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Intestine is always exposed to external environment and intestinal microorganism; thus it is more sensitive to dysfunction and
dysbiosis, leading to intestinal inflammation, such as inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), and
diarrhea. An increasing number of studies indicate that dietary amino acids play significant roles in preventing and treating
intestinal inflammation. The review aims to summarize the functions and signaling mechanisms of amino acids in intestinal
inflammation.Amino acids, including essential amino acids (EAAs), conditionally essential amino acids (CEAAs), andnonessential
amino acids (NEAAs), improve the functions of intestinal barrier and expressions of anti-inflammatory cytokines and tight junction
proteins but decrease oxidative stress and the apoptosis of enterocytes as well as the expressions of proinflammatory cytokines in
the intestinal inflammation. The functions of amino acids are associated with various signaling pathways, including mechanistic
target of rapamycin (mTOR), inducible nitric oxide synthase (iNOS), calcium-sensing receptor (CaSR), nuclear factor-kappa-B
(NF-𝜅B), mitogen-activated protein kinase (MAPK), nuclear erythroid-related factor 2 (Nrf2), general controlled nonrepressed
kinase 2 (GCN2), and angiotensin-converting enzyme 2 (ACE2).

1. Introduction

The intestine is supreme digestive organ of humans and
numerous animals including the small intestine and large
intestine. Small intestine covers the ileum, jejunum, and
duodenum, while large intestine includes the colon, cecum,
and rectum [1]. Intestinal tract has numerous functions,
including digestion and absorption of nutrients, recognition
of external factors, and transduction of signaling concerned
with innate and adaptive immunity [2]. Continuing to expe-
rience external stressors (e.g., dietary ingredients, intestinal
microorganism, and environmental factors), easily, leads to
intestinal damage and dysfunction [3]. Thus the intestine
is usually in a situation of inflammation, which is related
to certain illness, including diarrhea, inflammatory bowel
disease (IBD), and irritable bowel syndrome (IBS) [4]. IBD
comprise Crohn’s disease (CD) and ulcerative colitis (UC)
[5]. CD is normally located in whole intestine, influencing

primarily intestinal wall [6]. UC is limited in the colon
as well as rectum, affecting mainly the mucosal layer [7].
The production of proinflammatory cytokines, including
interleukin-1 (IL-1), IL-6, IL-17, IL-22, IL-23, tumor necrosis
factor-𝛼 (TNF-𝛼), and interferon-𝛾 (IFN-𝛾), highly shapes
the development of IBD [8].

The metabolic profiling of amino acid in UC differs from
control group, which indicates certain amino acids would
be novel biomarkers for early diagnosis and treatment of
patients with UC [9]. For example, the levels of glutamine
(Gln), glutamate (Glu), methionine (Met), tryptophan (Trp),
and histidine (His) are significantly lower in UC patients
than in the normal control group, but asparagine (Asp)
and isoleucine (Ile) are quite the reverse. Recent studies
also show that amino acids have significant roles in the
intestinal inflammation. For example, Trp of essential amino
acids (EAAs) exerts beneficial regulatory function inmucosal
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growth or maintenance and alleviation of intestinal inflam-
mation by 5-hydroxytryptophan (5-HT) signaling pathway
[10], in the recovery of colitis by caspase recruitment domain
family member 9 (Card9) [11, 12], and in the function of
intestinal homeostasis and anti-inflammation by aryl hydro-
carbon receptor (AHR) ligands in the intestine [13, 14]. Gln,
one of nonessential amino acids (NEAAs), regulates anti-
inflammatory effects dependent on its function by intesti-
nal tight junctions (TJ), mechanistic target of rapamycin
(mTOR), mitogen-activated protein kinase (MAPKs), and
nuclear factor-kappa-B (NF-𝜅B) signaling pathways [15–18].
Arg is a conditionally essential amino acid (CEAAs) and
has a critical function in treating intestinal inflammation
by manipulation of immune responses, oxidative system,
and intestinal metabolism [6, 19, 20]. Leu is a member of
branched chain amino acids (BCAAs), and its deprivation
may ameliorate colitis and intestinal inflammation via the
amino acid sensor general controlled nonrepressed kinase
(GCN2) [21, 22]. Aromatic amino acids (AAAs), including
Trp, Phe, and Tyr, attenuate intestinal inflammation through
activating calcium-sensing receptor (CaSR) in piglets [23].
The review aims to summarize the roles and molecular
mechanisms of amino acids in the intestinal inflammation.

2. Amino Acids and Intestinal Inflammation

According to nutrition demand, amino acids are traditionally
divided into 8 kinds of EAAs, 10 kinds of NEAAs, and 2
kinds of CEAAs. EAAs are only acquired from the nutrient by
amino acid transporters, such as Trp, Leu, and Phe. NEAAs
can be synthesized via certain elements in vivo (e.g., Glu, Gly,
and Ser) [24]. There are two types of special amino acids, as
they are neither the EAAs, nor theNEAAs, includingArg and
His, which are EAAs for infants but not for adults; thus they
are named as CEAAs.The protective functions of amino acids
in the intestine may be closely connected with the apoptosis
and proliferation of intestinal epithelial cells (IECs), expres-
sion of tight junction proteins (TJPs), alleviation of intestinal
inflammation and oxidative stress by inhibiting NF-𝜅B sig-
naling pathway, and activating nuclear erythroid-related fac-
tor 2 (Nrf2) signaling pathway [25, 26]. NF-𝜅B and Nrf2 are
two critical signaling pathways that are related to inflamma-
tion and oxidation. NF-𝜅B upregulates expressions of various
proinflammatory cytokines (e.g., IL-1𝛽, IL-6, IL-8, and TNF-
𝛼) [27]. Nrf2 suppresses the production of proinflammatory
cytokines and increases the expressions of antioxidative genes
[28, 29]. The oxidative stress and inflammatory mediators
are the main etiological factors in IBD; hence, amino acids
are expected to alleviate it as the antioxidants and anti-
inflammatory agents [30, 31]. For example, gamma aminobu-
tyric acids (GABA) signaling negatively regulates the produc-
tion of proinflammatory factors via inhibiting the activation
of NF-𝜅B pathway; thus it shows various advantageous func-
tions in the progression of IBD [32]. Another characteristic of
IBD is to destroy the integrity of intestinal epithelial barrier
(IEB) [33], which regulates the absorption of nutrition and
restricts the entry of pathogens, composed of topmost TJs,
bottom adherent junctions (AJs), and desmosomes [34]. The
function of the IEB is determined by TJs, a protein complex,

including occludin, claudin family, and junctional adhesion
molecules (JAMs) [35, 36], and amino acids have critical roles
in the expression of TJPs [37, 38]. For example, Trp enhances
the expression of occluden-1, occluden-2, occludin, claudin-
3, and claudin-4 in the intestine of pig [39, 40]. Arg and
Glu supplementation improve permeability and TJs protein
expression [41, 42]. Besides, the protective effect of amino
acids is also associated with endoplasmic reticulum (ER)
stress and autophagy [43]. Abundant ER stress leads to apop-
tosis [44] and is a critical factor for intestinal barrier integrity
and intestinal homeostasis [45]. Autophagy regulated by
mTOR signaling is crucial for inhibiting intestinal inflamma-
tion andmaintaining intestinal homeostasis [46].ThemTOR
signaling has momentous functions in cell proliferation,
differentiation, growth, and metabolism [47, 48]; thus it
may be a target for the therapy of intestinal inflammation.
Furthermore, MAPK signaling is another important signal-
ing pathway for amino acids and intestinal inflammation.
The MAPK signaling of mammals is mainly composed of
MAPKS extracellular signal-regulated kinase (ERK), the c-
Jun N-terminal kinase (JNK), and p38 MAPK pathways,
which play important roles in cell growth, proliferation,
differentiation, migration, inflammation, and survival, and
is associated with pathogenesis of several human diseases,
including IBD [49–52]. Some amino acids have critical roles
in the activation ofMAPKpathway [53, 54]. For example, Asn
improves intestinal integrity by downregulating intestinal
proinflammatory cytokine through MAPKp38 and decreases
enterocyte apoptosis via MAPKp38 and ERK1/2 [55]. Arg
alleviates LPS induced immune damage in fish intestine
and the enterocytes by downregulating MAPKp38 [56]. Gln
combined with Arg decreases the production of TNF-𝛼
and other proinflammatory cytokines probably through its
regulation in MAPKp38 [57].

2.1. EAAs and Intestinal Inflammation. EAAs have significant
effects in intestinal inflammation. It is reported that Phe
possesses beneficial effects in the treatment of IBD by inhibit-
ing TNF-𝛼 productions and enhancing immune responses
[63]. Phe with chromium has a protective effect against IBD
induced by indomethacin in rats, which might be attributed
to antioxidant and anti-inflammatory characteristics of Phe
[30]. Phe regulates intestinal hormone release as well as
glucose tolerance and inhibits food intake of rodents by
CaSR, which may be a potential therapy for obesity and
diabetes [64]. Met is able to modulate metabolism, innate
immunity, and digestion of mammals and generate glu-
tathione to neutralize oxidative stress [112]. Met inhibits the
increase of paracellular permeability mediated by TNF-𝛼,
whichmay be related to antioxidant metabolites (e.g., taurine
and glutathione) to improve intestinal homeostasis [65].
Abundant Met is crucial for intestinal integrity and intestinal
antioxidant capacity [66]. Lys influences the digestion of
food and the expressions of amino acid transporters in the
intestine [68]. Poly-L-lysine (PL) is a homopolymer of L-
lysine and reduces the production of IL-8 in the IECs induced
by TNF-𝛼; thus, PL supplementation inhibits the expressions
of proinflammatory cytokines by activatingCaSR in the intes-
tine [69].Glucose-lysineMaillard reaction products (Glc-Lys



BioMed Research International 3

MRPs) ameliorate DSS-induced colitis, increase glutathione
content as well as antioxidant activities, and suppress the
inflammatory cytokines and NF-𝜅B [70, 71]; thus they can
be used for preventing or treating IBD. Thr is a primary
ingredient of intestinal IgA andmucins; thus, malnutrition of
Thr induces inflammation and affects the immune responses
through the NF-𝜅B pathway [72]. Dietary supplementation
withThr has a favorable regulatory function on the intestinal
barrier and immunity of broiler chicks infected with Eimeria
maxima [73]. Thr insufficiency impairs intestinal immune
response and increases inflammation associating with NF-
𝜅B and mTOR pathways in young grass carp infected by
Aeromonas hydrophila [74]. BCAAs (e.g., Leu, Val, and Ile)
enhance intestinal immune defense system through improv-
ingmorphological integrity and immunoglobulin production
in the intestine [113]. Leu enhances cell proliferation and
the expressions of amino acid transporters by the activation
of mTOR [77, 78]. However, high concentration of BCAAs
increases oxidative stress and inflammation by mTOR and
NF-𝜅B [114]; thus, diets with low Leu ameliorate symptoms of
colitis and intestinal inflammation via the amino acid sensor
GCN2 in colitis model [22]. Ile induces the expression of
𝛽-defensins via G-protein-coupling receptors (GPCRs) and
ERK/MAPK signaling pathways [79]. And a recent study
found that dietary Ile improves intestinal immune function,
antioxidant capacity, and microbial population and regulates
gene expression of antioxidant enzyme, tight junctions, Nrf2,
p38, and ERK1 in the intestine of Jian carp [115].The research
of Val in intestinal inflammation is relatively rare, but 𝛾-
glutamyl Val diminishes inflammation in colitis via CaSR sig-
naling and inhibits TNF-𝛼 pathways in IECs [76]. Moreover,
Trp, Phe, and Tyr possess aromatic nucleus so they are named
as aromatic amino acids (AAAs), which reduce intestinal
inflammation by activating CaSR in piglets [23]. The CaSR is
one of the GPCRs, which participates in nutrient sensing and
ion homeostasis maintaining, hormone and fluid secretion,
cell differentiation, and apoptosis in the intestine [116, 117].
The deficiency of epithelial CaSR leads to weak intestinal
integrity, alteration of microbiota composition, and acceler-
ation of proinflammatory immune responses [118]. The gene
expression of CaSR may be regulated by vitamin D, extracel-
lular Ca2+, and cytokines [119–123]. However, L-amino acids
such as L-Ala, L-Phe, and L-Trp are the agonists of the CaSR;
thus they are effective in preventing and treating IBD and
other diarrheal diseases via CaSR [123–127]. CaSR activated
by Trp exerts anti-inflammation roles via activating the
complex of Β-arrestin 2 (𝛽-arr2) and TAK1-binding protein
1 (TAB1) to inhibit NF-𝜅B and MAPK pathway in IECs [58].

The best example for EAAs in intestinal inflammation
comes from Trp. Trp has a vital role in intestinal inflamma-
tion via 5-HT signaling pathway [59]. 5-HT signaling is made
up of tryptophan hydroxylase-1 (TPH-1), 5-HT receptors,
and serotonin reuptake transporter (SERT) [128]. Intestinal
mucosa is the prime position of 5-HT synthesis catalyzed
by TPH-1 [129]. Released from enterochromaffin cells, 5-HT
starts to play its regulative role in the intestine (e.g., intestinal
motility, fluid secretion) [130]. Functions of 5-HT are excised
through a variety of 5-HT receptors; thus, 5-HT3 receptor
and 5-HT4 receptor are principally associated with IBS [131].

The 5-HT3 receptor is only a ligand-gated ion channel,
and recent evidences demonstrated that 5-HT3 receptor
antagonists exert anti-inflammatory functions via inhibiting
the production of inflammatory cytokines in colitis [132]. 5-
HT2B is one of the 5-HT2 receptors, which plays vital parts in
IBS and has a remarkable effect in the human colon [133, 134].
5-HT7 receptor, a member of the GPCRs, whose expression
in IBS is upregulated [135], regulates the severity of intestinal
inflammation in colitis or CD [14]. Evidence indicates that the
expression of IL-10 receptor is regulated by AHR in the colon
[136].Mice lacking IL-10 or IL-10R are sensitive to colitis [137]
because IL-10 is a significant anti-inflammatory cytokine
that represses the production of proinflammatory mediators.
Kynurenine (Kyn) from Trp metabolism binds to AHR to
regulate systemic inflammation, and research found that
levels of Kyn are increased during intestinal inflammation
to induce the expression of IL-10R [138, 139]. Moreover,
dietary Trp alleviates SDS-induced colitis by AHR in mice
[60]. AHR contributes to the expressions of IL-22 and the
development of T-helper type 17 (Th17) cells [140]. IL-22 has
significant functions in maintaining intestinal homeostasis
[141].Themetabolism of Trpmodulates the production of IL-
22 by AHR [13]. Furthermore, a recent research indicates that
Card9, a susceptibility gene of IBD, promotes the recovery
of colitis by metabolizing Trp into AHR ligands to activate
IL-22 signaling pathway in innate immune response [11]. The
supplementation of Trp inhibits Th1 differentiation in vivo
[61]. And L-Trp supplementation decreases the destruction
of intestinal barrier triggered by stress via modulating 5-HT
metabolism in broilers [62]. Collectively, EAAs mainly exert
anti-inflammatory roles by NF-𝜅B, CaSR,MAPK, andmTOR
signaling pathway to restrain the expressions of proinflam-
matory cytokines. The functions and signaling pathways of
EAAs in the intestinal inflammation are showed in Table 1.
Possible signaling mechanisms of EAAs on the intestinal
inflammation in the ECs are showed in Figure 1. Specific
signaling pathways of EAAs in intestinal inflammation are
showed Figure 2.

2.2. CEAAs and Intestinal Inflammation. Arg plays crucial
roles in regulating intestinal inflammation via immune
response, oxidative system, tight junction, and intestinal
metabolism [142]. Arg as a nutritional supplement reduces
the expressions of IL-1𝛽 and IL-6, as well as delaying the onset
of colitis when the colitis is not very serious, and inhibits
the increase of intestinal epithelial permeability by preventing
inflammatory neutrophil recruitment and oxidative stress
in the DSS-induced colitis [31]. Besides, Arg reduces the
activation of IL-1𝛽-induced NF-𝜅B signaling pathway [80].
Nitric oxide (NO) also inhibits the activation of NF-𝜅B sig-
naling [143], and Arg decreases production of IL-8 during the
intestinal inflammation which may occur through increasing
the production of NO via inducible nitric oxide synthase
(iNOS) [144]. L-Arg improves survival rate as well as antineo-
plastic properties and regulates themetabolism of T cells [81].
Our previous reports indicated that dietary supplementation
of Arg partly alters the progression of porcine circovirus
type 2 (PCV2) infection [82]. Dietary supplementation of
Arg has significant influence in colitis treated with dextran
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Table 1: The functions and signaling pathways of EAAs and CEAAs in intestinal inflammation.

Amino acids Functions Signaling pathways References

Tryptophan ↑IL-22, intestinal barrier
↓Il-1𝛽, Il-6, IL-8, TNF-𝛼, Th1 cells

5-HT, mTOR, AHR
Card9, ACE2, CaSR, MAPK [11, 13, 58–62]

Phenylalanine ↑anti-inflammatory ability, GSH
↓TNF-𝛼, IL-6, IL-8, oxidative stress CaSR [30, 63, 64]

Methionine ↑intestinal integrity, Cys and GSH
↓IL-1𝛽, TNF-𝛼, oxidative stress NF-𝜅B [65–67]

Lysine ↑GSH, SOD, CAT
↓IL-1𝛽, IL-6, IL-17, TNF-𝛼, INF-𝛾 CaSR, NF-𝜅B [68–71]

Threonine ↑MUC2, IgA, intestinal barrier NF-𝜅B, mTOR, MAPK [72–75]

Valine ↑immunoglobulin production
↓TNF-𝛼, IL-6, INF-𝛾, IL-1𝛽, and IL-17 GCN2, CaSR [22, 76]

Leucine ↑intestinal integrity
↓intestinal inflammation

mTOR, GCN2
NF-𝜅B, MAPK [22, 77, 78]

Isoleucine ↑expressions of 𝛽-defensins GCN2, GPCRs, MAPK [22, 79]

Arginine
↑regulation of intestinal microbiota
↓oxidative stress, IL-1𝛽 and IL-6
↓inflammatory neutrophil recruitment

NF-𝜅B
iNOS
MAPK

[31, 80–84]

Histidine ↓IL-6, IL-8, TNF-𝛼 NF-𝜅B [3, 85, 86]
Functions of EAAs and CEAAs in intestinal inflammation mainly depend on NF-𝜅B, iNOS, MAPK, ACE2, GCN2, CaSR, and mTOR signaling pathways.
AHR: aryl hydrocarbon receptor; 5-HT: 5-hydroxytryptophan; Card 9: caspase recruitment domain familymember 9; mTOR:mechanistic target of rapamycin;
MUC2: mucin 2; MPO: myeloperoxidase; CaSR: calcium-sensing receptor; MAPK: mitogen-activated protein kinase; NF-𝜅B: nuclear factor-kappa-B; ROS:
reactive oxygen species; Cys: cysteine; GSH: glutathione; iNOS: inducible nitric oxide synthase; ACE2: angiotensin-converting enzyme 2; GPCRs: G protein-
coupled receptors; SOD: superoxide dismutase; CAT: catalase; GCN2: general controlled nonrepressed kinase 2.
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sulfate sodium (DSS) via NF-𝜅B signaling pathways [83].
Arg supplementation increases immune responses, growth
characteristics, and morphology of small intestine in weaned
piglets [84]. Arg supplementation changes the intestinal
microbiota, which is conducive to activate intestinal innate
immune responses by NF-𝜅B signaling pathway [145]. His is
another CEAAs and an important anti-inflammatory factor,
which inhibits the production of IL-8 induced by oxidative
stress or TNF-𝛼 through controlling the activation of NF-𝜅B
in the IECs [3]. His supplement alleviates colitis of murine
by suppressing the generation of proinflammatorymediators;
thus it may have therapeutic utility for CD by inhibiting
the activation of NF-𝜅B [85]. Moreover, the decrease of His
increases relapsing risk in the emission of UC patients; thus
His may be a noninvasive predictive marker in the intestinal
inflammation [86]. Thus taking advantage of Arg or His
supplementation to prevent or treat intestinal inflammation
is a kind of new adjuvant treatment strategy for intestinal
diseases associating with inflammation. The functions and
signaling pathways of CEAAs in the intestinal inflammation
are showed in Table 1. In conclusion, CEAAs play a critical
anti-inflammatory role in the intestine through its regulatory
functions in immune responses, NF-𝜅Bpathway. Possible sig-
naling mechanisms of CEAAs on the intestinal inflammation
in the ECs are showed in Figure 1. Specific signaling pathways
of CEAAs in intestinal inflammation are showed Figure 2.

2.3. NEAAs and Intestinal Inflammation. NEAAs play bene-
ficial roles in the intestinal inflammation. The deficiency of

NEAAs damages intestinal barrier and expressions of TJPs
(e.g., claudin-1, ZO-1) in IECs, which triggers protective
autophagy via mTOR pathway [146]. Cys supplementation
suppresses intestinal inflammation through increasing the
expressions of TJPs and decreasing the expressions of proin-
flammatory factors in colitis [45]. Cys exerts protective func-
tions in the intestinal barrier that involves anti-inflammation
and antioxidation by suppressing the NF-𝜅B pathway and
activating the Nrf2 signaling pathway [25]. N-Acetylcysteine
(NAC) protects intestinal barrier in piglets induced by LPS
via mTOR, NF-𝜅B, and MAPK signaling pathway [95, 96].
Accumulating evidence indicates that Gly enhances intestinal
mucosal barrier and inhibits oxidative stress via suppressing
the activation of NF-𝜅B and the production of TNF-𝛼, IL-1,
and IL-6 [97–101]. Several lines of evidence have indicated
that dietary supplementation of Glu has significant roles in
the proliferation of IECs, the function of mucosal barrier,
and the increase of antioxidative capacity to control intestinal
permeability and decrease proinflammatory cytokines pro-
duction [102, 103]. Glu effectively regulates oxidative stress
and intestinal injury in piglets treated with the mycotoxin
deoxynivalenol (DNO) [104]. Pro supplementation has cru-
cial roles in regulating the proliferation and differentiation
of IECs, increasing superoxide dismutase (SOD) activities,
and expressions of TJPs [105, 106]. Dietary supplementation
of Pro exerts advantageous immune-stimulatory functions in
the mice immunized with inactivated Pasteurella multocida
(Pm) [107]. Asp or Asn has important functions in stimulat-
ing the proliferation of IECs and triggering immune response
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Table 2: The functions and signaling pathways of NEAAs in intestinal inflammation.

Amino acids Functions Signaling pathways References

Glutamine ↑intestinal barrier, anti-inflammation, IgA
↓proinflammatory cytokines

NF-𝜅B, mTOR
MAPK/ERK [87–94]

Cysteine ↑tight junctions, intestinal barrier, and homeostasis
↓TNF-𝛼, IL-1𝛽, IL-6, and IL-8, oxidative stress

NF-𝜅B, Nrf2
mTOR [25, 45, 95, 96]

Glycine ↑intestinal mucosal barrier
↓TNF-a, IL-1, and IL6, oxidative stress NF-𝜅B [97–101]

Glutamate ↑intestinal mucosal barrier
↓TNF-𝛼, IL-1 and oxidative stress Unclear [102–104]

Proline ↑SOD, tight junction proteins Unclear [75, 105–107]
Aspartate/
asparagine

↑intestinal barrier function
↓proinflammatory cytokines

NF-𝜅B
MAPK [55, 108–110]

Tyrosine ↑intestinal health and immune function CaSR [63]
Alanine ↑intestinal defense and protection function Unclear [63]

Serine ↑colonic protection, mucosal healing
↑mucin synthesis, gut microbiota Unclear [75, 111]

Functions of NEAAs in intestinal inflammation mainly rely on NF-𝜅B, Nrf2, MAPK, mTOR, and CaSR signaling pathways. NF-𝜅B: nuclear factor-kappa-B;
CaSR: calcium-sensing receptor; mTOR: mechanistic target of rapamycin; MAPK: mitogen-activated protein kinase; Nrf2: transcription factor NF-E2-related
factor 2; SOD: superoxide dismutase.

to attenuate intestinal injury and restore intestinal morphol-
ogy as well as barrier function impaired with lipopolysac-
charide (LPS) via inhibiting NF-𝜅B signaling pathway [55,
108, 109]. Dietary supplementation of Asp alleviates growth
suppression and oxidative stress of piglets treated by H

2
O
2

[110]. Ser promotes the synthesis of mucins and improves
the composition of gut microbiota in the rats induced by
DSS [75]. Ser immediately regulates adaptive immunity via
modulating T cell proliferation [111]. Tyr and alanine (Ala)
are necessary ingredients of protein synthesis and immunity,
which also have advantageous functions in the intestinal
inflammation [63]. However, theirmolecularmechanism and
signaling pathways are still unclear; thus further numerous
investigations are needed to be done to address these issues.

Gln, the richest amino acid in plasma, plays an important
role in maintaining the integrity of intestinal barrier. Studies
showed that deficiency of Gln can lead to villus atrophy,
reduction in expression of TJPs, and increase in permeability
of intestine, but Gln supplement can improve gut barrier
function in IBS [87]. A lot of evidence shows that Gln
plays an anti-inflammatory role by affecting the NF-𝜅B as
well as STAT signaling pathways [88]. I𝜅B proteins are
phosphorylated by I𝜅B kinase to release NF-𝜅B to activate
the immune responses. Activated NF-𝜅B complex triggers
the expressions of IL-6 and TNF-𝛼, which activates T cells
and antigen-presenting cells (APCs) [147]. Gln inhibits NF-
𝜅B pathway by increasing the expression of heat shock
proteins (HSPs) mediated by HSF-1 to suppress the expres-
sions of inflammatory cytokines [17, 89]. STAT proteins are
transcription factors regulating intestinal inflammation by
mediating the expression of IL-6 [148]. Gln influences the
activation of STAT signaling that was proved by reducing
the phosphorylation of STAT1 as well as STAT5 [90]. When
Gln is deficient, the expression of STAT4 is increased;
nevertheless, the expression of STAT4 and IL-8 is reduced

after supplementing Gln [149]. From the above studies, Gln
may play anti-inflammatory role via preventing the activity
of STAT and NF-𝜅B to regulate the production of IL-6 as
well as IL-8 in the intestinal inflammation. Moreover, Gln
has protective effects in colitis by mTOR signaling pathway
[91]. Deficiency of Gln triggers autophagy and hinders
amino acid metabolism in IECs by inactivating mTOR and
MAPK/ERK signaling pathways, but Gln supplementation
recovers the phenomenon [18]. And another study found
that the growth of enterocyte is induced by Gln via mTOR
without AMPK signaling pathway [92]. Furthermore, Gln
affects the production of intestinal SIgA to protect IECs
from harmful factors [93]. The supplementation of dietary
Gln may suppress intestinal enterotoxigenic Escherichia coli
infection by innate immunity [94]. Collectively, NEAAs exert
anti-inflammatory roles associating with NF-𝜅B, MAPK,
mTOR, and Nrf2 pathways. The functions and signaling
pathway of NEAAs in the intestinal inflammation are showed
in Table 2. Possible signaling mechanisms of amino acids
on the intestinal inflammation in the ECs are showed in
Figure 1. Specific signaling pathways of CEAAs in intestinal
inflammation are showed in Figure 2.

3. Amino Acid Sensor GCN2 Regulates
Intestinal Inflammation

GCN2 is a key sensor of integrated stress response (ISR) and
can sense amino acid depletion [54, 150]. Previous, study
reported that GCN2 deficient mice cannot effectively deal
with the starvation of EAAs, leading to change in nutrition
intake and increase in death [151]. A recent study found
that GCN2 deficiency increases intestinal inflammation in
IECs as well as APCs and Th17 cells responses in colitis
[22]. Thus intestinal inflammation may be associated with
amino acid sensing pathway GCN2, which may suppress
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intestinal inflammation by inhibiting inflammasome activa-
tion, triggering autophagy, and preventing oxidative stress
and Th17 cells differentiation in colitis [22]. When amino
acids are insufficient, the homeostasis of amino acids is
recovered by arresting translational after the translation
initiator eukaryotic initiation factor 2 (eIF2) phosphorylated
by GCN2 [54, 152]. When amino acids are redundant, amino
acids could lead to intestinal inflammation on account of
lacking GCN2 stimulation [21]. Another research indicates
that GCN2 is essential for regulating the expressions of
inflammatory cytokines and immune responses in myeloid
cells [153]. Therefore, GCN2 may be a fine target to manage
inflammatory illness.

4. ACE2 Connects Amino Acid Malnutrition
and Intestinal Inflammation

A series of evidence suggests that malnutrition is related
to intestinal inflammation [154]. A study indicates that
amino acid malnutrition is always related to intestinal
inflammation via angiotensin-converting enzyme 2 (ACE2),
which plays significant roles in amino acids homeostasis,
innate immune responses, and intestinal microbiota [155].
ACE2 is an important enzyme of renin-angiotensin system
(angiotensin 1–7), which is expressed on various organs
including small intestine, and has a crucial function in
controlling intestinal inflammation as a stabilizer of neutral
amino acid transporters [156]. Angiotensin 1–7 treatment
has an anti-inflammatory effect on IBD by reducing the
activity of MAPK and NF-𝜅B [157]. ACE2 regulates innate
immune response and intestinal microbiota, which illumi-
nates intestinal inflammation under conditions of severe
malnutrition [158]. Mice with ACE2 knockout and ACE2
mutation show the decline in the uptake of Trp, leading to
the decrease of expressions of antimicrobial peptides and
the change of intestinal microbiota, resulting in the high
sensitivity to intestinal inflammation, which is restored by
Trp supplementation [155].The acquisition and uptake of Trp
primarily rely on B0AT1, whose expression is provoked by
ACE2 in the IECs [159]. ACE2 provides a new way for the
therapy of intestinal inflammation.

5. Conclusion

In conclusion, the functions of amino acids in intestinal
inflammation aremainly associatedwith improving intestinal
barrier, attenuating intestinal injury, suppressing oxidative
stress, and inhibiting the expressions of proinflammatory
cytokines.These functions are finished by a series of signaling
mechanisms, including NF-𝜅B, MAPK, Nrf2, mTOR, iNOS,
CaSR, ACE2, and GCN2. However, the exact molecular
mechanism of some amino acids is not unclear, such as Ala
and Ser. Therefore, there is still much work to be done to
explore the relevant signaling pathways. Future studies also
should concentrate on the functions and signaling pathways
of amino acids to explore safe and effective therapeutic sched-
ule for human and animals in the intestinal inflammation.
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