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REVIEW

Mathematical Biology Models of Parkinson’s Disease

Suruchi Bakshi1,2,*, Vijayalakshmi Chelliah3, Chao Chen4 and Piet H. van der Graaf2,5

Parkinson’s disease (PD) is a progressive neurodegenerative disease with substantial and growing socio-economic burden. 
In this multifactorial disease, aging, environmental, and genetic factors contribute to neurodegeneration and dopamine (DA) 
deficiency in the brain. Treatments aimed at DA restoration provide symptomatic relief, however, no disease modifying treat-
ments are available, and PD remains incurable to date. Mathematical modeling can help understand such complex multifac-
torial neurological diseases. We review mathematical modeling efforts in PD with a focus on mechanistic models of pathogenic 
processes. We consider models of α-synuclein (Asyn) aggregation, feedbacks among Asyn, DA, and mitochondria and pro-
teolytic systems, as well as pathology propagation through the brain. We hope that critical understanding of existing litera-
ture will pave the way to the development of quantitative systems pharmacology models to aid PD drug discovery and 
development.

Parkinson’s disease (PD) is the second most-common pro-
gressive neurodegenerative disease (ND) after Alzheimer’s 
disease (AD) and affects around seven million people world-
wide. The incidence of PD is expected to increase with life 
expectancy. PD is characterized by tremors and movement 
rigidity. Neuronal degeneration is observed in a brain region 
called the substantia nigra pars compacta (SNc). This re-
gion contains dopaminergic neurons and their loss results in 
reduced dopamine (DA) in the striatum, which is responsible 
for the motor symptoms of PD. Current therapeutic inter-
ventions focus on restoring DA levels either through direct 
administration of a DA precursor (such as L-dopa) or block-
ing of DA degrading enzymes (e.g., monoamine oxidase 
blockers). DA receptor agonists are also used to function-
ally compensate for loss of DA. Although these treatments 
have been successful in achieving symptomatic relief in 
PD, they are not disease modifying and, hence, PD remains 
incurable.

PD is a complex multifactorial disease resulting from 
aging, genetic predisposition, and exposure to environmen-
tal toxins. Figure 1 represents the current understanding of 
the complex interaction network associated with PD patho-
genesis. We have used recent reviews1–5 to construct this 
network. This is not an exhaustive network because we have 
restricted it to broad themes for clarity. An exhaustive map 
of PD (PDMap) has been published elsewhere.1

To date, around 15 genes have been identified with 
links to PD. Plotegher and coworkers4 recently published 
a list of these genes with their associated functions. PD 
pathogenesis involves processes such as aggregation of 
a protein named α-synuclein (Asyn), oxidative stress, and 
dysfunction of proteasomes and lysosomes. Three feed-
back motifs have been identified for a long time; they all 

involve the misfolding of Asyn. One of these is the double-
negative feedback interaction between misfolded Asyn 
and proteasomal/lysosomal machinery (highlighted in 
red in Figure 1). Although proteolytic mechanisms are re-
sponsible for clearing misfolded proteins, misfolded Asyn 
is known to inhibit proteasomes and parts of lysosomal 
function.6 Two double-positive feedback interactions are 
also highlighted in Figure 1 (in blue). Misfolded Asyn can 
permeabilize DA-containing vesicles, leading to increased 
cytoplasmic DA concentration. DA can associate with 
native Asyn leading to its misfolding. Misfolded Asyn is 
known to cause increased mitochondrial damage, which, 
in turn, increases oxidative stress leading to increased 
production of reactive oxygen species and reactive ni-
trogen species (ROS/RNS). Increased ROS/RNS leads to 
further Asyn misfolding. Even though we have highlighted 
the shortest-path feedback interactions here, several lon-
ger path interactions can also be identified. For example, 
increased cytoplasmic DA leads to increased ROS, which 
can lead to Asyn misfolding, or compromized lysosomal 
function due to misfolded Asyn can cause defects in mi-
tophagy, which, in turn, leads to increased ROS/RNS and 
consequently to more misfolded Asyn, or increased neu-
roinflammation in response to misfolded Asyn leads to 
increased ROS/RNS, which, in turn, leads to increased 
Asyn misfolding. Apart from these feedback mechanisms, 
several other factors are associated with PD. For example, 
increased concentrations of metal ions such as iron (Fe2+) 
and copper (Cu2+) in PD brains are known to cause Asyn 
misfolding and increased ROS.6 Age-related decline in 
protein clearance mechanisms and mitochondrial function 
as well as increase in inflammation are known to affect PD 
pathogenesis.
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Understanding PD requires an interdisciplinary approach 
involving experimental and modeling studies. Mathematical 
models of PD have developed concomitantly with accumu-
lation of experimental insight and address several of the 
mechanistic aspects of PD pathogenesis. A systematic re-
view of modeling efforts in various NDs has recently been 
published.7 In this review, we focus on various approaches 
in PD modeling. PD models may be broadly categorized 
into two classes: (i) mechanistic models and (ii) phenotypic 
models. The latter class includes models that quantitatively 
describe some aspect of motor symptoms, such as trem-
ors or gait disturbances or electroencephalography char-
acteristics, using signal processing. The predominant aim 
of these models is to identify quantitative differences be-
tween healthy and diseased subjects. In further modifica-
tion, neural networks in certain brain structures, such as the 
basal ganglia (BG) and spinal cord, are modeled to simulate 
observed PD phenotype. Sarbaz and Pourakbari8 recently 
published a detailed review of phenotypic models.

In this review, we focus on the former class of models 
(i.e., mechanistic models of molecular pathways underlying 
PD). The PD models have collectively considered all molec-
ular species and several interactions depicted in Figure 1. 
Through an exhaustive literature search, we have found 32 
models that specifically model PD. We categorize these 
models based on the aspect of PD pathology they study, 
summarize the insights gained, and provide a critical discus-
sion of the models. Where necessary, we review modeling 

literature that served as a precursor to these PD models and 
that from related NDs. Last, we conclude with identifying 
further modeling opportunities. Because the focus of this ar-
ticle is on mechanistic PD models, we have not extensively 
reviewed the developments in the disease progression and 
drug exposure-response models in the field. We briefly refer 
to these modeling efforts toward the end of the article.

MECHANISTIC MODELS IN PD

Mechanistic models of PD are classified into (i) Asyn aggre-
gation models, (ii) pathogenesis models, and (iii) pathology 
propagation models (Figure 2). Of these, the Asyn aggre-
gation models are the most parsimonious and have the 
greatest experimental support. Pathogenesis models range 
in size from a few variables to several hundred variables. 
Pathology propagation has received much less attention 
from the modeling community.

Asyn aggregation models
One of the first genes to be associated with familial PD was 
SNCA — the gene coding for Asyn. Asyn is a 14 kDa pro-
tein, which is relatively unfolded in its native state. However, 
it can assume a misfolded conformation rich in beta-sheets. 
This misfolded protein is capable of aggregation into lower 
or higher molecular weight oligomers or be precipitated into 
insoluble fibrils or large inclusions. Postmortem studies of 
PD brains display characteristic histopathological features 

Figure 1  Interaction network of various pathways involved in pharmacodynamic pathogenesis. The network is generated by referring 
to recent reviews in the field.1–5 Molecular species are shown in green ovals whereas molecular/cellular processes are shown in yellow 
rectangles. Positive and negative interactions are identified using sharp and blunt arrows, respectively. Double-negative feedback 
motif is identified by red arrows, while double-positive feedback motifs are identified by blue arrows. Gray arrows and processes 
shown in lighter shade of yellow indicate interactions that have not been modeled quantitatively. Asyn, α-synuclein; DA, dopamine; 
GSH, glutathione; RNS, reactive nitrogen species; ROS, reactive oxygen species. See Table 1 for the list of abbreviations.
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called Lewy bodies (LBs) and Lewy neurites (LNs). Asyn ag-
gregates are a major component of LBs/LNs.2

Several other molecules, such as amyloid-beta and 
tau proteins as well as microtubules and actin, share this 

property of Asyn. Aggregation is studied in vitro using fluo-
rescence spectroscopy techniques, in which a fluorescence 
marker responds to changes in protein secondary structure 
(for example, from relatively unstructured to beta-sheet 
core), and can be quantitatively correlated with appearance 
of oligomers or aggregates. Such experiments can then be 
extended to study effects of mutations or other (bio)chem-
icals on the aggregation kinetics. Several in vitro experi-
ments using purified “aggregation-prone” proteins show a 
sigmoidal time course of aggregates formation, as shown in 
Figure 3. The lag-phase in the scale of seconds to minutes 
is associated with slow nucleation process, which generates 
“seeds,” whereas the growth phase indicates rapid elonga-
tion of seeds. The eventual plateau may indicate exhaustion 
of monomeric species or attainment of equilibrium.

Mathematical models of polymerization of biomolecules 
were developed in early 1970s by Oosawa and Kasai and 
Oosawa and Asakura.9,10 These self-assembly reactions 
are believed to begin with a nucleation event, in which na-
tive monomers are altered to form “seeds” for elongation 
or polymerization. This class of models is called nucleation 
polymerization (NP) models. Several extensions of the NP 
theme have been proposed, such as inclusion of fragmenta-
tion and association of fibrils, role of molecular chaperones, 
as well as additional kinetic steps. Readers are referred to 
a comprehensive review of protein aggregation models by 
Morris et al.11 The aim of these models is to extract kinetic 
parameters corresponding to various processes involved in 
aggregation. For this reason, these models are often par-
simonious in terms of the molecular events modelled. For 
example, processes such fragmentation of fibrils and gen-
eration of seeds from fragmentation may not be included in 
the model unless experimental data warrant this additional 
complexity.

A number of groups have studied Asyn aggregation using 
a combination of modeling and experimental approaches. 

Table 1  List of abbreviations

ACh Acetylcholine

AD Alzheimer’s disease

Asyn Alpha-synuclein

BG Basal ganglia

BST Biochemical systems theory

CMA Chaperone-mediated autophagy

CSF Cerebrospinal fluid

DA Dopamine

ECF Extracellular fluid

FBA Flux-balance analysis

GSH Glutathione

LBs Lewy bodies

LNs Lewy neurites

MRI Magnetic resonance imaging

NDs Neurodegenerative diseases

NCP Nucleation conversion polymerization

NP Nucleation polymerization

ODE Ordinary differential equations

PK/PD Pharmacokinetic/pharmacodynamic

PD Parkinson’s disease

PET Positron emission tomography

QSP Quantitative systems pharmacology

RNS Reactive nitrogen species

ROS Reactive oxygen species

SNc Substantia nigra pars compacta

TNT Tunneling nanotubes

UPDRS Unified Parkinson’s Disease Rating Scale

UPP Ubiquitin proteasome pathway

Figure 2  Classification of 32 pharmacodynamic (PD) models based on aspect of PD pathology addressed by the models. Further 
description of each category of models can be found in text. Figure also shows the number of models in each category. CMA, 
chaperone-mediated autophagy; DA, dopamine; NCP, nucleation conversion polymerization; NP, nucleation polymerization; ROS, 
reactive oxygen species; UPP, ubiquitin proteasome pathway. See Table 1 for the list of abbreviations.
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In the earliest work, Morris and coworkers12 used previ-
ously published Asyn aggregation data and fitted them with 
a two-step NP model known as the Finke–Watzky model, 
and studied the effect of temperature and pH on aggrega-
tion kinetics.13 More recent experiments with Asyn have re-
vealed that two kinds of Asyn oligomers exist—ones that are 
formed initially and are unstable, and ones that form slowly 
and are stable to proteinase-K treatment and may form the 
substrate for fibril formation.14,15 Thus, the NP model was 
extended to include an additional “conversion” step be-
tween nucleation and polymerization. The resulting model 
was called nucleation-conversion-polymerization (NCP) 
model and included monomers, two types of oligomers, and 
fibrils.16–18 Several authors have used experimental stud-
ies and kinetic modeling to investigate the effects of metal 
ions,19 lipid membranes,17 and mutations20 on Asyn aggre-
gation kinetics.

Typically, analytical solutions of ordinary differential 
equation (ODE)-based NP models are used for data fitting. 
Finding analytical solutions to basic and advanced NP mod-
els has been an active area of research.16,21–23 Furthermore, 
one group has developed a free web-based global data fit-
ting algorithm for fitting molecular aggregation data.24 The 
algorithm is based primarily on NP models and allows for 
a certain finite variations on the NP theme. As of writing of 
this manuscript, their algorithm is available at http://www.
amylofit.ch.cam.ac.uk/login.

All aggregation models are based on kinetic data gener-
ated from in vitro experiments. Such experiments use high 
concentrations of Asyn monomers (from 0.5−200 μM), pre-
sumably to achieve measurable aggregation in experimen-
tally viable time frames. These Asyn concentrations are 
substantially greater than in vivo Asyn concentrations. For 
example, Asyn concentrations in human brain homogenates 
from PD patients are around 10 nM (and around 6 nM for 
healthy subjects).25 Asyn concentrations in cerebrospinal 
fluid (CSF) and plasma are even lower.26,27 It is not clear if 
Asyn aggregation kinetics differs qualitatively at low concen-
trations. Note that under experimental settings monomeric 
Asyn suffers substantial depletion within an hour (for exam-
ple, see figure 3b in ref. 18). This is not expected in vivo. 

Moreover, DA and ROS are known to cause Asyn misfold-
ing. Their effect on the kinetics of aggregation has not been 
studied yet. Last, dissociation reactions are largely ignored 
in Asyn aggregation models. Although this is justified on ex-
perimental time scales, dissociation may play a role in vivo 
at larger time scales associated with disease progression.

Pathogenesis models
PD pathology is believed to result from complex interplay 
and feedbacks among Asyn, ROS, protein degradation ma-
chinery, and DA (Figure 1). PD pathogenesis models focus 
on some or all of the above interactions in various levels of 
detail. Figure 4 shows a Venn diagram in which the mod-
els are categorized based on which cellular processes they 
consider.

Along with the diversity in cellular pathways modeled, 
pathogenesis models also differ in the modeling formal-
isms used. Figure 5 shows classification of models based 
on modeling formalisms they use. We find that Asyn 
aggregation models are typically based on ODEs. However, 
the pathogenesis models use ODEs, network models com-
bined with ODEs, stochastic simulation algorithms, biochem-
ical systems theory (BST; see Glossary), and flux-balance 
analysis (FBA). In this section, we use mechanism-based 
categories of pathogenesis models and refer to modeling 
formalisms where necessary.

Reactive oxygen species models
Of the 15 different genes so far associated with PD, more 
than half lead to mitochondrial defects.4 Aging and envi-
ronmental toxins also lead to mitochondrial dysfunction.1,28 
Early work in PD modeling has focused on mitochondrial 
energy metabolism and ROS generation as pathogenesis 
mechanisms.

One of the earliest ODE models of PD pathogenesis was 
proposed by Raichur and coworkers.29 Generation of ROS 

Figure 3  Schematic representation of molecular aggregation 
pathway and the corresponding kinetic observation of appearance 
of aggregates over time.

Figure 4  Venn diagram showing classification of pathogenesis 
models based on the cellular processes they model. The 
references for the models that used a description of α-synuclein 
aggregation are colored in red. CMA, chaperone-mediated 
autophagy; DA, dopamine; ROS, reactive oxygen species; UPP, 
ubiquitin proteasome pathway.

http://www.amylofit.ch.cam.ac.uk/login
http://www.amylofit.ch.cam.ac.uk/login
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and RNS via various pathways was modeled using minimal 
descriptions. Apart from ROS, the authors also studied the ef-
fect of iron concentration and ubiquitin proteasome pathway 
(UPP) dysfunction on the levels of Asyn aggregates. Their 
model was further expanded by adding glutathione (GSH) 
metabolism and mitochondrial dysfunction. This model pre-
dicted that loss of mitochondrial efficiency could affect GSH 
synthesis via adenosine triphosphate (ATP), which can con-
tribute to increased ROS/RNS, further affecting mitochon-
drial efficiency. Authors hypothesized that this increased 
ROS burden may be responsible for neurodegeneration.30

In 2009, Cloutier and coworkers31 presented a detailed 
model of brain energy metabolism in which they modeled 
glycolysis and mitochondrial energy metabolism in neurons 
and astrocytes and compared their predictions with in vivo 
data from rat brains. In a later work, the authors incorpo-
rated the effect of aging in this model by time-dependent 
reduction in efficiency of mitochondrial complex 1. They ar-
gued that reduction in ATP levels in response to transient 
high demands might lead to reduced cellular housekeep-
ing. Thus, impaired energy metabolism was proposed as 
the etiological reason behind accumulation of toxic effects 
of PD.32 Energy-related metabolites in mouse brain slices 
(healthy and PARK2 knockout) were studied using metab-
olomics and the data were used to train the energy metab-
olism model. This work showed that the cells can maintain 
robust control of ATP levels despite the genetic mutation,33 
and, as such, reduction in ATP levels may not be the etiolog-
ical reason behind PD pathology.

ODE-based brain energy metabolism models lack the 
spatial details, such as effects of diffusion and locus of syn-
aptic activity, with respect to capillaries. Incorporating these 
effects may result in predictions that differ spatially, and av-
eraging spatially detailed models with ODEs may only be 
valid under certain parameterizations.34,35

A different hypothesis for PD pathogenesis, which involves 
feedback between ROS and misfolded Asyn, was tested 
through modifications of the energy metabolism model. 
Authors included Asyn aggregation and minimal description 
of its proteolytic clearance together with the aforementioned 
feedback. This model with 33 variable ODEs displayed a 
bistable-switch-like behavior in response to various factors, 
such as aging, environmental toxins, and mutations. The 
lower steady state characterized by low levels of ROS and 
misfolded Asyn was denoted as the healthy state and the 

higher steady state with higher levels of ROS and misfolded 
Asyn was called the diseased state.36 A reduced version of 
the same model with only two variables (ROS and misfolded 
Asyn) was able to recapitulate the behavior of the larger 
model and allowed for analytical insights into the bistability 
and bifurcation behavior.37 In vivo experiments in which ROS 
stress response to paraquat (an herbicide known to induce 
Parkinsonism) was observed in rat brains provided support 
for the bistable switching behavior, albeit over a short times-
cale.38 Simulations of the model by Raichur and coworkers29 
also hint at the presence of bistability, although the authors 
did not comment on it at the time.

Ubiquitin proteasome pathway, chaperone-mediated 
autophagy, and lysosomal clearance
PD pathogenesis involves a negative feedback between 
misfolded Asyn and proteasomes (Figure 1). Two genes 
with function in proteasome, namely Parkin and UCHL1, 
are known to be mutated in familial PD.6 Recent work has 
shifted the focus from proteasomes to lysosomes and 
autophagosomes.4

In this section, we discuss models involving feedback be-
tween proteolytic pathways and Asyn aggregation. A the-
oretical model of three ODEs with minimal description of 
Asyn aggregation and its interaction with proteasomes was 
proposed.39 The model predicted bifurcation behavior as a 
function of the ratio between Asyn fibrils and free protea-
somes. Homeostasis could be maintained for lower ratios, 
but at higher ratios, free proteasome levels oscillated with 
prolonged periods of low concentration. Authors hypothe-
sized that such prolonged proteasome depletion could lead 
to accumulation of Asyn oligomers leading to PD.39 Thus, 
PD pathogenesis was predicted, although the proteasome 
inhibiting function of Asyn aggregates was not explic-
itly modeled in this work. A common feature of this model 
shared with a few previous ROS models is that both types 
of models predict pathogenesis via the system undergoing 
a bifurcation.

In one of the more recent works, the Asyn mediated inhi-
bition of proteasomes was explicitly modeled.40 The model 
included misfolding of DA-bound Asyn, although minimal de-
scription for DA metabolism was used. Protein degradation 
machinery was included as three pathways—lysosomes, 
chaperone-mediated autophagy (CMA), and UPP. The path-
ways differed in the kinds of Asyn species they degrade, 

Figure 5  Classification of pharmacodynamic pathogenesis models based on the modeling formalisms they use. BST, biochemical 
systems theory; FBA, flux-balance analysis; ODE, ordinary differential equation.
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and the kinds of species that irreversibly block their func-
tion. No significant detail of individual pathways (such as 
ubiquitination, etc.) was included. Authors used stochastic 
simulations of their model to qualitatively test hypotheses/
experimental observations regarding effects of Asyn syn-
thesis, DA levels, and increased lysosomal degradation on 
levels of toxic oligomeric species. This model built on the 
previous models of UPP, in which aggregation of a generic 
(nonspecific) protein was included in a model of UPP and 
lysosomal pathway.41,42 The parameters for these models 
were trained on in vitro data collected on a time scale of 
7 days and, as such, it is not clear how the pathogenesis 
progresses over the timescales relevant for the clinical pro-
gression of PD. Furthermore, by nature, these studies only 
address genetic aspects of PD pathogenesis. Given the sto-
chastic nature of the simulations, it would have been inter-
esting to explore whether stochastic fluctuations alone (or in 
combination with a genetic component) could produce qual-
itatively different model outputs, thus switching from healthy 
to diseased states. This kind of analysis is worth exploring 
with respect to sporadic disease onset.

DA metabolism
Loss of dopaminergic neurons and resulting reduction in 
DA in brain are hallmarks of PD. Dopaminergic neurons 
are involved in synthesis, storage, release, and reuptake of 
DA. Increased cytoplasmic levels of DA can lead to gener-
ation of ROS as well as misfolding of Asyn (Figure 1). Qi 
and coworkers43,44 built a model of DA metabolism using 
the BST formalism. Simultaneously, another group of au-
thors used an ODE-based approach to model DA metab-
olism.45 Both groups investigated effects of key enzymes 
or transporters on DA homeostasis. In further work, Qi and 
coworkers46 also investigated the effect of rotenone and 
paraquat (two herbicides known to cause Parkinsonism) on 
DA metabolism.

A model of dopaminergic neuron using FBA considered 
steady-state fluxes of several variables including DA, Asyn, 
ROS, and proteasomal machinery.47 This model showed in 
a qualitative manner that stressors, such as neurotoxins and 
increased production of Asyn and DA, can lead to PD pa-
thology. The BST approach with minimal kinetic information 
was used by Sass and coworkers48 to study the interplay 
of DA metabolism, Asyn, and proteasomal and lysosomal 
pathway. Like Büchel et al.,47 the authors showed qualita-
tively that disruption of modeled cellular pathways results 
in PD. A curious connection among insulin resistance, in-
flammation, DA, and Asyn aggregation was modeled in a 
theoretical work by Braatz and Coleman.49

All the models utilizing the BST or FBA approach con-
tain several variables and processes. Lack of kinetic infor-
mation regarding these processes has led the authors to 
use relative species concentrations and parameter values 
in these models. The model outputs are also typically fold-
changes in variables at steady states (diseased or healthy) 
rather than absolute concentrations. Despite this limitation, 
qualitative agreement with experimental data has been 
demonstrated.43,48 Smaller ODE-based models, on the 
other hand, have used levels of Asyn aggregation or ROS or 
proteasomes/lysosomes to identify a “PD phenotype.” This 

is predominantly informed by in vitro experiments in which 
levels of such markers are studied. Thus, PD phenotype is 
understood in terms of markers of the pathways that are 
modeled. However, even in the case of ODE models, the 
comparison with experimental/clinical observations remains 
largely qualitative.

We would like to note that only a fraction of pathogenesis 
models include a submodel with kinetic description of Asyn 
aggregation (Figure 4, highlighted in red). None of these 
models use the kinetic parameters derived from Asyn ag-
gregation models discussed previously. A subset of those 
models, which do not include Asyn aggregation kinetics, do 
include some kind of the Asyn aggregates (such as oligo-
mers or fibrils) as a model species. In these cases, the feed-
back between misfolded Asyn and ROS or proteasomes is 
modeled.37,39,49 A few other models focus on non-Asyn me-
diated pathogenesis mechanism (in particular the role of DA 
homeostasis). We feel there is a clear possibility to enrich 
the pathogenesis models with realistic Asyn aggregation ki-
netics and parameters derived from aggregation models. It 
is possible that the individual steps of monomer to oligomer 
to fibril formation are less impactful for the pathogenesis as 
compared with the feedback of misfolded Asyn species on 
relevant systems. Once adequately parameterized, mod-
eling can be used to ascertain the relative contributions of 
each process and then perform informed model reduction.

Moreover, almost all pathogenesis models use a substan-
tially high native Asyn concentration (100 μM in ref. 36,37; 
100–200 μM in ref. 29; or 2 μM in ref. 40). As noted before, 
experimentally observed Asyn concentration in the brain is 
lower by several orders of magnitude. This has implications 
for models with bifurcations or bistability (e.g., ref. 37), in 
which the bistable behavior is sensitive to concentrations 
of native Asyn. Recalibration of relevant parameters in 
pathogenesis models is necessary to reflect physiological 
Asyn concentrations. Furthermore, in case of models with 
bistability, other critical parameters may also need to be re-
vised if bistable behavior is to be preserved at lower Asyn 
concentrations.

Additional models
Hodgkin and Huxley50 proposed an ODE-based model of 
action potentials in squid giant axon. This model has been 
used as a basis for neuronal action potentials in several 
neural systems, including the SNc neurons. In 1986, Gerold 
Porenta51 published a model of neurotransmission using 
the Hodgkin–Huxley model of membrane potential, with 
an addition of neurotransmitters such as DA, acetylcholine 
(ACh), and gamma-aminobutyric acid. Through analysis of 
this model, he showed that disease parameters result in a 
shift in the eigenvalues of the model. Measurements of local 
field potentials in the brains of patients with PD show typ-
ical oscillatory activity. This correlates with bradykinesia. 
Several groups have modeled these so-called beta oscilla-
tions and proposed different hypotheses for the differences 
between healthy and diseased states. For example, Francis 
and coworkers52 modeled neurotransmission using so-
dium, potassium, and calcium currents. Their model reca-
pitulated the tonic pacemaking oscillations of SNc neurons. 
They argued that increased energy costs are associated 
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with calcium channels in these neurons, thus making them 
susceptible to energy stress. Using a neural network of 100 
neurons, McCarthy and coworkers53 showed that oscilla-
tions arise due to inhibitory interaction of a group of striatal 
neurons. They are enhanced due to increase in ACh caused 
by DA depletion in PD. Moran and coworkers54 have mod-
eled membrane potentials and connectivity in a diverse set 
of neurons, including BG, thalamus, cortex, striatum, and 
subthalamic nucleus. They argued that chronic DA deple-
tion alters the connectivity in BG and thalamo-cortical cir-
cuits, thereby generating the enhanced beta oscillations. 
In a more recent article, Pavlides and coworkers55 hypoth-
esize that resonance and feedback between BG neurons 
and motor cortex is responsible for the oscillations. All the 
models of beta oscillations are based on the assumption 
that the neural networks are in a DA-depleted state. In this 
sense, they mechanistically model the emergence of symp-
toms downstream of DA depletion but not the mechanisms 
of DA depletion itself. In a recent study, Roberts and co-
workers56 developed a computer-based mechanistic model 
of BG and combined it with clinical data for various pharma-
cological interventions. Their model provides a mechanistic 
link among neural anatomy, physiology, and pharmacology, 
and, therefore, is an example of a quantitative systems 
pharmacology (QSP) model.

Pathology propagation models
Braak and coworkers57 showed over a decade ago that 
PD pathology spreads along anatomically connected brain 
regions, much like prion diseases. Even though longitudi-
nal data have not been gathered, it is expected that this 
pathological spreading occur over a time-scale of years. 
Pathology propagation has been shown in several animal 
models of PD.58 Recently, exosomes, axonal spread, tun-
neling nanotubes (TNTs), gliosis (see Glossary), leakage 
from degenerating neurons and glymphatic flow have all 
been implicated in the spread of pathology.59 This diver-
sity of mechanisms combined with brain geometry and 
anatomic connectivity considerations makes it difficult to 
develop mechanistic propagation models.

Consequently, this aspect of PD has received much less 
attention from the modeling community in comparison to 
Asyn aggregation and pathogenesis. To our knowledge, a 
single group of modelers have studied intra-axonal trans-
port of Asyn.60,61 Kuznetsov and Kuznetsov60 modeled 
Asyn transport as either a purely advective process (Asyn 
is transported by molecular motors as part of multiprotein 
complexes) or as a combination of advective and passive 
diffusive processes. They adjusted boundary conditions to 
construct healthy and diseased neurons and predicted that 
accumulation of Asyn in axon terminals could lead to forma-
tion of aggregates. In a further article,61 they divided a neu-
ron into two subcellular compartments, namely soma and 
synapse. They collapsed the diffusive/advective processes 
within an axon into a single “transport” term for native Asyn, 
added minimal descriptions of Asyn aggregation (Finke–
Watzky model) and degradation, and tested hypotheses re-
garding likely causes of Asyn aggregation in PD.

The aim of Kuznetsov and coworkers62 was to study PD 
pathogenesis. Thus, despite being the only work to consider 

Asyn transport, the authors have not explored the potential 
of their models to simulate pathology propagation according 
to the Braak hypothesis. Arguably, one-dimensional axonal 
Asyn transport (which may be an oversimplification of prop-
agation in the complex brain geometry) may be adequate to 
study pathology propagation from the enteroneural system 
to the brain and may be useful to explore gut-to-brain prop-
agation of PD.

The spread of PD pathology due to misfolded Asyn has 
led to the characterization of PD as a prion disease.63 A few 
alternative approaches have been used to model propaga-
tion of prion-like proteins in other NDs and prion diseases. 
Most notably, these involve brain magnetic resonance im-
aging (MRI) combined with network approaches. Raj and 
coworkers64 used MRI data to construct neuronal connec-
tivity tracts. They then allowed a generalized “disease fac-
tor” (which could be any prion-like protein) to diffuse through 
this connected neural network. This approach allowed the 
authors to correctly predict brain regions most affected by 
atrophy in AD.64,65 In parallel, Zhou and coworkers used 
functional MRI to study connectivity patterns of brain regions 
most affected by selected NDs and showed that these pat-
terns can give rise to network “epicenters,” which are most 
susceptible to atrophy associated with those NDs.66 Nowak 
and coworkers67 used a two-dimensional array with random 
distribution of cells in silico and allowed prion pathology 
propagation using simple epidemiologic sensitive and in-
fected cell models. Their work showed that the propagation 
probability increases with concentration of prion proteins per 
cell. In a recent theoretical article, authors used a model of 
a neural network together with processes of protein synthe-
sis, misfolding, and transport. Transport of misfolded pro-
teins was modeled as axonal active transport (anterograde 
and retrograde), trans-synaptic transport, and passive diffu-
sion. Authors showed that origination of seed and diffusive 
spread were crucial in determining pathogenic propagation 
patterns.68 Yau and coworkers69 studied cortical thinning in 
PD patients and showed that the atrophy pattern correlated 
with neuronal connectivity to a “disease reservoir,” adding 
support to the Braak hypothesis. Almost all of these mod-
els are agnostic with respect to the pathologic protein they 
describe. The characteristic pathology propagation strongly 
depends upon the network connectivity. In this respect, it is 
worth noting that although the prion-like behavior of Asyn 
is widely accepted, its culmination into PD pathogenesis is 
believed to require further cell-specific factors, such as high 
bioenergetic demands of highly branched neurons.70 Thus, 
combination of network-diffusion approaches with cell-
specific pathophysiological models may be necessary to re-
capitulate spread of PD pathology.

CONCLUSION AND FUTURE DIRECTIONS

In this article, we have presented a historic review of dis-
ease modeling literature in PD. A wealth of literature has 
provided robust kinetic understanding of the Asyn aggre-
gation process. Models of PD pathogenesis have been 
developed with diverse modeling formalisms and sev-
eral etiological mechanisms from experimental literature. 
These interdisciplinary approaches have proved useful in 
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generating testable hypotheses and providing insights into 
PD pathogenesis. Models with diffusion in neural networks 
have been developed for AD and other NDs, and have im-
plications for PD research.

The exact neurodegenerative mechanisms in PD are 
not yet clearly understood. Several possibilities exist, such 
as ROS-toxicity, neuro-inflammatory toxicity, or toxicity 
from misfolded protein burden. However, these cellular in-
sults have not been quantitatively linked to cytotoxicity. 
Consequently, quantitative mechanistic models do not link 
“diseased” states of these variables or processes with cyto-
toxicity. Instead, a diseased state is identified by increased 
burden of misfolded Asyn. Quantitative comparisons of 
measurable variables (such as misfolded Asyn or ROS) in 
models with experimental models of PD are necessary to 
calibrate these models.

Several feedback loops have been identified in PD patho-
genesis (Figure 1). The pathogenesis models typically only 
include one such feedback system (e.g., ROS-Asyn feed-
back or Asyn-UPP feedback). It would be of interest to build 
a dynamic model to integrate the multiple feedback loops 
to rightly capture the multifactorial nature of PD, provided 
it can be adequately parameterized. Such integrated mod-
els would be extremely useful for understanding the relative 
importance of various components involved in the patho-
genesis for comparing effectiveness of different potential 
interventions, and for exploring the synergistic value of com-
bination therapies.

It has been proposed several times that Asyn oligomers 
are the toxic species, whereas insoluble aggregates, such 
as fibrils and LBs/LNs, are nontoxic forms. Formation of 
LBs/LNs may, therefore, be neuroprotective as a mecha-
nism for oligomer clearance, although it is hard to imagine 
that the neuronal existence of LBs/LNs is not detrimental. 
Cells may have a dichotomous response to Asyn misfolding, 
with certain cells forming LBs/LNs, whereas other cells are 
involved in vigorous clearance of misfolded Asyn, thereby 
preventing formation of large aggregates. No models so far 
have explicitly studied the effect of proteolytic parameters 
on propensity to form LBs/LNs. Given the small numbers 
of LBs/LNs per cell, stochastic modeling and noise-induced 
bistability may be explored in this context.71

Indeed, several mechanistic models of PD have shown 
existence of a bifurcation. In combination with stochastic 
switching, this is an attractive mechanism to explain sporadic 
onset of multifactorial diseases. It is imaginable that multiple 
factors, including environmental toxin exposure, age, and ge-
netics, may predispose individuals to PD. This may occur by 
tuning the system parameters so as to bring the system close 
to a bifurcation point. Noise in the system could then induce 
spontaneous stochastic switching from a healthy to diseased 
state, leading to apparently idiopathic onset.

Traditionally, clinical studies have used a scoring sys-
tem called the Unified Parkinson’s Disease Rating Scale 
(UPDRS) to monitor the progression of PD in the presence or 
absence of a particular therapeutic intervention. The UPDRS 
is used to give a score based on self-reported as well as 
clinically observed aspects of cognitive and motor functions. 
Simplistic linear or logistic regression models, together with 
a saturating drug effect, have been proposed to simulate the 

time course of UPDRS scores (see review ref. 72). However, 
it may be difficult to establish a meaningful link between 
mechanistic PD models and clinical UPDRS scores. One ex-
ample of such a link is the work by Roberts and coworkers.56 
Alternatively, one may need to use biomarkers or clinical 
end points, which can be modeled mechanistically to build a 
QSP model. To this end, blood-based biomarkers73 or brain 
imaging using positron emission tomography (PET) to study 
dopaminergic integrity74,75 are suitable candidates.

It has long been recognized that different aspects of 
disease symptoms captured by UPDRS progress at differ-
ent rates.76 Recent application of item response theory to 
modeling UPDRS77,78 allows item-specific analysis in an in-
tegrated fashion. This approach has the potential for devel-
oping the link between biomarkers and clinical symptoms, 
as well as for identifying “pharmacological fingerprints” for 
drug-class-specific effects on the whole spectrum of the 
symptoms and their progression rates. Through system per-
turbation, such knowledge may eventually help elucidate 
the link between disease biology and various aspects of 
the clinical manifestation. A multiscale model of PD, which 
incorporates molecular level and small timescale changes 
to neuronal connectivity to evolution of clinical UPDRS 
scores, would require an approach that integrates diverse 
modeling formalisms. It is conceivable that a combination 
of differential equation-based molecular level models and 
an agent-based cell-level model and network-based neu-
ral connectivity models may be necessary. Building such 
multiscale models with hybrid modeling formalisms is chal-
lenging and presents exciting methodological opportunities. 
Furthermore, the modeling effort would need to be comple-
mented with dedicated gathering of relevant data in clinical 
or preclinical settings. A recent analysis of PD markers from 
the Parkinson’s Progression Markers Initiative study has 
identified several genetic and nongenetic markers that pre-
dict the rate of motor function decline.79 Such analyses can 
enrich multiscale modeling efforts and vice-versa.

Last, newer therapeutic approaches in PD are directed 
toward inhibiting Asyn aggregation directly (small or large 
molecules against Asyn) or indirectly (iron chelation, or tar-
geting products of other PD-risk genes, such as glucoce-
rebrosidase).80,81 Indeed, a few ongoing clinical trials (e.g., 
for monoclonal antibodies against Asyn — MEDI1341 and 
BIIB054) are using plasma/CSF Asyn levels or brain PET 
scans as outcome measures. Few other disease-modifying 
clinical trials with Asyn antibodies or inhibitors of LRRK2 (a 
lysosomal function gene that is mutated in PD) are ongoing. 
Mechanistic modeling approaches presented in this article 
may be useful to assist such clinical trials. QSP models are 
useful to compare the effects of these different strategies 
on desired biomarkers of the disease.82 PD pathogenesis 
models could be expanded to test the likelihood of success 
of various potential treatments.

GLOSSARY
Tunneling nanotube
TNTs are membrane-covered conduits between neighbor-
ing cells. They can range in diameter from 50−700 nm and 
can transport small molecules to large organelles like mito-
chondria depending upon their size.
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Gliosis
Gliosis involves proliferation and migration of various glial 
cells, such as astrocytes, microglia, and oligodendrocytes. 
Gliosis occurs in response to central nervous system injury 
and has a role in neuroprotection and inflammation.

Biochemical systems theory
Biochemical systems theory is an ODE-based modeling 
formalism in which reactions are represented as power-law 
expansions of reactant species. Under the BST framework, 
the dynamics of the ith species Xi is given as

where j represents one of the biochemical processes affect-
ing the dynamics, μij denotes the stoichiometric coefficient, 
γj the rate constant, and fjk represents the kinetic order. The 
BST approach allows greater flexibility in capturing non-
linearity of biochemical network because it allows use of 
noninteger and negative kinetic orders. The solutions are ac-
curate at an “operating point” (for example, a steady state) 
and are approximated by linearization in the vicinity of the 
operating point.83 The method requires estimating a large 
number of parameters and has limited capability to simulate 
dynamic response.

Flux-balance analysis
FBA is a type of metabolic control analysis used to calcu-
late steady-state metabolic fluxes through large-scale met-
abolic networks. Steady-state assumption, together with 
optimality (e.g., conservation of resources) leads to a linear 
system, which requires very few parameters and has low 
computational cost.
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