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Abstract

The activation of TP53 is well known to exert tumor suppressive effects. We have 

detected a primate-specific adrenal androgen-mediated tumor suppression system in 

which circulating DHEAS is converted to DHEA specifically in cells in which TP53 has been 

inactivated. DHEA is an uncompetitive inhibitor of glucose-6-phosphate dehydrogenase 

(G6PD), an enzyme indispensable for maintaining reactive oxygen species within limits 

survivable by the cell. Uncompetitive inhibition is otherwise unknown in natural systems 

because it becomes irreversible in the presence of high concentrations of substrate and 

inhibitor. In addition to primate-specific circulating DHEAS, a unique, primate-specific 

sequence motif that disables an activating regulatory site in the glucose-6-phosphatase 

(G6PC) promoter was also required to enable function of this previously unrecognized 

tumor suppression system. In human somatic cells, loss of TP53 thus triggers activation 

of DHEAS transport proteins and steroid sulfatase, which converts circulating DHEAS 

into intracellular DHEA, and hexokinase which increases glucose-6-phosphate substrate 

concentration. The triggering of these enzymes in the TP53-affected cell combines 

with the primate-specific G6PC promoter sequence motif that enables G6P substrate 

accumulation, driving uncompetitive inhibition of G6PD to irreversibility and  

ROS-mediated cell death. By this catastrophic ‘kill switch’ mechanism, TP53 mutations 

are effectively prevented from initiating tumorigenesis in the somatic cells of humans, 

the primate with the highest peak levels of circulating DHEAS. TP53 mutations in human 

tumors therefore represent fossils of kill switch failure resulting from an age-related 

decline in circulating DHEAS, a potentially reversible artifact of hominid evolution.

Introduction

At 38.4%, the human lifetime risk of developing malignant 
cancer (Ahmad et al. 2015; https://www.cancer.gov/about-
cancer/understanding/statistics) is one of the highest in 
the animal kingdom. However, cancer risk is not spread 

out in a uniform manner over the entire human life span. 
Rather, cancer risk is extremely low in young humans 
and increases exponentially as we age. This age-associated 
increase in cancer risk observed in our species has been 
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thought to reflect the inescapable accumulation of DNA 
damage experienced over the human life span. A closer 
examination of the record indicates that in most species, 
cancer risk remains low and relatively flat throughout 
their life spans, even in animals such as elephants that 
have lifespans as long as ours (Buffenstein 2008, Fang 
et  al. 2014, Abegglen et  al. 2015, Sulak et  al. 2016). For 
example, a study of animals dying at the San Diego 
Zoological Gardens demonstrated that neoplasia was 
present at necropsy in 2.75% of 3127 mammals, 1.89% of 
5957 birds, and 2.19% of 1233 reptiles (Effron et al. 1977). 
A report from the Royal Zoological Gardens of Amsterdam 
described a tumor incidence of zero for fifty autopsied 
primates, and 5.7% for 35 autopsied carnivores (Borst et al. 
1972). An older study of 5365 necropsies of mammals and 
birds at the Philadelphia Zoological Gardens demonstrated 
an overall incidence of neoplasia of about 2% (Ratcliffe 
1933). Lombard & Witte (1959), also using data acquired 
at the Philadelphia Zoological Gardens, reported a tumor 
incidence of 1.59% in 754 circopithecidaen primates, and 
in a study at the Yerkes Primate Center, only six of 1066 
primates subjected to thorough postmortem autopsy 
demonstrated malignant cancer (McClure 1973). A recent 
large, multi-institutional study confirmed these earlier 
works in large measure, demonstrating that cancer risk in 
most long-lived animals is low (2–6%) and independent of 
life span (Abegglen et al. 2015). Cancer risk as a function of 
increasing age in elephants, wildebeest, moose and most 
other long-lived animals is thus linear, with little increase 
in slope with advancing age. This is in sharp contrast to 
cancer risk in humans, which increases in conformance 
with a logistic curve with a 30-year lag phase followed 
by steep exponential kinetics until very late in the life 
span. Taken together, these observations suggest that 
tumor suppression mechanisms in non-human species are 
generally of a type that does not substantially diminish 
over their lifespan, whereas those in humans do diminish 
with increasing age. The much lower cancer rate in 
other long-lived species also indicates that, when tumor 
suppression systems function throughout life, while most 
kinds of genomic damage may accumulate, that subclass 
of damage that would initiate tumorigenesis is efficiently 
extinguished.

The p53 tumor suppressor is an ancient protein 
found in organisms ranging from Caenorhabditis elegans 
to Homo sapiens (Derry et al. 2001). Because of its intimate 
role in countering neoplastic transformation in multi-
cellular animals, p53 has been dubbed ‘the guardian of 

the genome’. Over the past four decades, a paradigm has 
evolved in which p53 is thought to function in a very 
similar manner across widely disparate species. According 
to this paradigm, DNA damage activates the transcription 
factor properties of p53, such that DNA replication is 
halted until the damaged DNA can be repaired. If the 
damage is too great, p53 induces apoptosis by activation 
of an alternative pathway (for reviews, Schumacher 
et al. 2001, Kastenhuber & Lowe 2017, Yue et al. 2017). 
More than half of all human tumors have been found 
to have mutations in TP53 (the human version of p53), 
and TP53 appears to be inactivated by other means in 
the remaining tumors where such mutations are absent 
(Hollstein et  al. 1991, Petitjean et  al. 2007, Olivier 
et  al. 2010, Merkel et  al. 2017). Mutations in the p53 
gene are also prevalent in spontaneous tumors of dogs 
and cattle, species in which monitoring of neoplasia 
is routine, and p53 mutations in these species occur 
in the same ‘hot spots’ as in human tumors (Zhuang 
et  al. 1997, Loukopoulos et  al. 2003). Further support 
for the paradigm of a universal mechanism of action for 
p53 in mammalian cancer came from the finding that 
humans with germline mutations in TP53 experience an 
inordinately high risk of a wide array of tumor types 
before the age of 30 years (Varley 2003, Guha & Malkin 
2017) and that inactivation of p53 in the so-called  
p53-knockout mouse duplicates this high risk of a 
wide array of tumor types occurring at an early age 
(Lozano & Liu 1998, Kenzelmann Broz & Attardi 
2010). These findings have encouraged an exceptional 
degree of confidence among workers in the field that 
mouse models of tumor suppression offer reasonable 
approximations of mechanisms of tumor suppression in 
humans. Thus, for the past several decades, the guiding 
paradigm with respect to the p53 tumor suppressor has 
been that it functions in a more or less similar manner 
across species at least as diverse as man and mouse, and 
probably across species even more diverse than that. It 
is our belief, however, that the establishment of this 
paradigm has come at the expense of ignoring more 
fundamental paradigms associated with mechanisms 
of speciation. In this commentary, we discuss our deep 
reservations with the prevailing p53 paradigm, point 
out important ways in which it may have misled the 
endeavor of cancer research, both basic and clinical, 
and offer an alternative viewpoint based upon new 
discoveries in species-specific mechanisms of tumor 
suppression.
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Species-specific mechanisms of tumor suppression 
challenge the prevailing p53 paradigm

The concept of species-specific mechanisms of tumor 
suppression is gaining increasing support (Contente et al. 
2003, Wang et al. 2007, Leroi et al. 2013, Heyne et al. 2015, 
Tollis et  al. 2017, Zhou et  al. 2017). Recent evidence in 
the elephant (Abegglen et al. 2015, Sulak et al. 2016), the 
naked mole rat (Buffenstein 2008, Fang et al. 2014), the 
blind mole rat (Avivi et al. 2007, Shams et al. 2013) and 
canines (Nyce 2017), all support the concept that species-
specific mechanisms of tumor suppression may in fact 
be relatively common. This should not be too surprising, 
since every species’ evolution through spacetime is unique. 
The very concept of species entails variations on the 
themes of body size, lifespan, metabolic rate, reproductive 
rate, environmental niche and physical and biochemical 
adaptations to exploit that environmental niche, each 
of which can be expected to influence risk of neoplastic 
transformation. By presuming a universal mechanism 
of action for p53, the prevailing paradigm ignores the 
fact that all enabling elements of a species’ forward 
movement through spacetime represent variables that 
are under integrated selection to maximize exploitation 
of environmental resources and to simultaneously minimize 
opposing forces, such as neoplastic transformation. It thus 
stands to reason that mechanisms of tumor suppression 
may evolve that incorporate features unique to a particular 
species, particularly in longer-lived and larger animals. 
The current paradigm of universal mechanisms of tumor 
suppression that are independent of species therefore 
appears to be incorrect and may have led us quite far 
down an unproductive path. For example, Mus musculus 
and Rattus norvegicus were selected as model systems for 
the study of human cancer precisely because they were 
small, had short, accelerated life spans and had a high 
reproductive rate – exactly the features that, in hind sight, 
would be expected to make them species-specific models 
of murine, not human, cancer. To put this in the sharpest 
possible relief, murine species use small size and short 
lifespan as mechanisms to maximize exploitation of their 
environment while simultaneously minimizing neoplastic 
transformation. Small size minimizes the number of stem 
cells at risk for neoplastic transformation, and short 
lifespan resets accrued mutations to near zero at very 
short intervals in successive generations, spreading risk 
across time. This murine strategy is very efficient in that it 
requires only the canonical p53 repertoire already so well 
analyzed using p53-knockout mice. The prevailing p53 

paradigm thus appears to provide accurate descriptions 
of this minimalist approach to tumor suppression taken 
by small, short-lived animals such as mice. As we shall 
discuss, it is a completely different tumor suppression 
strategy than those that evolved in larger, longer-lived 
species such as humans, elephants and whales – the 
strategies of which will clearly be as different from each 
other as they are from mice because of the different 
environments they exploit, and the species-specific 
mechanisms that have evolved to enable exploitation of 
those environments. Such species could only evolve large 
bodies and long lifespans by augmenting the canonical 
p53 repertoire in ways that are frequently specific to 
their lineage and sometimes specific to their species. 
Such considerations, and our identification of a primate-
specific adrenal androgen-mediated tumor suppression 
system dependent upon circulating DHEAS – which does 
not occur in murine species – quite strongly suggest that 
data provided by mouse and rat models are applicable 
only to those species and are completely incapable of 
meaningful translation to human cancer. We are not the 
first to make this observation:

"The history of cancer research has been a history of curing 
cancer in the mouse. We have cured mice of cancer for 

decades – and it simply didn’t work in humans."

– Dr Richard Klausner

Former Director of the National Cancer Institute 
(Cimons et al. 1998)

Identification of an Anthropoid primate-specific  
kill switch tumor suppression system

Exposure to significant cellular stress is well known to 
activate the p53 tumor suppressor to induce apoptosis 
by both transcription-dependent and transcription-
independent mechanisms (Speidel 2010, Le Pen et  al. 
2016, Castrogiovanni et  al. 2017). We have recently 
reported our detection in canines of a rudimentary 
form of an otherwise primate-specific adrenal androgen-
mediated ‘kill switch’ in which cell death is triggered 
by the inactivation of p53 (Nyce 2017). By analogy with 
other long-lived animals such as the elephant, this 
adrenal androgen-mediated kill switch mechanism may 
represent the primary means of defense used by our 
species to prevent transformation caused by genotoxins. 
It has been hiding in plain sight within the p53 
repertoire and may have kept so well hidden because 
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it depends on the unique, primate-specific evolution 
of extraordinarily high post-natal levels of circulating 
DHEAS. In humans, this begins at about age 6  years 
with the advent of adrenarche – the development of 
the adrenal zona reticularis, a tissue the only apparent 
function of which is to synthesize DHEAS in extremely 
large amounts and secrete it into the bloodstream (Bird 
2012, Rege & Rainey 2012). While both Anthropoid 
primates (humans, chimpanzees, bonobos, gorillas, etc.) 
and Strepsirrhine primates (lemurs) have circulating 
DHEAS, such levels are orders of magnitude higher in 
Anthropoid as compared to Strepsirrhine primates, 
and true adrenarche may only occur in the human, 
chimpanzee and bonobo (Nakamura et al. 2009, Behringer 
et  al. 2012). Nevertheless, dogs have a rudimentary 
zona reticularis and a homologue of adrenarche has 
been reported in them (Schiebinger et  al. 1981, Perez-
Fernandez et  al. 1987). Based upon this finding, we 
formulated the hypothesis that canines might also 
possess a homologue of the otherwise primate-specific 
adrenal androgen-mediated tumor suppressor system 
and that at least some canine tumors might retain 
sensitivity to triggering of this system. Indeed, certain 
canine tumors do respond to triggering of the kill switch 
in a manner that has never, to our knowledge, been 
observed in murine models (Nyce 2017).

Circulating DHEAS does not occur in common 
laboratory rats or mice, and the near exclusive use of 
such rodent models in cancer research over the past 
40 years clearly contributed to the delay in the discovery 
of the primate-specific, adrenal androgen-mediated kill 
switch tumor suppression system. Additional research 
impediments have also contributed to the kill switch 
mechanism remaining occult throughout these decades 
of p53 research. Thus, it cannot be studied in transformed 
cells, because these have already escaped succumbing 
to it because of kill switch failure (see below); following 
such failure, such transformed cells have also incurred 
an obfuscating patchwork of follow-on mutations and 
epigenetic variations. The kill switch tumor suppressor 
system is also a single cell phenomenon, and single cell 
analysis techniques have not yet reached the level of 
sophistication required to detect in real time a unique 
event occurring in a vast excess of unaffected cells at an 
approximate rate of 2 × 10−7; let alone an event designed 
to extinguish that cell from existence. Our detection of 
this kill switch tumor suppression mechanism depended 
upon a rudimentary form of it occurring in dogs, and the 
fact that our laboratory works exclusively with dogs with 
spontaneous cancer (Nyce 2017).

The mechanics of the kill switch

DHEAS and DHEA represent the Dr Jekyll and Mr Hyde 
of androgen biology. DHEAS can circulate at very high 
levels without toxicity because, as a hydrophilic anion, 
it requires active transport into the cell and, as long as 
it remains in its sulfated form, it exerts no untoward 
effects upon intermediary metabolism. DHEA, on the 
other hand, is lipophilic, freely diffuses into cells, 
and is a potent uncompetitive inhibitor of the critical 
enzyme glucose-6-phosphate dehydrogenase (G6PD). 
Circulating DHEA must therefore be maintained at very 
low serum concentrations, orders of magnitude below 
its inhibition constant for G6PD (Ki = 18.5 μM; compare 
DHEAS Ki = 310 μM (Gordon et  al. 1986); peak serum 
concentrations of DHEA of ≈ 30 nM, and of DHEAS 
of ≈ 11.5 µM (Labrie et al. 1997)). Because of its extreme 
rarity, the mechanics of uncompetitive inhibition are 
frequently ignored. Uncompetitive inhibition requires 
that the substrate first binds to the enzyme, forming an 
enzyme:substrate complex (ES) that flexes the enzyme, 
creating a binding site for the inhibitor. This creates 
enzyme kinetics in which inhibitor binding uniquely 
decreases both Km and Vmax. While all mechanisms of 
enzyme inhibition increase substrate concentration, only 
in uncompetitive inhibition does the increase in substrate 
concentration enhance enzyme inhibition rather than 
suppress it, by increasing the amount of ES to which 
the inhibitor can bind. Thus, in the presence of high 
intracellular concentrations of substrate and inhibitor, 
uncompetitive inhibition becomes irreversible. This is 
modeled by the equation:
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As noted by Cornish-Bowden (1986), the potential of 
uncompetitive inhibitors to induce catastrophic toxicity 
has made them almost nonexistent in natural systems:
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"Cases of uncompetitive inhibition by species 
that are not involved in the reaction are virtually 
unknown … Uncompetitive effects may not merely 
be mechanistically implausible but may be so 
detrimental to organisms that display them that 
there has been evolutionary selection against such 
inhibition by naturally occurring metabolites. It may 
therefore be worthwhile to point out that any metabolic 
pathway in which uncompetitive inhibition can occur 
can potentially respond catastrophically to the presence 
of inhibitor."

Among several other critical cellular duties, 
G6PD supplies the NADPH required to maintain ROS 
concentrations at levels that are survivable for the cell 
(Yang et  al. 2016, Hq et  al. 2017). If the conditions for 
irreversible uncompetitive inhibition of G6PD are met 
in a cell, the resulting depletion of intracellular NADPH 
will lead to a rapid, catastrophic increase in intracellular 
ROS in that cell. The triggering of such irreversible 

uncompetitive inhibition of G6PD in cells affected by 
TP53 inactivation occurs by a series of well-described 
reactions (Fig. 1). Thus, inactivation of TP53 de-represses 
Glut 1 and Glut 4 transporters (Schwartzenberg-Bar-
Yoseph et al. 2004, Shen et al. 2012), bringing excessive 
amounts of glucose into the injured cell. Inactivation of 
TP53 also de-represses hexokinase-1 and -2 by eliminating 
miR-34a (Kim et al. 2013), increasing intracellular pools 
of glucose-6-phosphate (G6P). Excess G6P binds to 
G6PD, creating binding sites for the small amount of 
intracellular DHEA that originally exists in the cell. G6PD 
E:S then acts as a sink for DHEA, stimulating OATP2B1, 
the transport protein responsible for importing DHEAS 
into the cell. Inactivation of TP53 also hyperactivates 
NFKB (Weisz et al. 2007, Kawauchi et al. 2008, Cooks et al. 
2013), triggering steroid sulfatase (Hattori et  al. 2012, 
Dias & Selcer 2016), which potentiates the importation 
of DHEAS and its intracellular activation to DHEA. 
OATP2B1 is also stimulated by the intracellular presence 
of de-sulfated androgens (Grube et al. 2006), such that as 
the intracellular concentration of DHEA rises, DHEAS is 
imported into the p53-affected cell at an ever-accelerating 
rate. With all limits upon their synthesis eliminated, 
intracellular concentrations of G6P and DHEA quickly 
rise, causing irreversible uncompetitive inhibition of 
G6PD, complete depletion of intracellular NADPH and 
consequent catastrophic increase in intracellular ROS in 
the TP53-affected cell. It is important to point out that loss 
of NADPH eliminates redox control of intracellular ROS 
both by depletion of reductant required for the function 
of redox proteins, and by inhibition of the synthesis of 
those same redox proteins. Thus, HMG CoA reductase 
is an unusual enzyme in intermediary metabolism in 
that it requires two moles of NADPH for each mole of 
mevalonate produced. It is therefore extremely sensitive 
to NADPH depletion (Schulz & Nyce 1991). We have 
previously demonstrated that DHEA sufficient to deplete 
intracellular NADPH and inhibit HMG CoA reductase 
blocks the isoprenylation of the RAS oncoprotein, as well 
as other mevalonate-dependent pathways (Schulz & Nyce 
1991). These additional mevalonate-dependent pathways 
include the synthesis of selenoproteins such as thioredoxin 
reductase (TRX) and glutathione peroxidase (GPX), the 
translation of which require mevalonate-dependent 
N6-isopentenyladenosine in selenocysteine tRNA [Ser]
Sec (Warner et al. 2000). Such inhibition of selenoprotein 
synthesis in cells in which uncompetitive inhibition of 
G6PD has become irreversible is likely to constitute a 
major component of the kill switch mechanism because, 
of the 25 known human selenoproteins, more than 

Figure 1
Mechanism of action of the adrenal androgen-mediated kill switch tumor 
suppression system. (A) Cell with normal p53 function. (B) A somatic cell 
in which mutation of p53 has occurred. Cells with inactivated p53 act as a 
sink for circulating DHEAS, which is imported into the cell by OATPs 
(downward arrow). In addition to high circulating levels of DHEAS, an 
Anthropoid primate-specific sequence motif (GAAT) in the G6PC 
promoter was also required to enable kill switch function. A full colour 
version of this figure is available at https://doi.org/10.1530/ERC-18-0241.
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half are involved in the control of the cellular redox 
environment (Mangiapane et  al. 2014). TRX and GPX 
are unconditionally essential to redox control, and their 
function would be particularly degraded because in 
addition to their physical depletion due to inhibition of 
their synthesis caused by NADPH cofactor depletion of 
HMG CoA reductase in the mevalonate pathway, they also 
require NADPH for regeneration of their reduced states at 
their site of action.

This kill switch mechanism, which targets cancer at 
the level of the initial potentially tumorigenic cell – a 
point in tumorigenesis that we refer to as the singularity 
– may prevent most TP53 mutation events from initiating 
tumorigenesis when it is acting at optimal efficiency. 
The kill switch mechanism offers the first explanation 
of why there would exist an uncompetitive, potentially 
irreversible inhibitor of a critical enzyme such as G6PD.

According to this model, human tumors with TP53 
mutations represent instances in which this kill switch 
mechanism had failed to be triggered, for example, 
because of inadequate amounts of circulating DHEAS in 
aging modern humans (see below). TP53 mutations in 
human tumors are thus fossils of such kill switch failure. 
We have demonstrated that in some spontaneous tumors, 
appropriate manipulation of the adrenal androgen system 
can trigger a failed kill switch to fire, resulting in tumor 
regression (Nyce 2017). This finding provided indirect 
evidence for the primate-specific nature of the kill switch, 
as it is only observed in species with circulating DHEAS, 
which consists almost exclusively of Anthropoid primates, 
of which humans have by far the highest peak levels. Quite 
direct evidence for the kill switch mechanism comes from 
Anthropoid primate-specific genetic modifications that 
were required to enable kill switch function.

Genetic evidence supporting the species-specific 
evolution of the adrenal androgen ‘kill switch’

If the DHEAS-mediated kill switch evolved in a species-
specific manner – in humans, but not in mice and 
rats – is there evidence for this species specificity in 
the genetic record? In addition to primate-specific 
circulating DHEAS, additional changes in intermediary 
metabolism were required to enable the kill switch to 
function in humans but not in mice or rats. For example, 
irreversible uncompetitive inhibition of G6PD requires 
glucose-6-phosphate (G6P) substrate to accumulate to 
high intracellular concentrations. This is not possible 
if the enzyme glucose-6-phosphatase (G6PC) is active, 
because G6PC catabolizes G6P to glucose and inorganic 

phosphate, which would prevent the accumulation of 
G6P. While primarily thought of as an hepatic enzyme 
that plays a major role in glucose homeostasis, G6PC is 
known to be dysregulated in an array of human tumor 
types (Abbadi et al. 2014, Guo et al. 2015) and is a target of 
p53 regulation (Kim et al. 2013, Zhang et al. 2014).

G6PC activity is modulated by peroxisome 
proliferator-activated receptor gamma coactivator 1-alpha  
(PGC-1alpha), an important regulator of energy 
expenditure. PGC-1alpha directs hepatic nuclear 
factor-4alpha (HNF-4alpha), a member of the steroid/
thyroid hormone receptor superfamily, to a specific 
dodecanucleotide activating regulatory site in the G6PC 
promoter. PGC-1alpha is potently stimulated by DHEA 
(Yokokawa et  al. 2015), and such stimulation would 
disable kill switch function by removing G6P substrate. 
In the mouse, the presence of intracellular DHEA induces 
PGC-1alpha, activating G6PC and preventing the 
accumulation of G6P. This explains why administration 
of DHEA to p53−/− mice is not toxic (Perkins et al. 1997, 
Wang et al. 1997).

However, something remarkable and telling has 
occurred in humans. Schilling and her colleagues 
identified a G6PC promoter sequence motif immediately  
downstream from the HNF-4alpha-binding site that 
appears to regulate PGC-1alpha control of G6PC activity 
(Schilling et  al. 2008). Whereas in murine species this 
motif consists of ACAG and is permissive for PGC-1alpha-
mediated activation of G6PC activity, in humans, it is 
GAAT which disables PGC-1alpha-mediated stimulation 
of G6PC activity. In contrast to rats and mice, then, in 
humans intracellular DHEA cannot induce PGC-1alpha-
mediated activation of G6PC. In a species-specific manner, 
G6P can accumulate in human cells in the presence of 
intracellular DHEA, which it cannot do in mouse or rat 
cells. Species-specific response to intracellular DHEA has 
been noted before, with normal human and rat aortic 
vascular smooth muscles cells responding in opposite 
fashion to DHEA exposure (Yoneyama et al. 1997).

We discovered that the GAAT tetranucleotide (Tetrad) 
that disables PGC-1alpha-mediated activation of G6PC 
is specific to the Anthropoid primate lineage and does 
not occur in Strepsirrhine primates (e.g., lemurs) or non-
primate species (Fig.  2). Critically, this means that the 
GAAT Tetrad that disables PGC-1alpha-mediated activation 
of G6PC is specific to lineages with high circulating DHEAS, 
as lemurs and other Strepsirrhine primates have circulating 
DHEAS levels that are more than 40-fold less than those 
observed in Anthropoid primates (Fig.  3). Anthropoid 
primates, particularly humans, are thus unique among 
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all species in the possession of high levels of circulating 
DHEAS and the G6PC promoter sequence motif that 
enables the accumulation of G6P in the presence of 
intracellular DHEA. This provides unambiguous evidence 
that the ability to induce irreversible uncompetitive 
inhibition of G6PD in somatic cells is an important aspect 
of the evolution of Anthropoid primates, culminating in 
Homo sapiens, the Anthropoid species with the highest 
peak levels of circulating DHEAS. The fact that DHEA and 
p53 (and PTEN) have co-evolved as natural inhibitors of 
G6PD further strengthens the connection between the 
primate adrenal androgen system and tumor suppression 
(Jiang et al. 2011, Hong et al. 2014). In a lineage-exclusive 
manner, then, these evolutionary innovations enabled 
the kill switch mechanism to be deployed in somatic 
cells of Anthropoid primates with great efficiency,  

preventing neoplasia from becoming a significant cause 
of death in this lineage during periods of their life span 
characterized by high levels of circulating DHEAS. The fine 
tuning of kill switch function, mediated by duration and 
peak levels of adrenal secretion of DHEAS, then evolved 
in a species-specific manner as Anthropoid primates 
deployed different strategies to exploit their different 
environmental niches. In humans, such strategies included 
the harnessing of fire, resulting in species-specific exposure 
to polycyclic aromatic hydrocarbons (PAH) and other 
carcinogens produced by the incomplete combustion of 
organic materials. Such continuous high-level carcinogen 
exposure in unventilated primitive habitats may have 
exerted a selective pressure favoring humans with higher 
peak circulating levels of DHEAS, and therefore, an 
optimized kill switch tumor suppression mechanism  

Figure 2
Anthropoid primate-specific modification of G6PC promoter to produce GAAT tetrad enables accumulation of G6P required for catastrophic 
uncompetitive G6PD inhibition. The highly conserved dodecanucleotide HNF-4alpha/PGC-1alpha binding site is highlighted in vertical blue box. The 
G6PC promoter tetra-nucleotide that disables (ACAG) or enables (GAAT) accumulation of G6P is labeled tetrad. Accession numbers for listed sequences 
can be found in Supplementary Section 2. Site-specific insertions are depicted as ∆ followed by the inserted sequence. Tars, tarsiers; Strep, Strepsirrhine 
primates such as lemurs and lorises; Der, Dermoptera, the closest mammalian order relative to primates.
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(Supplementary Section  1, see section on supplementary 
data given at the end of this article). We note that other 
species-specific genomic alterations related to PAH exposure 
have already been reported (Gassmann et al. 2010, Hubbard 
et  al. 2016). We further note that PAHs are particularly 
potent inactivators of p53 function, not only through 
mutation (Tretyakova et al. 2002), but also by inducing an 
array of p53-inhibiting microRNAs (Gordon et  al. 2005); 
they are therefore likely to be exceptional activators of the 
adrenal androgen-mediated kill switch.

The human adrenal androgen-mediated kill switch 
remains set for prehistoric Homo species

As noted earlier, modern humans have one of the highest 
life-time risks of developing malignant cancer in the entire 
animal kingdom. At 38.4%, this risk is more than an order 
of magnitude higher than that of most other long-lived 
species, for example, the elephant. As is evident in Fig. 4, 
modern humans experience an age-associated exponential 
increase in cancer risk as their circulating levels of DHEAS 
decline. However, did this relationship hold for primitive 
Homo sapiens? Humans have experienced a recent extreme 
increase in longevity. For the vast majority of our species’ 
existence, life was short. Weiss and others have calculated 
a probable life expectancy at birth for primitive man of 
about 25 years; survivability to adulthood of about 50%; 
88% mortality before the age of 30 years and generation 
times of about 20–25  years (Weis 1981, 1984, Kennedy 
2003, Trinkaus 2011). World Health Organization data 

shows that as recently as 1900, global life expectancy at 
birth in the undeveloped world was just 26.5 years (Roser 
2018), and even today ranges from 21 to 37  years for 
different extant hunter-gatherer tribes that have limited 
access to modern healthcare (Gurven & Kaplam 2007). 
Only in the last 50–75 years have dramatic improvements 
in public health enabled the majority of humans, at least 
in industrialized countries, to live into old age (Olshansky 
et al. 1990, Smith 1993). The life-time risk of developing 
a malignant tumor during virtually all of our species’ 
prehistoric existence was thus almost certainly in the 4% 
range of other long-lived mammals. However, the adrenal 
androgen-mediated kill switch, which evolved to protect 
during a human life span that generally did not exceed 
25 years, did not keep pace with the increasing longevity 
of modern humans (Fig.  4). The excursion into old age 
that is being made by modern humans is thus being 
conducted without the protection of the natural adrenal 
androgen-mediated kill switch, which is still set to protect 
only for the very short life span of our ancestors.

Species-specific tumor suppression in the African 
elephant and the naked mole rat

Other long-lived mammals, lacking the circulating DHEAS 
and the G6P accumulation-enabling G6PC promoter 
tetrad of the Anthropoid primates, have developed 
alternative species-specific tumor suppression systems. A 
recent study showed that the lifetime risk for an elephant 
dying of cancer is less than 5%, with no apparent increase 

Figure 3
High levels of circulating DHEAS and the G6PC 
tetranucleotide GAAT enabling kill switch 
function are specific to the Anthropoid primate 
lineage, with DHEAS reaching highest levels by 
far in Homo sapiens. Rodent species lack both 
circulating DHEAS and the G6PC promoter 
tetranucleotide (GAAT) that permits intracellular 
G6P to accumulate. *DHEA measured, not DHEAS. 
Circulating DHEAS shown for canine (Schiebinger 
et al. 1981, Odell & Parker 1985, Tremblay & 
Belanger 1985, Ashley et al. 1988, Mialot et al. 
1988, Frank et al. 2003, Mongillo et al. 2014, 
Rondelli et al. 2015); boar (Schuler et al. 2014); 
Anthropoid primates (Cutler et al. 1978, Axelson 
et al. 1984, Sulcova et al. 1997, Kemnitz et al. 
2000, Bjornerem et al. 2006, Bernstein et al. 2012, 
Blevins et al. 2013); Strepsirrhine primates (Perret 
& Aujord 2005); rabbit (Alexandersen et al. 1999); 
mouse and rat (van Weerden et al. 1992); golden 
hamster (Pieper & Lobocki 2000); spiny mouse 
(Quinn et al. 2013); Mongolian gerbil (Fenske 
1986) and Guinea pig (Belanger et al. 1989). The 
evolutionary chronology pictured was redrawn 
after Kim et al. (2017).
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in cancer risk with increasing age (Abegglen et al. 2015). 
The explanation for this low and constant cancer rate 
appears to be found in the elephant genome. In addition 
to the two alleles of the p53 tumor suppressor found in 
humans, the elephant genome has an additional nineteen 
p53 retro-pseudogenes (p53p), many of which appear to be 
translated into protein (Abegglen et al. 2015, Sulak et al. 
2016). In a comparison of elephant cells (two active p53 
alleles and 19 p53p), normal human cells (two active p53 
alleles), and cells from patients with Li Fraumeni syndrome 
(one active p53 allele), Abegglen et al. (2015) observed that 
the induction of apoptosis in response to DNA damage in 
elephant cells (14.64%; 95% CI, 10.91–18.37%; P < 0.001) 
was twofold higher than in normal human cells (7.17%; 
95% CI, 5.91–8.44%; P < 0.001) and five-fold higher than 
in cells from patients with Li Fraumeni syndrome (2.71%; 
95% CI, 1.93–3.48%). In parallel studies in which siRNA 
were used to block translation of p53p, the increased 
apoptotic rate in elephant cells exposed to DNA damaging 
agents was significantly reduced (Sulak et al. 2016). These 
data demonstrate that p53p pseudogenes contribute to the 
sensitivity to induction of apoptosis, although the exact 
mechanism of action remains to be clarified.

The naked mole rat (NMR) is a mouse-sized creature 
that leads an entirely subterranean existence, has the 
longest life span of any rodent at 28–35  years, and 
is also unique in its virtually complete resistance to  
cancer in its natural habitat (Gorbunova et  al. 2014, 
Lagunas-Rangel & Chavez-Valenica 2017). It has recently 
been discovered (Tang et al. 2016) that the NMR has 17 
retropseudogenes corresponding to the phosphatase and 
tensin homologue (PTEN) tumor suppressor. PTEN and 
p53 tumor suppressors are often given co-status as ‘the 
guardians of the genome’, because both are transcription 
factors that activate complex programs of apoptosis in 
cells that suffer potentially tumorigenic levels of DNA 
damage (Yin & Shen 2008, Ryan 2011). What has gone 
essentially unnoticed is that, like DHEA, both p53 and 
PTEN are direct inhibitors of G6PD (Jiang et  al. 2011, 
Hong et al. 2014). Thus, the possibility exists that p53p in 
the elephant, and the PTEN retropseudogenes (PTENp) in 
the NMR, constitute effectors of species-specific kill switch 
mechanisms that parallel the adrenal androgen-mediated 
kill switch of primates by targeting G6PD for lethal 
inhibition. The naked mole rat has also been discovered to 
have a species-specific high molecular weight hyaluronic 

Figure 4
Species-specific kill switch tumor suppression systems targeting G6PD. In humans, circulating DHEAS (blue and grey lines), and therefore, kill switch 
function is maintained at optimal levels only up until about age 25 years – the life expectancy for humans for most of our existence as a species. The 
adrenal androgen-mediated kill switch evolved to provide protection for such short human life spans (blue rectangular prism), and declines sharply 
thereafter. Because modern humans live for much longer periods of time, the phenomenon of exponentially increasing cancer risk with increasing age is 
observed (red line). Species such as the elephant, moose and naked mole rat, which use tumor suppression systems that do not decline with age, 
experience little or no increased risk of cancer as they age (green line). Cancer risk redrawn after Cancer Incidence by Age (http://www.cancerresearchuk.
org/health-professional/cancer-statistics/incidence/age). Lifetime risk of 38.4% (https://www.cancer.gov/about-cancer/understanding/statistics). Four 
percent cancer risk of most long-lived mammals from Abegglen et al. (2015). Circulating DHEAS levels redrawn after (dePeretti & Forest 1976, Parker & 
Odell 1980, Vermuelen 1980, Orentreich et al. 1984, Labrie et al. 1997).
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acid isoform (Tian et al. 2013) which, by virtue of its anti-
oxidant function, could be part of such a G6PD-targeting 
kill switch system (Supplementary Section 3).

Primordial role of DHEAS in kill switch maintenance 
of germline genomic integrity?

Although circulating DHEAS and the autosomal kill 
switch mechanism that utilizes it are species-specific 
phenomena, the uncompetitive inhibition kinetics of 
DHEA with respect to G6PD are not; they exist in all 
animal species with endogenous DHEA. This suggests that 
such uncompetitive, potentially irreversible inhibition 
kinetics must have been selected for in all species with 
DHEA, not just those limited few with circulating DHEAS. 
What then, was the overall selective pressure for such 
an unusual form of enzyme inhibition, targeting such a 
critical enzyme as G6PD? The maintenance of germ cell 
genomic integrity is a critical task that must be conducted 
with extremely high fidelity, particularly with respect 
to oocytes of mammals, since female mammals make a 
comparatively enormous investment in their offspring. 
Considering the finite number of oocytes that female 
mammals carry, this large investment in their offspring is 
best initiated using the highest quality oocytes available. 
This is most efficiently accomplished by eliminating 
oocytes from the reproductive pool that have experienced 
decrement in their genomic integrity. Such genomic 
integrity must be maintained for very long periods of time 
– decades in some species, including humans – as oocytes 
are arrested in prophase of meiosis I between homologous 
chromosome recombination and ovulation. It has been 
established in lower animals such as Caenorhabditis 
elegans and Nematostella vectensis that the primordial role 
of the p53 family was to maintain the genomic integrity 
of germ cells (Lettre et  al. 2004, Pankow & Bamberger 
2007). TP53 family members p63 and p73 have strong 
structural similarity to p53 and are known to bind as a 
transcription factor to many of the same gene targets as 
p53 (Strano et al. 2001). Whereas p53 is considered to be 
the guardian of the somatic cell genome, Tap63 (the full-
length version of p63) is considered to be the guardian 
of the germ line, and oocytes and spermatozoa with 
damaged genomes are extinguished by its action (Suh 
et al. 2006, Beyer et al. 2011, Napoli & Flores 2016, Gebel 
et  al. 2017). It has been elegantly demonstrated that 
Tap63alpha remains kinetically trapped in an inactive 
dimer form, a sort of spring-loaded mechanism that can 
respond instantly to oocyte DNA damage. Upon detection 
of such oocyte DNA damage, Tap63alpha undergoes rapid 

phosphorylation-induced tetramerization and activation 
(Coutandin et al. 2016), resulting in a rapid upregulation 
of NFKB activity and the induction of apoptosis (Sen et al. 
2011). We propose that DHEAS participates in that role 
with Tap63alpha and that this cooperation in guarding 
germline DNA is the selective force behind the evolution 
of the uncompetitive inhibition kinetics of DHEA with 
respect to G6PD. Whereas the kill switch triggered by p53 
inactivation in human somatic cells requires circulating 
DHEAS, and therefore, cannot operate in species lacking 
circulating DHEAS, this is not so for germ cells of animals 
with ovaries and testes because these are among the 
limited organs in which DHEAS is synthesized locally. 
Oocytes have in fact been found to have unexpectedly 
large standing pools of DHEAS (Dehennin et  al. 1987, 
Jimena et al. 1992, Haccard et al. 2012). This suggests that 
DNA-damage-induced tetramerization of Tap63alpha 
triggers NFKB in oocytes, which then simultaneously 
activates steroid sulfatase to produce DHEA from this 
large standing pool of oocyte DHEAS. In oocytes, NFKB 
will also inactivate G6PC to permit the accumulation 
of G6P (Grempler 2004). By satisfying the requirements 
for irreversible uncompetitive inhibition of G6PD,  
i.e., high concentrations of inhibitor and substrate, the 
kill switch mechanism targeting G6PD with irreversible 
uncompetitive inhibition can thus be unleashed as 
necessary in the germ cell compartment of all animals 
that can produce gonadal DHEAS. This appears to also 
be true for spermatogonia, where a protective role has 
already been observed for DHEAS (Papadopoulos et  al. 
2017) and for p63 (Beyer et al. 2011).

Also of interest is the observation that all placental 
mammals have a well-developed adrenal fetal zone 
producing extraordinarily high levels of DHEAS 
throughout gestation, with such levels sharply falling 
off to near zero at birth (Pashen et  al. 1982, Conley 
et  al. 1994, Raeside et  al. 1997, Parker 1999, Rainey 
et al. 2004). The extraordinary rates of DNA replication 
occurring during fetal development should make the 
fetus extremely sensitive to neoplastic transformation; 
yet, such transformation is rare. The possibility therefore 
exists that, among species employing fetal adrenal 
synthesis of DHEAS, its uncompetitive inhibition 
kinetics with respect to G6PD may have been under 
selective pressure to maintain not only germline 
integrity, but also fetal somatic cell integrity. Primates 
then duplicated elements of this system to protect their 
somatic cells into adulthood, evolving adrenal zona 
reticularis with the ability to synthesize and secrete 
DHEAS into the circulation following adrenarche,  
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and the G6PC promoter motif that enables accumulation 
of G6P substrate.

Is the human-specific, aging-associated exponential 
increase in cancer risk unalterable?

A perhaps surprising revelation supported by recent 
data is that the exponential increase in cancer risk 
with increasing age appears to be a human-specific 
phenomenon that does not occur in most other 
species, in which cancer risk with increasing age shows 
a relatively flat trajectory. The extremely low and flat 
cancer risk experienced by elephants and many other 
species throughout their entire lifetimes (Abegglen et al. 
2015) thus appears to represent the evolutionary norm, 
making the exponential increase in cancer risk with 
increasing age observed in humans the outlier. Unlike 
elephants, or naked mole rats, which are long-lived 
species whose mechanisms of tumor suppression are 
genetic and effected by constitutive macromolecules, 
the adrenal androgen-mediated kill switch of humans 
is effected by a small molecule, DHEAS, and is therefore 
potentially subject to pharmacological manipulation. 
This raises the possibilities that (a) the failure of kill 
switch evolution to keep pace with modern human life 
expectancy might be overcome by pharmacologically 
maintaining circulating DHEAS at its peak level 
throughout the modern human life span; and (b) 
extrapolating from other long-lived animals who 
appear to maintain parallel kill switch mechanisms 

over their lifetimes, the human-specific phenomenon 
of exponentially increasing cancer risk with increasing 
age might be eliminated by such pharmacological 
maintenance of the adrenal androgen-mediated kill 
switch. It will therefore be important to determine if 
such pharmacological reconstitution of the kill switch 
mechanism throughout the lifespan can normalize the 
38.4% lifetime cancer risk of modern humans to the 
low, flat cancer risk experienced by virtually all other 
long-lived mammals (Fig. 5).

Diet and the kill switch

Factors in addition to the adrenal androgen-mediated 
kill switch clearly also modulate cancer risk in aging 
primates. Thus, circopithecidaen primates such as 
Rhesus monkeys enjoy very low cancer risk throughout 
life (Lombard & Witte 1959), despite a gradual age-
related decline in plasma DHEAS (Kemnitz et  al. 
2000, Sorwell & Urbanski 2013). Unlike modern 
humans, however, primates in captivity are subjected 
to rigorously controlled diets that maintain them at 
optimum weights and percentage body fat. Since caloric 
restriction is well known to inhibit carcinogenesis 
(Brandhorst & Longo 2016, Kopeina et  al. 2017), and 
caloric excess to promote it (Allott & Hursting 2015, 
Hopkins et al. 2016), the controlled diets of primates in 
captivity may account for some portion of their reduced 
lifetime risk of cancer. However, Rhesus monkeys  

Figure 5
Potential for pharmacologic extension of adrenal 
androgen-mediated kill switch. Humans are 
protected by their natural adrenal androgen-
mediated kill switch only until about age 30 (blue 
rectangular prism). Circulating DHEAS levels 
decline dramatically thereafter in both men and 
women (solid blue and grey lines, respectively), 
resulting in a species-specific exponential increase 
in cancer risk with increasing age (solid red line). 
However, optimum DHEAS levels can be 
pharmacologically maintained (dashed blue and 
grey lines) throughout life into old age (green 
rectangular prism). If the analogy holds with 
other long-lived species such as chimpanzees and 
elephants, in which kill switch mechanisms 
targeting G6PD are maintained throughout life, 
pharmacological maintenance of peak DHEAS 
levels throughout the modern human life span 
may normalize the age-associated increase in 
human cancer risk to that of most other species 
(dashed red line).
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also have only one-tenth the body mass of adult humans,  
so their smaller body size also contributes to species-specific 
tumor suppression, as we have discussed for the mouse. 
Body size can also modulate human cancer risk. Thus, the 
recent ‘million women study ‘, which followed 1,297,124 
women for a median time of 9.4  years each, reported 
an overall 16% increase in cancer risk for every 10 cm  
(4 inches) in height above average (Green et al. 2011). 
This association of increased cancer risk with increased 
height has been confirmed by additional studies 
performed in 144,701 women (median follow-up, 
12 years) (Kabat et al. 2013), and in 310,000 male and 
female UK Biobank participants (Ong et al. 2018). At the 
opposite end of the spectrum, studies of dwarf humans 
with Laron Syndrome – one of which studies lasted 
57 years – demonstrated a near total absence of cancer 
in these long-lived, small bodied humans (Janecka 
et  al. 2016, Laron & Kauli 2016). Extrapolating this 
finding, the evolutionary trajectory of humans through 
spacetime may have taken advantage of small body size 
during childhood as an inexpensive means of tumor 
suppression, such that combined with the canonical 
p53 repertoire, it proved sufficient to minimize cancer 
risk during this developmental phase. It is only in 
preparation for the increased stature occurring with 
puberty that the adrenal androgen-mediated kill switch 
tumor suppressor system becomes necessary, and the 
zona reticularis undergoes its extraordinary activation 
and release of DHEAS into the circulation. Increased 
adult body size would clearly have been adaptive for 
survival in the primitive landscape in which predation 
by large carnivores, and intertribal warfare, constituted 
major selective pressures. However, such increased 
stature would have come at the price of increased 
cancer risk if only the canonical p53 repertoire was 
operative. Thus, as primitive humans progressed into 
adulthood, high levels of circulating DHEAS required 
for kill switch tumor suppression may have enabled 
them to maintain the low cancer risk of their juvenile 
phase while accumulating the increased body mass 
that enhanced their probability of survival. This line 
of reasoning suggests that the loss of functional levels 
of circulating DHEAS as modern humans surpass the 
primitive life span may be responsible for the excess 
cancer risk associated with increased height and that 
pharmacological reconstitution of DHEAS levels might 
eliminate such excess risk.

As previously noted, humans have by far the highest 
peak levels of circulating DHEAS, followed by the 
chimpanzee (Blevins et  al. 2013). Chimpanzees weigh 

40–60 kg (88–130 pounds), about the same as primitive 
humans (McHenry 1976). With respect to diet, it is 
important to note that humans and chimpanzees are the 
only two primates that regularly eat meat and that the 
consumption of red meat is known to be carcinogenic 
(Johnson 2017). Chimpanzees consume only a fraction 
of the meat that humans do, and neither did they 
harness fire, as humans did. Their species-specific 
trajectory through spacetime thus did not involve 
exposure to the heterocyclic amines, N-nitrosamines 
and polycyclic aromatic hydrocarbons that are formed in 
the processing of meat by heat (Gu et al. 2011, Bellamri 
et al. 2018). Consumption of such heat-processed meat 
is well documented to be carcinogenic (Milton 1999, 
IARC 2015, Chiang & Quek 2017). The combination 
of less dependence upon dietary meat and a complete 
absence of exposure to the carcinogens in cooked meat 
clearly delineates the evolutionary trajectory of the 
chimpanzee as compared to humans. Chimpanzees 
therefore may have had a reduced requirement for the 
primate-specific adrenal androgen-mediated kill switch 
tumor suppression system, and this may account for 
the fact that their peak circulating levels of DHEAS are 
only about half what they are in humans (Blevins et al. 
2013). In this regard, also consider other Anthropoid 
primates. Gorillas can weigh 140–180 kg (300–400 
pounds) and orangutans 115 kg (250 pounds). However, 
both are vegetarian in their diets, and have little or no 
exposure to the carcinogens found in cooked meat. Their 
circulating DHEAS levels are, respectively, one-third and 
one-sixth that of chimpanzees, who do eat meat, albeit 
raw meat; and one-sixth and one-eleventh, respectively, 
that of humans who consume heat-processed meat 
(Bernstein et  al. 2012). These facts suggest that the 
Anthropoid primate-specific adrenal androgen-mediated 
tumor suppressor system enabled the harnessing of fire 
by primitive humans, and the consequent exposure 
to the carcinogens produced in heat-processed meat 
selected for humans with the highest circulating levels 
of DHEAS, and hence, optimum function of the kill 
switch tumor suppressor system. Modern humans, 
however, consume far more heat-processed meat than 
our primitive ancestors had the opportunity to do, 
significantly increasing our exposure to the carcinogens 
created in such heat-processed meat – and also leading 
to the current epidemic of obesity. With respect to 
obesity, the U.S. Center for Disease Control (CDC) has 
recently reported that the average American woman 
today weighs as much as the average American man did 
in the 1960s, while the body mass of the average modern 
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American male is now nearly double that estimated 
for primitive members of our species (McHenry 1976, 
Ogden & Carroll 2010). Such dramatic increases in body 
mass have put modern humans outside the limits under 
which the kill switch tumor suppression system evolved. 
Another negative consequence of obesity in modern 
humans is that fat expresses tissue-specific isoforms of 
steroid sulfatase, such that excessive accumulation of 
fat sequesters circulating DHEAS in this tissue (Dalla 
Valle et al. 2006), further degrading kill switch function 
in aging individuals who are overweight. Thus, the 
modern human diet focused as it is on the consumption 
of heat-processed meat, and the obesity commonplace 
in modern humans, place further significant constraints 
upon kill switch function in aging humans who have 
declining levels of circulating DHEAS.

Exogenous DHEA

The age-associated loss of circulating DHEAS has 
prompted many hypotheses regarding the biological role 
of DHEA in humans. However, none of these hypotheses 
have been informed by knowledge of the kill switch 
mechanism. In humans, circulating levels of DHEA are 
kept safely in the low nanomolar range, several orders 
of magnitude below its IC50 for G6PD inhibition, while 
DHEAS circulates at micromolar levels that are just slightly 
under the IC50 for DHEA inhibition of G6PD (Gordon 
et al. 1986, Labrie et al. 1997). These natural conditions 
clearly evolved to prevent destruction of normal cells 
and tissues by irreversible catastrophic uncompetitive 
inhibition of G6PD, such that DHEAS will only be 
converted to DHEA in cells in which p53 inactivation 
has occurred or that require intracrine steroid hormone 
synthesis (Labrie 2015). Systemically administered DHEA 
is therefore likely to produce toxicities in humans that 
would not be observed in murine species and render the 
kill switch tumor suppression system inoperable via the 
induction of tolerance. There is also the potential for 
serious drug interactions, e.g., with carboxylic NSAIDs 
such as ketoprofen, the CoA conjugates of which have 
been shown to bind irreversibly to and inhibit G6PD 
(Asensio et  al. 2006). For safety reasons, therapeutic 
administration of DHEA should therefore be limited to 
local administration, as for example in a recent treatment 
for vaginal atrophy approved by the U.S. Food and 
Drug Administration (Bouchard et al. 2016, Labrie et al. 
2016). Most developed countries regulate DHEA as the 
potentially toxic compound that it is. Where DHEA is sold 
as a food supplement, there is no adequate mechanism 

available for adverse event reporting as there would be 
for drugs administered under a physician’s supervision.

Conclusion: trouble in paradigm

The p53 gene was discovered almost 40 years ago (Kress 
et al. 1979, Lane & Crawford 1979, Linzer & Levine 1979), 
and its role as a major tumor suppressor was identified a 
decade later (Baker et al. 1989, Takahashi et al. 1989). The 
p53-knockout mouse model of human cancer has been a 
staple of cancer research for some 26 years (Donehower 
et al. 1992). The depth of infiltration of this model into the 
fabric of human cancer research is demonstrated by the 
fact that it has been accepted by the FDA as a preclinical 
model for human drug development for more than 
20 years (FDA 1997). The use of this model system over 
this long period of time has created a paradigm in which 
mutations in p53 are considered to be linear initiators 
of carcinogenesis with virtually universal application 
independent of species, such that results in one species, 
e.g., the mouse, are thought to accurately translate to 
another, e.g., the human. Yet, new research in non-murine 
species (dog, elephant, naked mole rat, etc.) suggests 
that while p53 may be a universal sensor of mutagenic 
insult, many animals, including humans, adopt species-
specific solutions to such insult and those species-specific 
solutions triggered by p53 inactivation appear frequently 
to converge mechanistically upon lethal inhibition 
of G6PD. These observations suggest that the focus of 
nature’s anti-cancer effort is the singularity. In this way, 
nature suppresses cancer at its most vulnerable point, at 
the level of the initial, potentially transformed cell, before 
it has initiated the explosion of diversification that has 
made clinical cancer incurable up to now. This appears 
to be how the elephant suppresses cancer throughout 
its long life, with its species-specific method to enhance 
its p53-mediated kill switch system. It also appears to be 
how chimpanzees and other great apes suppress cancer 
(McClure 1973, Hill et  al. 2001, Brown et  al. 2009), 
capitalizing upon primate-specific circulating DHEAS and 
G6PC promoter motifs, as well as the uncompetitive G6PD 
inhibition kinetics of DHEA. We believe that the species-
specific DHEAS-mediated kill switch is fundamental to 
cancer suppression in humans.

Cancer continues to be among the leading causes 
of death worldwide and is predicted to soon overtake 
cardiovascular disease as the number one cause of death 
in Western countries (Ma et  al. 2015). This trend will 
accelerate as progress in the treatment of cardiovascular 
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disease, influenza and other major killers outstrip 
progress in the treatment of cancer, and more people 
who would have died of these other diseases survive 
into old age. In 2012, there were 14 million new cancer 
cases and 8.2  million cancer deaths worldwide (WHO 
2018). The number of new cancer cases is expected 
to increase to 23.6  million annually by 2030 (https://
www.cancer.gov/about-cancer/understanding/statistics; 
http://www.who.int/mediacentre/factsheets/fs297/en/), 
which will place an incredible burden on healthcare 
delivery. In China, cancer is already the number one 
cause of death, with 4.3 million newly diagnosed cases 
of invasive cancer annually and 2.3  million cancer 
deaths (Chen et  al. 2015). Clearly, with the increases 
in longevity being experienced by our species, cancer 
has already reached epidemic proportions. As we have 
not yet reached what is believed to be the maximum 
human lifespan (Gavrilov et al. 2017), the current cancer 
epidemic will only become magnified in the future,  
far outstripping the ability of all currently applied 
strategies to stem it.

Critical review reveals that over the past 40  years, 
improvements in patient survival for most types of 
cancer have been nominal. While cancer death rates have 
declined each year since 2000 in developed countries, most 
of this reduction is thought to be due to the decreased 
use of tobacco (Malvezzi et  al. 2017). Even the most 
highly touted new treatment modalities extend life only 
marginally and are rapidly overcome by the resistance 

made possible by tumor heterogeneity (Delyon et al. 2015, 
Iafolla & Juergens 2017). Exceptions to this rule exist, but 
they are rare (McDermott et al. 2014, Delyon et al. 2015, 
Callahan et  al. 2017), and are unlikely to contribute in 
a significant way to overall survival. Data from the U.S. 
National Cancer Institute (https://www.cancer.gov/about-
cancer/understanding/statistics) demonstrate that 2-year 
survival for invasive cancers has improved less than 7% 
over the past 27 years and appears to be at an asymptotic 
boundary beyond which further improvement may be 
negligible (Fig. 6).

Furthermore, a not insignificant fraction of the 
improvement in survival that has been achieved may be 
due to advances in the supportive care that cancer patients 
now receive, rather than on primary medical intervention 
itself (McCorkle et al. 2000, Irwin et al. 2013). In one study 
evaluating supportive care of cancer patients (nutrition, 
psychological intervention, etc.), 2-year survival among 
late-stage cancer patients receiving such care was 67%, 
compared to 40% among control cases receiving only 
medical intervention. When Cox’s proportional hazard 
model was used to adjust for baseline covariates, the 
relative hazard of death in the control group was 2.04 (CI:  
1.33–3.12; P = 0.001); i.e., patients with invasive cancers 
who received only medical intervention were twice as likely 
to die during this period of time (McCorkle et al. 2000).

Such data do not encourage a ‘stay the course’ 
approach to cancer research, but rather suggest that 
something is fundamentally wrong with the paradigms 

Figure 6
Treatment outcome in invasive cancer appears to be approaching an asymptotic boundary. Data from NCI SEER Cancer Statistics Review (CSR) 1975–2014. 
Updated June 28, 2017 (https://surveillance.cancer.gov/statistics/types/survival.html).
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that have been guiding this endeavor for at least three 
decades. The unanticipated existence of an essentially 
human-specific adrenal androgen-mediated kill switch 
tumor suppression mechanism clearly undermines much 
of the research that has been performed ex vivo, in vivo and 
in vitro over this long period of time:

 • ex vivo analysis of p53 mutations in human tumors 
may have done little more than reveal evidence of a kill 
switch tumor suppressor system malfunction caused by 
an artifact of hominid evolution – circulating DHEAS 
that declines sharply once the primitive human life 
span, for which it evolved, is exceeded;

 • the fundamental differences in tumor suppression 
mechanisms between human and murine species 
appear to completely disqualify the latter as in vivo 
models of human cancer; and

 • in vitro studies utilizing human cells in which culture 
conditions do not model in vivo circulating DHEAS 
have de-evolved human cells to the equivalent of non-
informative murine cells.

To the extent that these criticisms are valid, fundamental 
flaws in our operating paradigms have been leading us 
far off course for decades. Without appropriate course 
corrections, we may continue to generate species-specific 
cancer data for species other than our own.

The slow, very meager progress in prolonging cancer 
survival, the fact that such survival appears to be at an 
asymptotic boundary beyond which any further progress 
may be impossible, and the extreme, accelerating and 
clearly unsustainable costs of new cancer drugs that only 
minimally extend life (Sidduqui & Rajkumar 2012, Cohen 
2017, Davis et  al. 2017, Jackson & Nahata 2017, Prasad 
& Mailankody 2017, Carrera et al. 2018, Dranitsaris et al. 
2018), all indicate the necessity for reappraisal of the 
current paradigm in which developed tumors are the target 
for virtually all of our anti-cancer research efforts. It may 
be time to redirect our labors and research expenditures 
toward understanding the singularity, the apparent focus 
of nature’s major effort at tumor suppression. If tumor 
complexity has been the Gordian knot of the cancer 
problem, preventing real progress in cancer treatment, 
then reactivating a kill switch made latent by an age-
related decline in DHEAS may represent Alexander’s 
blade. The adrenal androgen-mediated kill switch tumor 
suppression system has the singularity as its target, and 
its evolutionary programming for a prehistoric, not a 
modern life span, may be responsible for the anomaly of 
an exponentially increasing rate of cancer with increasing 
age in our species. Singularities occurring in aging modern 

humans experience a diminishing capacity to undergo 
irreversible G6PD inhibition because of the dramatically 
declining levels of circulating DHEAS and consequent 
inability to trigger the kill switch mechanism. While this 
was not problematic for our ancestors who rarely reached 
the age of 30 years, it is problematic for modern humans 
who regularly live into and beyond their ninth decade. 
The life-long low, flat cancer risk observed in other long-
lived animals that employ parallel, but life-long species-
specific tumor suppression strategies, suggests that a 
similarly life-long low, flat cancer risk may be achievable 
in humans; that is, there appears to be no a priori reason, 
such as accumulated genomic damage, that makes an age-
related increase in human cancer unavoidable. Rather, an 
approximately 4% lifetime cancer risk may be the norm 
for all species, including Homo sapiens. The lesson from 
other long-lived species appears to be that kill switch 
mechanisms that function throughout life extinguish 
almost all potentially tumorigenic damage at the level 
of the singularity. If pharmacological maintenance of 
DHEAS at peak levels establishes life-long functionality 
of the adrenal androgen-mediated kill switch, humans 
might join the majority of the animal kingdom in which 
death from cancer is a rare event and has little to do with 
advancing age. Determining what the true background 
risk of cancer is in the presence of such a fully functional, 
life-long adrenal androgen-mediated kill switch tumor 
suppression system should therefore be a primary goal of 
our species.
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