic firing after brief sensory excitation, producing a switch into sustained
rhythm (Fig 5E and 5F).

Fig 5. The response of a dIN network with feedback glutamate excitation to brief sensory excitation.
(A) The network of 30 electrically-coupled dINs excited by sensory pathway tINs and with feedback
glutamatergic synapses. (B) The conductance time-courses of the feedback dIN excitation with faster
AMPAR (magenta) and slower NMDAR (green) components. (C) The resulting combined dIN to dIN EPSP.
(D—F) Response to sensory input from tINs at 100 ms. (D) The conductance of sensory synapses onto one
dIN (magenta: AMPAR, green: NMDAR) and summed NMDAR conductance from dIN feedback (blue). (E)
After firing once to sensory input from the tINs, the dIN network shows rhythmic activity within the tadpole
frequency range driven by feedback NMDAR excitation (0.11nS/synapse). (F) A single dIN voltage trace from
E. (G) The effect of dIN to dIN NMDA feedback conductance on dIN firing frequency (conductance values are
for a single dIN to dIN synapse). Rhythmic firing at physiologically observed frequencies is observed (green
area). At low levels of synaptic strength, swimming is not reliable (red area, I). (H) At higher levels of feedback
synaptic strength (0.15 nS/synapse) firing is outside normal tadpole range. (I) At lower feedback strengths
(0.07nS/synapse) rhythmic firing cannot self-sustain and activity ceases after a few cycles.

doi:10.1371/journal.pcbi.1004702.g005
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We explored the relationship between the strength of mutual "feedback" excitation and dIN
rhythmic firing in more detail (summarised in Fig 5G). At the lowest levels of NMDAR feed-
back excitation above threshold, rhythmic firing of dINs was produced but was not sustained.
At levels of NMDAR conductance just above this, rhythmic firing in the dIN population was
reliably maintained, at frequencies like those observed in the tadpole half-CNS (Fig 5E and 5H;
points indicated in Fig 5G). As with tadpole swimming, the frequency of dIN network firing
increased with the strength of feedback excitation. Frequency continued to increase at conduc-
tance levels beyond the physiological range with firing frequencies eventually reaching a pla-
teau at ~60 Hz. At these high feedback excitation levels (unitary conductances> 0.25 nS), the
rhythmic activity generated was abnormal with some dINs failing to fire full action potentials.
When the electrical coupling between the dINs was removed, synaptic activation of the net-
work still led to firing that was sustained by the feedback excitation but now each dIN fired
independently so there was no synchronous rhythm. In this case, the fast, chemical, synaptic
excitation mediated by AMPARs was not sufficient to synchronise dIN firing.

Synaptic termination of rhythmic activity
Having explored the switch to generation of sustained rhythmic activity in a small electrically-
coupled network, we then investigated termination of this activity. In life, a swimming tadpole
stops when it swims into a solid object causing pressure to the front of the head and cement
gland [36]. In physiological experiments swimming can be stopped by pressure to the head
skin via an identified inhibitory pathway [29]. Primary trigeminal afferent neurons innervating
the cement gland and head skin form excitatory synapses onto Mid-Hindbrain Reticulospinal
neurons (MHRs). These, in turn, release Gamma-Aminobutyric acid (GABA) to terminate
swimming. MHRs fire multiply when the cement gland is pressed, and in response to step cur-
rent injection they fire at frequencies between 40–140 Hz. It has been shown that activation of
a single MHR, producing ~5 spikes, is sufficient to stop swimming in the whole tadpole [29].
This reliable sensory response provided an opportunity to use modelling to study an experi-
mentally-defined example of rhythm termination.

To investigate whether the dIN population could be switched off by a biologically realistic
pathway, we implemented a simple model of an MHR inhibitory GABA-A synapse connected
to each of the dINs (Fig 6A). The synapse specification was based on current clamp recordings
of Inhibitory Postsynaptic Potentials (IPSPs) produced in tadpole spinal neurons by MHR
stimulation, and from the literature (Fig 6B) (τo = 1.5 ms, τc = 20.0 ms, Erev = −70 mV, gpeak =
2 nS; see Methods) [27,29]. The strength of the feedback glutamate/ NMDAR excitation in the
30 dIN network was set so that the swimming frequency stabilised within the swimming range
at ~25 Hz. The network was activated to start producing rhythm using the tIN pathway as
before and, after 700 ms, the inhibitory synapses were activated 5 times at 15 ms intervals; this
is equivalent to 66 Hz which is at the low end of MHR firing frequencies [29]. This inhibitory
input (Fig 6C upper trace) produced a large compound IPSP in the dINs like the MHR pathway
and reliably switched off rhythm generation (Fig 6C lower traces).

We investigated the effectiveness of the stopping pathway and found that a single IPSP
(maximal conductance of gpeak = 2 nS) delivered to all dINs simultaneously would stop spiking
in 25% of simulations (Fig 6D and 6E). The effectiveness of a single IPSP depended on the time
in the cycle when the inhibition arrives. It could have little effect, delay dIN firing (Fig 6D), or
terminate firing (Fig 6E), and we found that IPSPs were more effective at stopping activity
when they arrived later in the swim cycle. We then ran simulations in which the number of
spikes (nspikes) and the interspike intervals (ISI) in the MHR were varied (nspikes:1, 2, 3, 4 &
5 spikes, ISI: 10, 15 & 20 ms, gpeak = 2 nS). The probability of stopping increased when the
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duration of inhibition [calculated as (nspikes-1) x ISI] was increased, either by adding more
IPSPs or increasing the interval between them (Fig 6F). The inhibition needed to hyperpolarise
the dINs for long enough to allow the background NMDA excitation to decay sufficiently to
prevent further dIN firing once the inhibition has finished. In life when the tadpole’s head is
pressed and swimming stops, it is likely that dINs will receive input from many MHRs, both
contralateral and ipsilateral [29]. Our modelling shows that, under these circumstances, a short
period of synaptic inhibition can reliably stop activity in the dIN network even when the num-
ber of inhibitory synapses fromMHRs to dINs is low.

Rhythm generation by networks of generic neurons with mutual
excitation
The tadpole reticulospinal dINs that we have investigated here have a characteristic set of cellu-
lar properties [17,19,22]. To test the robustness of our findings based on the rather specific
details of the tadpole reticulospinal dIN network, we asked whether less specialised populations
of neurons with mutual excitatory connections also generate self-sustained activity. Positive
feedback connections are often thought to lead to instability so we explored whether this was

Fig 6. Switching off the swimming network using synaptic inhibition. (A) The dIN network with MHRs to
inhibit all dINs synchronously. (B) The model GABA-A IPSP in a dIN (light grey, offset by 10 mV) matches the
time-course of recorded MHR IPSP in a spinal neuron (black; Perrins et al. (2002) [29]). (C) Sensory
activated rhythm generation in the dIN network (lower voltages traces), is turned off at 700 ms by five IPSPs
from the MHR pathway (red conductance trace) in each dIN. (D, E). A single inhibitory synaptic event
delivered to all the dINs simultaneously could delay (D) or terminate firing (E). Lower red traces show the
inhibitory conductances onto a single dIN. (F) Stopping becamemore reliable as inhibition was made longer.

doi:10.1371/journal.pcbi.1004702.g006
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the case. In the tadpole, the dINs play a specific role in swimming and, when activated by
applying NMDA, have a very low and limited firing frequency range compared to other neu-
rons (5 to 30 Hz; [19]). We have shown that a network of neurons with dIN properties can pro-
duce stable firing at higher rates (up to ~60 Hz), but most neurons in the tadpole, and in other
animals, can typically fire at even higher rates (up to 200 Hz). We therefore investigated
whether populations of more typical neurons with higher intrinsic firing frequencies could
generate self-sustained firing if they made mutual excitatory synaptic connections.

The multicompartment dINs in the model network were replaced with single compartment
model neurons with conventional Hodgkin-Huxley (HH) parameters [30]. As previously, the
neurons in the network were driven by brief glutamate excitation to switch them on, had excit-
atory glutamate (NMDAR and AMPAR) synaptic feedback connections, were electrically cou-
pled and had an inhibitory 'stop' input (Fig 7A; details in the Methods section). When briefly
excited synaptically, the network was triggered to generate sustained firing activity provided
the feedback NMDAR synaptic conductance was sufficiently large (Fig 7C–7F; indicated as E
in Fig 7B). Inhibitory synaptic input (like the MHR pathway) was able to turn off this firing. As
with the dIN network, when the excitatory feedback strength was low, firing activity was not
always sustained (Fig 7B, left green area); members of the population generated action poten-
tials for several hundred milliseconds but the network then returned to rest (Fig 7G; point indi-
cated in Fig 7B). However, when excitation was increased, firing became reliable and the mean
firing frequency of neurons in the network increased to a maximum of ~130Hz. As the feed-
back excitation was further increased, mean firing frequency decreased again and became unre-
liable (Fig 7B, right green area). In some cases, neurons which did not fire at initiation, would
fire later once the sensory component of excitation decayed (Fig 7H top raster line). Although
the model neurons were similar to each other, the random differences assigned to their synap-
tic and ion channel conductances led them to fire asynchronously. Low levels of electrical cou-
pling (100 MO) between every pair of neurons could make small sub-groups of neurons fire
together, but electrical coupling was not able to synchronise firing in the whole population.
Removing electrical coupling from the network had little effect on the responses. These results
show that, even without special cellular properties, small mutually excitatory populations of
neurons can generate stable self-sustained firing activity which can be controlled by external
synaptic input.

Discussion
Persistent activity occurs in motor systems controlling the position of eyes and limbs and also
in areas of cerebral cortex involved in short-term memory and in many sub-cortical brain
regions [23]. The details of how it is generated often remain unclear but can be based on cellu-
lar or network mechanisms. Modelling a specific biologically well-defined system has allowed
us to address some fundamental questions about how neuronal networks with mutual feedback
excitation generate sustained activity which can be turned on and off by synaptic input. Our
approach has been to build a biologically realistic computational model of a population of reti-
culospinal neurons in the hatchling tadpole brainstem. This model is based as far as possible
on experimental data for the tadpole, and models a network with the particular properties
observed in the tadpole, where there is as yet no clear evidence for either persistent currents
and plateau potentials [37–40] or significant cholinergic involvement [41]. The aim was to
explore the properties of this kind of organisation, and how it can be controlled (turned on and
off) rather than attempting a wider survey of mechanisms for sustaining activity. Our model
has provided a quantitative platform to ask questions which cannot be addressed directly in
vivo about the mechanisms controlling action potential firing in neurons driving motor
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responses. To generalise our conclusions we have also studied a simple network of generic neu-
rons with mutual synaptic excitation.

For the network controlling fictive swimming in hatchling tadpoles, we have demonstrated
central roles in sustaining activity for mechanisms identified experimentally. These are: volt-
age-gated membrane channels; feedback glutamate excitation; and voltage-gated magnesium
block of NMDA channels [17,18,42]. When these mechanisms are combined with electrical

Fig 7. Generalising the feedback excitation activity generationmechanism. (A) The network with HH
neurons replacing dINs (on/off; 100 ms/300 ms, 600 ms/1400 ms). (B) The effect of synaptic feedback
strength on neuron firing (green shows regions of unstable firing). (C—F) Network activity can be switched on
and off by brief synaptic input. (C) Shows the excitatory (green: NMDA, magenta: AMPA) and inhibitory (red)
input to the network. (D) Voltage trace of activity in one neuron. (E—F) Shows a raster plot of action potential
times for every 5th neuron in the network. (G—H) Raster plots of 10 neurons in a network with excitation at
100ms and without inhibition. (G) When feedback conductance was too low (gpeak = 0.15 nS); the network
was unable to sustain rhythm. (left, green region of B). (G) When NMDA feedback strength was too high
(gpeak = 2 nS), firing became unreliable.

doi:10.1371/journal.pcbi.1004702.g007
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coupling [21], they are sufficient to generate self-sustaining, synchronous, pacemaker-like fir-
ing activity in a model population of reticulospinal dIN neurons in one side of the hindbrain
without the need for any inhibitory feedback. We show that the voltage dependence of
NMDAR channels widens the range of NMDAR channel conductances over which model neu-
rons can be activated to fire, and that this improves the robustness of network rhythm genera-
tion. Rhythmic activity in this model population can be switched on and off robustly by brief
synaptic input, and non-linearities in the cellular and synaptic dynamics avoid instabilities
which might be expected in networks with positive feedback. We suggest that, although in life
the dIN population forms part of a bilateral network where reciprocal inhibition sets a firing
frequency of roughly twice the IPSP duration, the cellular properties of the dINs also contribute
to the firing frequency [19,43]. Finally we show that networks of generic neurons with mutual
NMDAR mediated excitation can sustain higher frequency, unsynchronised firing that can
again be turned on and off by brief synaptic inputs. Overall, these results suggest that small
synaptically-switchable networks with slow NMDARmediated feedback excitation may be use-
ful building blocks in the CNS toolbox and could be applicable where sustained neuron firing
or rhythmic activity needs to be generated and controlled. Examples are posture, eye position
and intermittent rhythmic movements, like swimming. In each case frequency could be con-
trolled by the size of the neuron population recruited.

Cellular pacemaker mechanisms and network mechanisms involving Post Inhibitory
Rebound (PIR) firing have been proposed to complement each other in producing rhythms in
many networks, from molluscs to mammals, [44–52]. This also seems to be the case in the tad-
pole. The pacemaker hypothesis is supported by experimental studies proposing that Central
Pattern Generator (CPG) neurons have intrinsic pacemaker properties [19,53,54]. However
until now there seemed to be a conflict as the excitatory dIN neurons driving swimming only
fired once to current injection during whole-cell recordings [17]. Recent modelling of an elec-
trically-coupled population of 30 dINs confirmed reliable single-spike firing when step current
is injected into a single dIN but showed that, in contrast, current injected into the whole model
dIN population simultaneously results in synchronous rhythmic firing [21]. It appears that the
single-spike firing seen experimentally is the result of reduced excitability arising from current
flow into electrically-coupled neighbouring dINs at resting potential. This means that the
intrinsic capacity of dINs to fire rhythmically as a whole population has remained concealed.
Previous modelling work on the tadpole investigated network mechanisms of rhythm genera-
tion and proposed that reciprocal inhibitory synaptic connections between the two sides of the
CNS play a role in rhythm generation by producing PIR firing in dINs that are already depo-
larised by their mutual excitation [13,54,55]. A role for PIR is favoured by recent experimental
evidence in the tadpole showing that optogenetic silencing of reciprocal inhibitory neurons can
stop the swimming rhythm [56]. This work emphasises the interaction of inhibition-based PIR
and pacemaker mechanisms.

Role of NMDAR voltage dependence in population pacemaker firing
One of the main conclusions of this modelling study is to confirm the hypothesis that a popula-
tion of neurons with mutual glutamatergic synapses can generate self-sustaining pacemaker-
like activity by activating their own NMDARs [17,19]. During pacemaker firing in the tadpole
dINs and during rhythmic swimming activity that they drive, it is likely that several mecha-
nisms limit firing on each cycle, including sodium channel inactivation and a slow-activating,
persistent potassium current [28,42]. After each impulse, both of these mechanisms act to pre-
vent further firing until neurons have been reset by the repolarisation of their membrane. As
discussed by Tabak and Moore [57], the characteristic voltage-dependence of NMDAR
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activation allows sustained excitatory drive to be delivered to dINs, whilst still allowing them to
repolarise to negative levels following each action potential. The voltage dependence of the
NMDAR channels therefore cooperates with spike repolarising currents by partially closing
synaptic conductance. This in turn permits fuller recovery from inactivation mechanisms and
contributes to pacemaker firing. Our simulations reflect this process, suggesting that the voltage-
dependency of the NMDAR is not an absolute requirement for rhythmic activity but it extends
the range of NMDAR activation over which rhythm can be generated (Fig 3H). The simpler,
non-voltage-dependent NMDAR drive to the dINs generates rhythm over a narrower frequency
range because higher levels of activation prevent repolarisation and block sodium channel reacti-
vation. NMDARs are activated in the soma/dendrite compartment whereas spike initiation
occurs in the initial axonal compartments where active channels are more dense. This separation
may contribute to preventing depolarisation block of spiking during NMDAR activation. Mecha-
nisms based on the interactions of potassium currents and voltage-dependent NMDAR currents
have also been found in other cases with much slower rhythmic firing [58–61].

The NMDAR-mediated feedback mechanism underlying rhythm generation in the tadpole
CNS will work in other populations of neurons with much higher intrinsic maximum firing
frequencies, for example classical Hodgkin-Huxley-type neurons. Our simple models of these
networks showed that at the higher frequencies, electrical coupling had little effect and, as a
result, these populations generated unsynchronised firing activity. Although non-rhythmic,
such small populations with feedback excitation would be particularly suited to systems where
activity needed to be switched on and off quickly by synaptic input.

Comparison of model with biology
Using the tadpole as a case study we have produced a model, based closely on experimental
results, of a specific small CNS neuron population with mutual NMDAr mediated excitation,
which is capable of reproducing key experimental results. However, it is an oversimplification.
For example, our model dIN network could fire rhythmically in the frequency range of tadpole
swimming during physiologically realistic levels of excitation, but was also stable when firing
faster at higher levels of excitation (~60 Hz). The model network could also fire rhythmically
in the absence of NMDA channel voltage dependency (without external Mg) and this does not
occur experimentally [19]. During NMDA perfusion, the tadpole reticulospinal dINs have a
low maximum firing frequency (< 30 Hz), within the normal swimming frequency range, even
when additional positive current is injected (Fig 3). It is possible that limits on dIN excitation
may be set by restrictions on the numbers of synapses they receive which act as a saturation
mechanism. The low and narrow dIN firing frequency band may also depend on limits set by
their specific cellular properties. Better evidence is required on the membrane channels they
express and the ways in which these might limit their upper firing frequencies in an electrically
coupled population [26,59]. Higher frequencies of NMDA induced firing in our model could
result from raised excitability as a consequence of increases in axonal Na channel density that
were included to improve action potential propagation by offsetting the shunting produced by
electrical coupling [21]. Additionally, action potentials recorded in dINs have a characteristi-
cally long rise time [13]. Voltage clamp records from other tadpole spinal neurons have sug-
gested the presence of a fast, inactivating A-type potassium channel with opening and closing
time constants< 3 ms [62]. Since A-type potassium channels are proposed to slow firing fre-
quency in other systems, [26,63] we introduced them into the dIN model. Better fits to the rise
time and shape of the action potential were found but tests showed that this had little effect on
the frequency of repeated firing of model dINs so it was not included in the network model. To
resolve why NMDAR activation can make our model dIN population fire too fast, why it does
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not lead to the 10Hz oscillations seen in experimental recordings with Mg present but when
Na currents are blocked [19], and why it can generate rhythmic firing in the absence of Mg,
further evidence on the membrane channel properties of dINs is needed based on new voltage
clamp recordings [59]. However, such experiments will still not provide the missing evidence
on the real properties of the very fine (<0.5 μm) unmyelinated axons of dINs, and this lack of
evidence is a very general problem for all investigations of such fine axons [64–68].

Although this work has focused on electrically-coupled neurons on a single side of the CNS,
the tadpole has bilateral populations of neurons which form connections with other neuron pop-
ulations to produce rhythmic, antiphasic firing on each side of the body during swimming
[13,15]. Mid-cycle inhibition from reciprocal inhibitory 'commissural interneurons' has been pro-
posed to organise the alternation of the two sides [54, 55]. The duration of reciprocal inhibition is
an important determinant of the cycle period by providing a delay on each cycle, either before a
subsequent pacemaker spike or before PIR firing. This inhibition also acts as another repolarising
mechanism for the rhythmic neurons, facilitating repetitive firing at high levels of excitation.

Conclusions
Many real neuronal networks generate rhythmic or continuous activity controlled by synaptic
input. Our model of a population of tadpole hindbrain neurons sustains rhythmic firing
through positive feedback onto itself. In many domains, such positive feedback risks uncon-
trolled exponential growth and instability. However, neuronal circuits contain many saturating
non-linearities which constrain firing activity and permit the use of positive feedback. All neu-
rons have a limited upper firing frequency, which in the tadpole dINs is particularly low. Addi-
tionally, the saturation of the NMDARs at feedback synapses, inactivation of sodium
conductances, and the activation of non-inactivating potassium conductances will help to pre-
vent run-away depolarisation and firing even without synaptic inhibition. We have explored
major features of the pacemaker mechanisms in the neuronal population driving tadpole
swimming and have shown that similar mechanisms could also lead to stable firing at higher
frequencies and in generic neuron populations. In both cases the voltage dependence of
NMDARs can facilitate strong drive to neurons without causing them to lock up. We have
built a model that reproduces many experimental findings although the specific channel cur-
rents which limit firing frequencies in tadpoles remain to be clarified experimentally. We have
demonstrated that electrical coupling plays a crucial role in synchronizing pacemaker popula-
tion firing so that, over lower frequency ranges, stable rhythmic activity is generated. Finally,
we have demonstrated that small, biologically-realistic populations of neurons with mutual
NMDAR mediated excitation are able intrinsically to sustain stable firing which can be
switched on and off via conventional excitatory and inhibitory synaptic input pathways. Small
neuron populations with these characteristics seem ideal for activating motoneurons to control
posture or eye position and intermittent rhythmic actions like locomotion.
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