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A B S T R A C T

Background: Ketamine is receiving increasing attention as a rapid-onset antidepressant in patients suffering from
major depressive disorder (MDD) with treatment resistance or severe suicidal ideation. Ketamine modulates
several neurotransmitter systems, including norepinephrine via the norepinephrine transporter (NET), both
peripherally and centrally. The locus coeruleus (LC), which has high NET concentration, has been attributed to
brain networks involved in depression. Thus we investigated the effects of single-dose of racemic ketamine on
the LC using resting state functional MRI.
Methods: Fifty-nine healthy participants (mean age 25.57 ± 4.72) were examined in a double-blind, rando-
mized, placebo-controlled study with 7 Tesla MRI. We investigated the resting state functional connectivity (rs-
fc) of the LC before and one hour after subanesthetic ketamine injection (0.5 mg/kg), as well as associations
between its rs-fc and a common polymorphism in the NET gene (rs28386840).
Results: A significant interaction of drug and time was revealed, and post hoc testing showed decreased rs-fc
between LC and the thalamus after ketamine administration compared with baseline levels, including the
mediodorsal, ventral anterior, ventral lateral, ventral posterolateral and centromedian nuclei. The rs-fc reduction
was more pronounced in NET rs28386840 [AA] homozygous subjects than in [T] carriers.
Conclusions: We demonstrated acute rs-fc changes after ketamine administration in the central node of the
norepinephrine pathway. These findings may contribute to understanding the antidepressant effect of ketamine
at the system level, supporting modes of action on networks subserving aberrant arousal regulation in depres-
sion.
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1. Introduction

Ketamine has been identified as a rapidly acting antidepressant
(Berman et al., 2000; Zarate et al., 2006; Murrough et al., 2013). The
different properties of ketamine, including the cardiovascular side-ef-
fects (Short et al., 2018), are likely to arise due to its influence on
multiple receptor types. Inhibition of the NMDA receptor as the primary
mechanism of antidepressant action (Boyer et al., 1998) has recently
been challenged (Zanos et al., 2016). Instead, changes in synaptic
plasticity, relevant for the development of major depressive disorder
(MDD), may be influenced by ketamine via factors such as AMPA re-
ceptor mediated elevation of brain-derived neurotrophic factor (BDNF)
levels (Duman and Aghajanian, 2012; Zhou et al., 2014). While these
mechanisms may explain long-term effects of ketamine, more research
is necessary to reveal the pathways mediating acute ketamine effects,
including other neurotransmitter systems (Williams and Schatzberg,
2016). Understanding the mechanisms underpinning the acute response
to ketamine is particularly important, because the acute side-effects of
ketamine have been proposed to be predictive of its long-term anti-
depressant effects (Luckenbaugh et al., 2014).

We focus on the known influence of ketamine on the norepinephrine
system as a potential mechanism by which ketamine has an acute effect
on brain function. Firstly, the acute effects of ketamine on blood pres-
sure and heart rate are considered to be driven by the norepinephrine
system (Baraka et al., 1973). Specifically, ketamine is known to inhibit
the norepinephrine transporter (NET), as shown by in vitro experiments
and in vivo studies in animals and humans (Baraka et al., 1973; Miletich
et al., 1973; Doenicke et al., 1992; Hara et al., 1998; Nishimura et al.,
1998; Hara et al., 2002; Zhao and Sun, 2008). Importantly, those effects
are observed at plasma concentrations achievable with administration
of subanaesthetic doses (Miletich et al., 1973; Niesters et al., 2012). We
have described this relationship in more detail previously (Liebe et al.,
2017). The NET is responsible for the recirculation of norepinephrine
(NE) from the synaptic cleft into the presynaptic terminal (Schroeder
and Jordan, 2012). The study of different NET genotypes provides an
approach to exploring the role of NET in the antidepressant effects of
ketamine. Indeed, one common NET polymorphism (rs28386840) has
been associated with the severity of the ketamine-related initial blood
pressure increase, indicating an acute influence of ketamine on the
peripheral norepinephrine system (Liebe et al., 2017).

In the brain, the highest concentrations of NET have been found in
the locus coeruleus (LC) (Schou et al., 2005; Arakawa et al., 2008) as
well as in the medial thalamus (Takano et al., 2008). The LC is a small
bilateral nucleus located at the bottom of the fourth ventricle in the
brainstem. It is the main source of norepinephrine in the brain (Mouton
et al., 1994) and projects to nearly the whole brain, including the limbic
system and prefrontal cortex. LC activity plays an important role in
controlling autonomic functions (Samuels and Szabadi, 2008) as well as
in arousal and attention.

Human attention has been linked to the activity of three networks,
each of which has been implicated in different attentional phases: the
alerting network, the orienting network, and the executive control
network (Corbetta and Shulman, 2002; Fan et al., 2005; Corbetta et al.,
2008; Fan et al., 2009; Petersen and Posner, 2012). Within these con-
cepts, the LC has been assigned to all three networks, but its relevance
has been mostly emphasized in the alerting network, with a pronounced
role in the “alerting effect” (Petersen and Posner, 2012).

Acute ketamine administration has a rapid impact on attention
(Oranje et al., 2000). For example, ketamine resulted in an elevated
false alarm rate and a reduced hit rate in a visual oddball task (Musso
et al., 2011). Analogously, it also acutely impaired performance in the
AX-CPT arousal task, in which a lower hit rate and an elevated context-
dependent false alarm rate were reported following ketamine admin-
istration (Umbricht et al., 2000). In rats, ketamine evoked a response-
depressing effect in the five-choice serial-reaction time task, shown by
an increased number of omissions and a reduced response speed,

without affecting motivation (Nikiforuk and Popik, 2014).
Animal studies indicate that ketamine influences LC function

(Dawson et al., 2013; El Iskandrani et al., 2015), and human studies
show that the event-related potential P300 wave – which has been
linked to phasic LC activity (Corbetta et al., 2008) – has a reduced
amplitude during an attentional response following ketamine (Oranje
et al., 2000; Musso et al., 2011).

The LC is thus involved in both blood pressure homeostasis and in
attention regulation and vigilance, potentially drawing together two of
the acute effects of ketamine and suggesting that effects on the nor-
epinephrine system may underlie both.

We therefore propose that ketamine has an influence on the LC via
inhibition of the NET, leading to elevation of NE concentration in the
synaptic clefts. This elevation leads to change in the resting state
functional connectivity (rs-fc) of the LC within the alerting network,
reflecting a more distractible state of arousal. Consequently, we also
predict an influence of the NET genotype on functional connectivity
change after ketamine.

Despite the indications presented here, most studies have assessed
acute ketamine effects based on the hypothesis of a mechanism invol-
ving NMDA-receptors, and to date, no study has investigated the in-
fluence of ketamine on brain structures that are linked to the nor-
epinephrine network, including the NET.

2. Methods

2.1. Subjects

The study was conducted as a double-blind, placebo-controlled,
randomized parallel-design trial. 80 participants (33 women,
25.89 ± 5.29) were recruited by public advertisement and received
financial award for their participation. The participants were in a state
of good general health as determined by medical history, physical ex-
amination, blood laboratory tests, electrocardiography and toxicology
findings. Participants with magnetic resonance imaging (MRI)-in-
compatible devices, regular medication or excessive caffeine intake and
current or former drug abuse were excluded. All subjects completed the
Mini International Neuropsychiatric Interview (M.I.N.I., German
Version 5.0.0) (Ackenheil et al., 1999) and underwent additional in-
terview by the study physician to rule out any DSM-IV psychiatric
disorders. The study was approved by the institutional ethical review
board of the University of Magdeburg, and all subjects gave written
informed consent in accordance with the Declaration of Helsinki.

3. Study design

After a baseline MRI session, study participants were randomized to
a 50ml intravenous infusion of either 0.5mg/kg racemic ketamine
(Ketamine-ratiopharm 500mg/10ml) or saline (Berlin-Chemie Isotone
NaCl 0.9%) outside the MRI scanner. The infusion was administered
over 40min via an infusion pump (Injectomat 2000, Fresenius Kabi
GmbH) in a resting, supine position. Twenty minutes after the infusion
was completed (duration of infusion 40min), a post-infusion MRI ses-
sion was conducted. Each MRI session lasted 60min with collection of
13min rs data after a 40min spectroscopy run.

The whole study included other time points (i.e. 24 h MR session).
Since our hypothesis was specific for acute effects on the NE system, we
focused on the baseline and 1 h functional MRI (fMRI) data.

4. FMRI data acquisition, processing and analysis

Image acquisition was performed using a 7 Tesla Magnetom scanner
(Siemens) with the following parameters for T1 anatomical images: 3D-
MPRAGE sequence, TE=2.73ms, TR=2300ms, T1= 1050ms, flip
angle= 7°, bandwidth= 140Hz/pixel, acquisition ma-
trix= 320×320×224, isometric voxel size= 0.8mm3. Resting state
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fMRI data were acquired eyes-closed and with the following para-
meters: 62 axial slices, acquisition matrix= 106×106, field of
view=212×212mm, slice thickness= 2mm, leading to a high re-
solution of 2mm isotropic, repetition time (TR)=2800ms, echo time
(TE)= 22ms, flip angle= 80°, 280 volumes in total). Raw data quality
was visually checked for each dataset and each time point. Subjects
were excluded if artifacts were observed at any time point
(Supplementary Fig. 1), which led to exclusion of 19 datasets, leaving
61 subjects for further analysis. Data preprocessing was conducted
using scripts developed in the 1000 Functional Connectomes project
(https://www.nitrc.org/projects/fcon_1000/) with several modifica-
tions. This pipeline implemented motion correction, spatial smoothing
with a Gaussian kernel (FWHM=4mm), temporal filtering with a
bandpass filter (0.005–0.1 Hz) and removal of linear temporal trends,
and regressed out the mean time course of white matter, cerebrospinal
fluid and six affine motion parameters. No slice time correction was
performed because of its minimal impact in task-free functional con-
nectivity analysis at the TR used in this study (Wu et al., 2011), as well
as our long acquisition time of 13min. We additionally regressed out
motion outliers identified by a framewise displacement (FD) > 0.2
(Power et al., 2012), calculated with fsl_motion_outliers in FSL.

As a confirmatory analysis, we additionally preprocessed the data
with physiological noise regressors (heart beats and respiration), cre-
ated with the FSL PNM toolbox (Brooks et al., 2008). For this analysis,
we excluded another eight subjects due to poor physiological data re-
cordings.

The fMRI data of each subject were coregistered to the corre-
sponding individual high-resolution anatomical images and then nor-
malized to the Montreal Neurological Institute (MNI) template
(ICBM152) with 2× 2×2mm3 resolution.

The seed was defined based on a previous probability template of LC
(Keren et al., 2009). Two subjects were excluded because of a mismatch
after registration, compared to the targeted probability template
(Supplementary Fig. 2).

The calculation of rs-fc included extraction of the time series from
the average LC seed, computation of voxel-wise correlations with the
extracted time series, Z-transformation of the correlations and regis-
tration of the Z-transformed correlations to standard space using AFNI
(https://afni.nimh.nih.gov/) and FSL (https://fsl.fmrib.ox.ac.uk/).

Calculation of second level statistics for the subjects that passed the
preprocessing steps (ketamine group n=29, 12 women; placebo group
n=30, 14 woman) was performed using SPM12 (http://www.fil.ion.
ucl.ac.uk/spm). There was no age difference between the two treatment
groups (t(57)= 0.810; p= .421).

Specific analysis steps: Statistic images were assessed for cluster-
wise significance by using a cluster-defining threshold of p= .001. To
investigate the baseline rs-fc from LC to all the brain, we conducted a
one-sample t-test including both groups (ketamine, placebo) for the
resting state scan before infusion. A mixed-design ANOVA was per-
formed to assess the time (baseline, after ketamine or placebo infusion)
by group (ketamine n= 29, placebo n=30) interaction of the rs-fc of
the LC to whole brain. As a post-hoc test, we conducted a paired-t-test
within the ketamine and placebo groups with the factor time (baseline,
one hour after ketamine administration) to investigate the change in rs-
fc in each group on a whole brain level. To account for multiple testing
(two groups), we defined a conservative p < .025 for rejection of the
H0 in both of these analyses. We then aimed to corroborate the result of
the paired-t-test with the physiological noise corrected data using a
small volume correction corresponding to regions of interest revealed
by the interaction.

Genotyping of blood samples with regard to the NET gene
rs28386840 was performed following a protocol published previously
(Liebe et al., 2017). To test the influence of genotype on rs-fc change,
we extracted the change of the mean rs-fc beta-weights for the sig-
nificant result in the ketamine group (baseline, directly after ketamine
administration) and compared the groups ([AA] n=15, [T]-carrier

n=13, no genetic data for one participant) using the non-parametric U
Test for two independent samples. Regional activity was tested by the
same analysis for the mediodorsal (MD) thalamic subregion based on
WFU Pick-Atlas.

MRI figures were created with Mango (Research Imaging Institute,
UTHSCSA) and the WFU Pick-Atlas (Maldjian et al., 2003).

5. Results

The LC rs-fc at baseline showed connections with the cingulate
cortex, temporal superior gyrus, putamen, caudate nucleus, pallidum,
hippocampus, precuneus, thalamus, cerebellum and brainstem regions
(Fig. 1, Supplementary Table 1).

The whole brain ANOVA revealed a significant drug (ketamine,
placebo) by time (baseline, 1 h after start of infusion) interaction in the
bilateral thalamus (n=59, p < .001, cluster size k=614, FWE cluster
level corrected, Fig. 2).

Follow-up analysis showed that this interaction was driven by a rs-
fc-decrease between the LC and the bilateral thalamus in the ketamine
group (n=29, p= .008, cluster size k=252, FWE cluster level cor-
rected, Figs. 3 and 4), which was not found in the placebo group.
Further investigation of the thalamic nuclei revealed decreased rs-fc in
the ventral anterior (VA), ventral lateral (VL) and mediodorsal nuclei
bilaterally, and in the left ventral posterolateral (VPL) nucleus and the

Fig. 1. Baseline resting state functional connectivity (rs-fc) between locus
coeruleus (LC) and the whole brain, across all patients in the placebo and ke-
tamine groups (p < .05, FWE cluster level corrected).

Fig. 2. Whole-brain analysis of variance (ANOVA) revealed a significant time-
by-group (baseline, 1 h; ketamine, placebo) interaction of resting state func-
tional connectivity (rs-fc) between the locus coeruleus (LC) seed and the bi-
lateral thalamus (p < .001, FWE cluster level corrected, cluster size= 614).
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right centromedian nucleus (CM) (Fig. 4, Supplementary Table 2).
There were no further significant findings.

In the dataset analyzed following the second preprocessing (con-
trolling for physiological noise), a rs-fc reduction from LC to the tha-
lamus was also identified (p= .018, FWE small volume peak level
corrected).

The reduction of rs-fc between LC and thalamus was dependent on
NET rs28386840, with a greater decrease in the [AA] homozygotes than
in the [T] carriers (U=55, p= .050, Fig. 5). In the MD nuclei of the
thalamus, on which we focused due to previous detection of NET in the
medial thalamus as well as the LC (Takano et al., 2008), the difference
was even more pronounced (U=54, p= .045).

6. Discussion

Following subanaesthetic ketamine administration, we found a de-
crease in rs-fc between the LC and the thalamus peaking at the med-
iodorsal, ventral anterior, ventral lateral bilateral, left ventral poster-
olateral and right centromedian nucleus. Genetic evidence further
suggested an underlying noradrenergic mechanism, as this decrease
was modulated by the NET rs28386840 gene with a greater decrease in
[AA] genotype than in [T] carriers.

These results are compatible with the proposed effects of ketamine
on attention regulation, since the rs-fc change observed here concerns
the first path of the associated attention network.

The thalamus has been classified as a bottom-up regulatory entity
for alertness, with its activation interpreted as facilitating increased
response readiness after an external warning stimulus (Périn et al.,
2010). This effect is thought to support target detection and to improve
awareness in tasks. Accordingly, the thalamus has been shown to be
activated in the alerting effect (Fan et al., 2005), together with the LC
(Xuan et al., 2016).

Recent studies also describe the role of the thalamus in executive
attentional control. Elevated alertness was associated with high activity
in the thalamus, which was interpreted as increasing the signal-to-noise
ratio and facilitating a reduction of distraction in attentional perfor-
mance (Sadaghiani and D'Esposito, 2015; Coste and Kleinschmidt,
2016).

Furthermore, the attentional networks revealed by task-based stu-
dies show a strong overlap with networks identified in the resting
condition (Fox et al., 2006; Vincent et al., 2008), and an involvement of

the thalamus has been shown in the resting-state “salience network”
(Seeley et al., 2007). The salience network has been suggested to con-
stitute a core regulatory entity of human consciousness due to its re-
sponsibility for “higher-order” stimulus selection (Seeley et al., 2007),
and within this network, the MD has been shown to regulate behavioral
flexibility (Parnaudeau et al., 2013; Peters et al., 2016).

The observed connectivity decrease between LC and thalamus could
indicate a change in the regulation of arousal in terms of a disruption of
the alerting function, a promotion of non-selective sensory signal de-
tection and an enhancement of behavioral flexibility. We suggest that
this disconnection within the attention network may constitute a neu-
rophysiological correlate of the known ketamine-related impairment in
attentional tasks (Krystal et al., 1994; Umbricht et al., 2000; Oranje
et al., 2000; Musso et al., 2011). We postulate that this decoupling of
LC-thalamic control with thalamic nuclei involved in attentional pro-
cessing leads to more nonspecific sensory signal detection and a higher
susceptibility to non-focused sensory signals in the thalamus. Con-
ceptual work has explained the delusion-like symptoms after ketamine,
which include disembodiment and impaired control of cognition
(Vollenweider and Kometer, 2010), as stemming from reduced top-
down signaling and increased bottom-up signaling (Corlett et al., 2009;
Powers et al., 2015). We suggest that the increased bottom-up signaling
may be facilitated by the decrease of functional LC-thalamic connection
found in our study.

Accordingly, the different roles of the thalamic nuclei that we found
to be disconnected from LC are related to the well-recognized actions of
ketamine regarding attentional performance and motor response
(Musso et al., 2011), memory (Salvadore et al., 2010) and sensory
signal perception (Vollenweider and Kometer, 2010). The right CM
nucleus of the thalamus is directly related to attentional processing
(Kinomura et al., 1996; Metzger et al., 2013). The MD nucleus connects
subcortical structures to the cortex and is anatomically connected with
the LC (Montagnese et al., 2003). Evidence indicates that the MD is also
involved in attention (Van der Werf et al., 2003) and forms a part of the
salience network (Seeley et al., 2007). It is also involved in sexual
arousal (Walter et al., 2008) and in memory processing (Aggleton and
Brown, 1999; Sweeney-Reed et al., 2016). The VPL, as part of the
ventral posterior nucleus, conducts sensory information from the as-
cending medial lemniscus to the primary and secondary somatosensory
cortex areas (Behrens et al., 2003). VA and VL nuclei are involved in
motor circuits, including the preparation of movement (McFarland and

Fig. 3. Decrease in resting state functional connectivity (rs-fc) from locus coeruleus (LC) to the thalamus following ketamine (p= .008, FWE cluster level corrected,
cluster size= 252, Panel 1). Change in rs-fc between LC seed and thalamus in ketamine and placebo groups at baseline and 1 h after administration. Decrease of rs-fc
is only significant in the ketamine group (p= .008, FWE cluster level corrected, Panel 2).
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Haber, 2002; Johansen-Berg et al., 2005).
Based on our observations of connectivity changes, it is intriguing to

interpret our findings in terms of the underlying neuroanatomy and
physiology of the LC norepinephrine system. The implicit prerequisite
of directed connections is supported by anatomical and animal studies
reporting effective connectivity between the LC and the thalamus
(Samuels and Szabadi, 2008). The firing mode of the thalamus is in-
fluenced by norepinephrine, which subsequently increases thalamic
neuronal excitability and responsiveness, and is associated with parti-
cular vigilance states (McCormick et al., 1991). More precisely, the
different LC firing patterns directly influence the thalamic reaction to
sensory stimuli (Berridge and Waterhouse, 2003). In line with the
Adaptive Gain Theory (Aston-Jones and Cohen, 2005a), the different LC
firing patterns have the capability either to promote non-selectively all
sensory inputs to the thalamus or to facilitate selective responses ob-
servable in connectivity changes between LC, thalamus and sensory
cortex (Devilbiss et al., 2012). Aston-Jones expected an increase in false

alarm errors, problems with discrimination between targets and a lower
threshold for unspecific sensory stimuli with LC tonic activity (Aston-
Jones and Cohen, 2005a; Corbetta et al., 2008), which is exactly what
was found as an effect of ketamine administration (Oranje et al., 2000;
Umbricht et al., 2000; Musso et al., 2011; Nikiforuk and Popik, 2014).

We speculate that ketamine might influence the LC firing mode via
inhibition of the NET, which shows its highest expression level in the
LC. This inhibition would cause a local elevation of NE levels that could
directly affect the LC self-regulating system (Samuels and Szabadi,
2008; Okamoto et al., 2012) and influence LC firing modes.

The modulation of ketamine-related LC–thalamic rs-fc changes by a
NET genetic variant with a greater response in [AA] homozygotes fur-
ther supports the idea that the mechanism of action of ketamine in-
volves these norepinephrine pathways. According to our hypothesis,
[T] allele carriers would exhibit lower NET activity and thus decreased
clearance of norepinephrine from the synaptic cleft (Kim et al., 2006;
Schroeder and Jordan, 2012). This suggests that differential NE levels
are likely to constitute the distinctive element between the two groups.
Neuronal network models of LC function relate high local NE levels in
the LC to high tonic LC activity (Usher et al., 1999; Aston-Jones and
Cohen, 2005b).

Accordingly, one would primarily expect an increased ketamine
effect on rs-fc in the [T] allele carriers. However the overall mechanism
needs to incorporate other, systemic effects, which occur at the same
time. The [T] genotype is thought to have decreased promoter function
(Kim et al., 2006), and accordingly, we found a stronger initial blood
pressure rise in [T] carriers during ketamine administration (Liebe
et al., 2017). One hour after the start of the infusion, however, [T]
carriers showed a lesser response in terms of LC-thalamic connectivity
when compared to [AA] carriers. Blood pressure increase after ad-
ministration of NET inhibitors likely results from two mechanisms:
peripheral NE rise, which elevates blood pressure and – to a lesser
degree – a centrally mediated counter regulation that lowers blood
pressure (Okamoto et al., 2012). The LC tightly controls the sympa-
thetic tone and influences short-term blood pressure homeostasis
(Samuels and Szabadi, 2008). A diminished change of LC tone in [T]
carriers could conceptually be linked to a reduced central counter
regulation in response to the increased initial blood pressure rise.

Contrary to these findings, another recent study indicated higher
NET availability in the thalamus (Sigurdardottir et al., 2016) in healthy
[T] carriers, supporting potential alternative explanations. More re-
search considering the distinct underlying network dynamics is neces-
sary to reveal the complex interactions between NET genetics, NET
availability and function, and connectivity differences.

A connectivity decrease between the LC and thalamus, similar to the
one found in our fMRI study, has also been shown measuring local
cerebral glucose utilization in mice receiving ketamine (Dawson et al.,
2013). Ketamine was associated with an elevated mean firing rate in LC
norepinephrine neurons in mice (El Iskandrani et al., 2015) – which we
would interpret as a shift to the non-specific arousal condition.

The current findings indicate that the mechanism underlying the
antidepressant effect of ketamine may also involve the norepinephrine
system. Previous research has shown that norepinephrine and the LC
are substantially involved in broad depression-like behaviors and
modulated by a wide range of antidepressant drugs (Moret and Briley,
2011). In animal studies, neuronal loss in the LC has resulted in de-
pressive symptoms (Szot et al., 2016), and the regulation of LC firing
modes is essential in stress vulnerability (Curtis et al., 2012) and social
defeat (Isingrini et al., 2016).

Consistent with our understanding, in a positron emission tomo-
graphy (PET) study, higher NET availability in MDD patients compared
to controls has been found in both the LC and in the thalamus, parti-
cularly in a thalamic subregion projecting to the frontal cortex
(Moriguchi et al., 2017). Moreover, visual attention was maintained in
the MDD patients conducting the Trail Making Test and was positively
correlated with NET availability (Moriguchi et al., 2017).

Fig. 4. Decrease in locus coeruleus (LC) resting state functional connectivity
(rs-fc) to thalamic subnuclei in the ketamine group, axial view. Significant
thalamus cluster (blue, MNI coordinates 4, −10, 0) including VA (yellow-
green), VL (turquoise), MD (red), VPL (brown) nuclei and the right CM (smaller
blue cluster). The overlap between the significant cluster and the thalamic
subnuclei is marked in light blue. Numbers indicate the z-coordinate within the
brain in MNI space.
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Reducing alertness would counteract a hypothesized hyperalertness
in MDD which has been found in electroencephalography (EEG) vigi-
lance studies (Hegerl et al., 2012; Olbrich et al., 2012). MDD patients
were not impaired in a visual attention task and performed even better
than healthy controls in a study using the flanker task (Dillon et al.,
2015). Accordingly, reducing an increased attentional focus may be in
line with a therapeutic mode of action based on a mechanism involving
reduced LC-thalamic connectivity.

Taken together, it seems plausible that patients with MDD may have
an altered alarm system with high NE levels in brain structures that are
a functional part of this network and effectively innervated by the LC –
especially the medial thalamus. Long-term NE elevation could induce
upregulation of the NET in the thalamus (Lee et al., 1983; Weinshenker
et al., 2002; Macey et al., 2003) and explain the observed elevated
thalamic NET availability in MDD patients. Ketamine may acutely
disrupt a long-term activated alarm mode of the LC. This hypothesis
would be in line with recent ideas suggesting a reduction of arousal to
treat depressive symptomatology, at least in a subset of MDD patients
(Spirito et al., 2011). Such a mechanism has been partly discussed with
respect to other antidepressant mechanisms such as sleep deprivation,
which convergingly also leads to very rapid antidepressant effects, si-
milar to ketamine (Boland et al., 2017). Finally, beyond the anti-
depressant effect, a shift in attentional focus could relate to further
acute effects of ketamine such as pain relief (May 2007; Niesters et al.,
2012).

Since ketamine possesses a high affinity for NMDA receptors (Sleigh
et al., 2014), and the thalamus was highlighted in the ketamine model
of schizophrenia (Frohlich and Van Horn, 2014; Vukadinovic, 2014),
NMDA receptor inhibition mediated thalamic-LC rs-fc change (Höflich
et al., 2015) could provide an alternative explanation for our results. To
our knowledge, however, there is no evidence in the literature that the
thalamus is a structure with high NMDA receptor density or enhanced
ketamine NMDA receptor binding, which would support the hypothesis
of a preferred NMDA receptor action on that structure in healthy vo-
lunteers, while our hypothesis is based on structural evidence for a
particularly high NET density in the LC and thalamus (Schou et al.,

2005; Arakawa et al., 2008; Takano et al., 2008). Interestingly, strong
efferent projections from LC to thalamus have been found (Samuels and
Szabadi, 2008) to influence sensory signal perception in the thalamus
(Devilbiss and Waterhouse, 2011), whereas no known “top-down”
control from thalamus to LC exists. Moreover, the known sympatho-
mimetic cardiovascular side-effects of ketamine reflect the relevance of
its NET inhibitory component. In contrast, such effects are not manifest
in other NMDA receptor inhibitors lacking this specific component,
such as memantine (Parsons et al., 1999) or 2-amino-5-phosphono-va-
lerate (AP5) (Lin et al., 1995). Furthermore, we found genetic differ-
ences in NET reflected in both the cardiovascular side-effects (Liebe
et al., 2017) and in brain connectivity, further highlighting the re-
levance of this transporter in the mechanism of action of ketamine.
Nevertheless, NMDA receptor inhibition during ketamine infusion has
been shown to induce rs-fc changes in other brain areas (Kraguljac
et al., 2017), and we cannot exclude the possiblity that these brain
regions may influence the change in LC-thalamic rs-fc.

We did not find a change of rs-fc to all brain areas that are known to
be anatomically connected to the LC. However, our strong findings of
altered LC-thalamic rs-fc are not surprising, considering the known
functional importance of LC-thalamic connectivity (Devilbiss and
Waterhouse, 2011) and the previously identified strong LC-thalamic rs-
fc at baseline (Zhang et al., 2016). The preferred modulation of LC-
thalamic rs-fc may also be based on the high NET density found in both
of these areas (Schou et al., 2005; Arakawa et al., 2008; Takano et al.,
2008), and some neocortical brain areas receiving efferent projections
from the LC may be modulated by other mechanisms of action of ke-
tamine (Kraguljac et al., 2017).

7. Limitations

There are some limitations to this study. Because ketamine has
transient side-effects, optimization of blinding through an active pla-
cebo control, for instance with midazolam, has been suggested
(Murrough et al., 2013). However, due to ethical considerations in a
study with healthy participants, saline infusion was the most feasible

Fig. 5. Differing changes in resting state functional connectivity (rs-fc) from locus coeruleus (LC) to thalamus in the ketamine group according to NET genotype
(*p= .05).
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option. It is not possible to measure the LC activity modes directly in
human subjects. However, further research could include more indirect
measurements such as pupil fluctuations or other autonomous nervous
system markers that are related both to LC activity and to the dorsal
attention network (Alnæs et al., 2014). We used a probabilistic template
(Keren et al., 2009) to determine the location of the LC. Future work
could include measurements of the LC location at a subject level using
neuromelanine sensitive sequences (Sasaki et al., 2006; Betts et al.,
2017). Compared to global estimation methods, including a range of
frequency-domain analyses applied to multiple channels simulta-
neously (Zang et al., 2007) and independent component analysis, in
which all information channels are incorporated (McKeown et al.,
1998), the seed-based rs-fc analysis applied here has the disadvantage
that possible relationships and influences resulting from the interplay of
multiple brain areas may be missed. However, the current approach
provides the benefit of a more straightforward interpretability con-
strained by a priori hypotheses (Cole et al., 2010). While genetic studies
often involve small group sample sizes, a known nearly 1:1 distribution
of risk/non-risk carriers in the population (Kohli et al., 2011) led to
comparable groups for our analysis ([AA] n=15, [T]-carriers n=13).
We did not assess ketamine plasma levels, because there are no strong
indications that differences in ketamine metabolism affect psychomi-
metic, antidepressant or sympathomimetic effects in subjects without
premedication (Peltoniemi et al., 2016).

Finally, our claims on antidepressant effects need substantiation in a
patient group, particularly because chronic conditions such as hyper-
arousal may lead to a more differentiated response than the one ob-
served in our healthy sample.

8. Conclusions

We provide evidence that ketamine has an acute impact on brain
structures known to be involved in attentional processing. We interpret
our findings in the context of attentional impairment symptoms after
ketamine administration and consider how they may explain aspects of
its antidepressant effect. We expand our finding of NET rs28386840
polymorphism dependent differences in the physiological side-effects
by revealing NET-dependent LC connectivity changes in the brain,
further underlining the potential importance of norepinephrine in ke-
tamine antidepressant treatment and side-effects. We suggest further
research on the functional modification of brain activity by ketamine
with respect to attentional processing and norepinephrine networks.
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