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A B S T R A C T   

Non-Structural Protein 6 (NSP6) has a protecting role for SARS-CoV-2 replication by inhibiting the expansion of 
autophagosomes inside the cell. NSP6 is involved in the endoplasmic reticulum stress response by binding to 
Sigma receptor 1 (SR1). Nevertheless, NSP6 crystal structure is not solved yet. Therefore, NSP6 is considered a 
challenging target in Structure-Based Drug Discovery. Herein, we utilized the high quality NSP6 model built by 
AlphaFold in our study. Targeting a putative NSP6 binding site is believed to inhibit the SR1-NSP6 protein- 
protein interactions. Three databases were virtually screened, namely FDA-approved drugs (DrugBank), 
Northern African Natural Products Database (NANPDB) and South African Natural Compounds Database 
(SANCDB) with a total of 8158 compounds. Further validation for 9 candidates via molecular dynamics simu-
lations for 100 ns recommended potential binders to the NSP6 binding site. The proposed candidates are rec-
ommended for biological testing to cease the rapidly growing pandemic.   

1. Introduction 

Coronavirus disease 2019 (COVID-19) has become a global 
pandemic after firstly reported in Wuhan, China in late December 2019 
(Chen et al., 2020a). COVID-19 is due to a novel betacoronavirus 
SARS-CoV-2 causing severe pneumonia (Olwenyi et al., 2020) and 
leading to >145 million infected cases and >3 million deaths worldwide 
since the start of the pandemic (https://covid19.who.int/, accessed on 
April 22, 2021). Other betacoronaviruses cause severe respiratory ill-
nesses such as SARS-CoV-1 which shares approximately 79.5% of the 
genome with SARS-CoV-2 but some different mechanisms between them 
in the infected host cells may illustrate the aggressiveness and the virus 
transmission speed of the novel SARS-CoV-2 over SARS-CoV-1 (Rossi 
et al., 2020; Neuman et al., 2006; Neuman and Buchmeier, 2016; Chen 
et al., 2020b; MA and Veesler, 2019; Caldaria et al., 2020). According to 
SARS-CoV-2 structure, it has a spherical shape determined by electron 
microscopy with 50–200 nm diameter in addition to 9-12-nm long 
glycoprotein spikes protruded from the outer envelope (Zhu et al., 2020; 
Mittal et al., 2020). Inside the viral envelope, RNA genome comprises 

~29.900 nucleotides containing several open reading frames (ORFs) 
that encode different types of proteins having critical functions in the 
viral pathogenesis such as non-structural proteins (NSPs). NSPs include 
16 proteins encoded by ORF1a and ORF1b and have in general critical 
roles in forming the viral replication complex (Rastogi et al., 2020; Wu 
et al., 2020; Kim et al., 2020). One of the most challenged NSPs of 
coronaviruses in target-based drug discovery is non-structural protein 6 
(NSP6), as until now, no crystal structure has been resolved, but only 
theoretical models can be studied (Lubin et al., 2020). 

NSP6, which has a size of approximately 34 kDa, is an integral 
membrane protein of eight transmembrane helices and a highly 
conserved C terminus (Pandey et al., 2020; van der Hoeven et al., 2016). 
Interestingly, NSP6 is associated with NSP3 and NSP4 in the assembly of 
replication-transcription complexes (RTCs) by stimulating the formation 
of double-membrane vesicles (DMVs) from endoplasmic reticulum (ER) 
(Pandey et al., 2020; van der Hoeven et al., 2016; Zhang et al., 2020). In 
addition, NSP6 is involved in protecting the viral production inside host 
cells by limiting the expansion of autophagosomes. Although the num-
ber of autophagosomes produced by NSP6 is higher than that induced by 
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starvation, they have a limited ability to expand due to their smaller size 
(Pandey et al., 2020; Morais et al., 2020; Cottam et al., 2014). Inter-
estingly, some evidence demonstrates that NSP6 has an important role in 
ER stress response by interacting with the ER sigma receptor (Santerre 
et al., 2020; DE Gordon et al., 2020a). 

It is obvious that NSP6 is a critical protein to target with therapeutics 
for limiting COVID-19 breakout thus some studies have tried to find out 
ligands which can interact with the predicted NSP6 and inhibit its 
function. According to the critical interaction between NSP6 and SR-1, 
Gordon et al. (DE Gordon et al., 2020a) have identified 6 compounds 
with a significant antiviral activity that interact with SR-1 blocking its 
binding to NSP6 after a subset screening of 69 compounds through 
multiple viral assays (Terracciano et al., 2021). From these compounds: 
Clemastine, Haloperidol and Hydroxychloroquine are FDA-approved 
drugs, PB28 is a preclinical compound in addition Siramesine and Clo-
perastine are drugs in clinical trial phase. In addition, it has been re-
ported that 13 FDA-approved drugs could inhibit SARS-CoV-2 activity 
by interacting with SR-1 in A549-ACE2 cells (Terracciano et al., 2021; 
DE Gordon et al., 2020b). Furthermore, antihistamines, such as 
Diphenhydramine, Hydroxyzine and Azelastine, have been found to 
exert direct antiviral activity against SARS-CoV-2 through their high 
affinity to SR-1 in-vitro. Some studies tried to find compounds that 
interact directly with NSP6 to eliminate its functions. Pandey et al. 
(2020) have suggested that two SR-1 binding drugs, Dextromethorphan 
and Haloperidol, influence alteration of the tertiary structure of 
SARS-CoV-2 NSP6. Lundin et al. (2014) reported K22 as a small com-
pound inhibitor of NSP6 and has an antiviral activity for many coro-
naviruses. Besides, virtual screening of 75 FDA-approved antiviral drugs 
against NSP6 and several SARS-CoV-2 targets recommended catechin 
and other 6 therapeutic agents (Mishra et al., 2021). 

NSP6 shows increasing interest as it could play a vital role in SARS- 
COV2 mutations. Nevertheless, its significant role was proved in in-vitro 
studies. These findings encouraged us to focus on NSP6 as a potential 
target for drug repurposing to tackle this disease (Sun et al., 2022; 
Benvenuto et al., 2020). 

In this study, we used the model of NSP6 built by AlphaFold to 
predict a putative binding site for a virtual screening effort. Our pre-
diction of the binding site via CASTp and PrankWeb came in-coherence 
with the literature data since it is responsible for SR1-NSP6 assembly. 
Therefore, it is believed when targeting the SR1-NSP6 interface, the 
SR1-NSP6 assembly and protein-protein interaction would be inhibited. 
Based on that, we carried out a prospective virtual screening to repur-
pose candidates from FDA-approved drugs, Northern and South African 
Natural Products databases. To confirm the binding of some hits, mo-
lecular dynamics simulations of five FDA-approved drugs and three 
natural product candidates displayed stability with NSP6 compared to 
the apo form. Such repurposing approach would recommend hits with 
known toxicity and pharmacokinetics profiles for further in-vitro anti- 
SARS-CoV-2 assays. 

2. Methodology 

2.1. Multiple sequence alignment of different NSP6 proteins 

Some relevant beta coronavirus species express NSP6 protein, such 
as, SARS-CoV-1, MERS1, Bat coronavirus HKU9, Bat coronavirus HKU5, 
Bat coronavirus HKU4, Human coronavirus HKU1, Human coronavirus 
OC43, Murine coronavirus and Bovine coronavirus (Neuman, 2016). To 
explore their sequence similarity with SARS-CoV-2 NSP6, we conducted 
a multiple sequence alignment (MSA) and phylogenic tree analysis. The 
sequences were downloaded from Uniprot (UniProt: the universal pro-
tein knowledgebase, 2021) and underwent MSA through Muscle website 
(Madeira et al., 2019) employing ClustalW for alignment (Larkin et al., 
2007). Then, Jalview (version 2.11.1.4) was used to view the results of 
alignment and phylogenetic tree (Waterhouse et al., 2009). Due to the 
lack of any structural information about these NSP6 proteins serving as a 

template for homology modeling for SARS-CoV-2 NSP6, we used a 
“template-free modeling” approach to model a SARS-CoV-2 NSP6 
protein. 

2.2. Structure modeling of NSP6 

There are many attempts to predict SARS-CoV-2 NSP6 via FeigLab, 
Zhang and Alphafold as up till now there is no 3D structure of the protein 
(Lubin et al., 2020). Alphafold model showed superior quality compared 
to C–I-TASSER platform and FeigLab based on MolProbity scores due to 
some poor geometries, massive atomic clashes and bad backbone dihe-
dral angles (Heo and Feig, 2020). Moreover, AlphaFold can predict 
protein structures by DeepMind algorithm based on deep neural 
network learning which is successfully able to predict the number of 
difficult proteins in SARS-CoV-2 including NSP6 (Senior et al., 2020; Li 
et al., 2015). Therefore, we used the NSP6 model predicted by Deep-
Mind algorithm AlphaFold version 3, the updated version by Alphafold 
in 4 Augustus 2020, for SARS-CoV-2 NSP6 (https://deepmind.com/rese 
arch/open-source/computational-predictions-of-protein-structures- 
associated-with-COVID-19). In addition, the quality of the model was 
assessed using SAVES v6.0 (https://saves.mbi.ucla.edu/) evaluating the 
stereochemical quality of a protein structure by analyzing 
residue-by-residue geometry and overall structure geometry. 

2.3. Binding site prediction and virtual screening 

To predict the binding site of NSP6, we used CASTp (Tian et al., 
2018) (http://sts.bioe.uic.edu/castp/index.html?4jii) and PrankWeb 
(https://prankweb.cz/). The best predicted binding site came 
in-coherence with the reported literature signifying the site of SR1-NSP6 
interaction and assembly (DE Gordon et al., 2020a; Alsulami et al., 
2021). Accordingly, we carried out virtual screening for three different 
databases, namely: DrugBank, African Natural Compounds Database 
(SANCDB) and Northern African Natural Products Database (NANPDB). 
NANPDB was downloaded from (http://african-compounds.org/ 
nanpdb/) with 4922 natural products from Northern African sources 
derived from plants, animals, fungi, and bacteria (Ntie-Kang et al., 
2017). The SANCDB comprises 1012 natural compounds from Southern 
African sources, which were also downloaded (https://sancdb.rubi.ru. 
ac.za/) (Hatherley et al., 2015). For DrugBank, it consists of FDA 
approved-drugs with a total of 2224 molecules which were also down-
loaded from (http://redpoll.pharmacy.ualberta.ca/drugbank/) (Wish-
art et al., 2006). All molecules were downloaded as “sdf” format, 
prepared as reported earlier (Elghoneimy et al., 2021), then converted 
into pdbqt file format using openbabel (O’Boyle et al., 2011) and Python 
script (prepare_receptor4.py) provided by the MGLTools 1.5.6 (Sanner, 
1999). 

Virtual screening of the databases was performed using Autodock 
Vina. The NSP6 model was prepared for docking by adding H-atoms to 
the whole structure and then converted to pdbqt format by MGL tools 
1.5.6 (Sanner, 1999). Consequently, the grid box was determined using 
MGL tools 1.5.6 by selecting the atoms in the chosen predicted binding 
site (mentioned in the results section). The grid box size is 30 Å × 30 Å ×
34 Å with a grid spacing of 1 Å. Finally, the best compounds were 
selected based on docking scores (binding affinity scores ΔG) and then 
visualized using Pymol (Seeliger and de Groot, 2010) and Discovery 
Studio visualizer– Biovia (BIOVIA and Syst è mes, 2020) to study the 
interaction between the selected compounds and NSP6 protein. 

2.4. Molecular dynamics simulations and MMGBSA analysis 

The apo and the complex structures acquired from the molecular 
docking phase were subjected to MD simulations using GROMACS 
v2020.4 (Abraham et al., 2015). The protein and ions were defined by 
Amber force field 99SB-ILDN (Lindorff-Larsen et al., 2010) and ligands 
were parameterized by generalized amber force field (GAFF) (Wang 
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et al., 2004). The partial atomic charges were calculated by AM1-BCC 
charge method (Jakalian et al., 2002). The structures were inserted in 
a cubic box and solvated by TIP3P water molecules (Jorgensen et al., 
1983) and neutralized by adding sufficient number of counterions. The 
long-term electrostatic interactions were calculated by Particle Mesh 
Ewald scheme (Darden et al., 1993) with distance cutoff set to 10 Å. 

LINCS algorithm (Hess, 2008) was applied to restrain bonds involving 
hydrogen atoms. The integration timestep was set to 2 fs. Random ve-
locities by Boltzmann distribution were assigned to each system, and 
eventually they were equilibrated for 1 ns in NVT ensemble at 300 K 
with Berendsen thermostat (Berendsen et al., 1984). To ensure stability 
during the equilibration, complex systems were subjected to an extra 

Fig. 1. (A) Multiple Sequence Alignment (MSA) for NSP6 Protein from 10 different beta-Coronaviruses utilized by ClustalW (Larkin et al., 2007) using muscle 
(Madeira et al., 2019). The color-coding of ClustalW indicates the physicochemical properties of amino acid residues. Hydrophobic, polar, positive- and 
negative-charged residues are highlighted blue, green, red, and magenta, respectively. Glycine, proline, and aromatic residues are shaded orange, yellow and cyan, 
respectively. Non-conserved amino acid residues are highlighted in white. (B) Percentage identity matrix for NSP6 among the 10 beta-Coronaviruses. (C) The 
phylogenetic tree of MSA. 
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equilibration stage for 2 ns in NPT ensemble at P = 1 bar supplied by the 
Berendsen barostat (Berendsen et al., 1984). A 100 ns dynamic simu-
lation was performed in the NPT ensemble using the Berendsen barostat 
pressure coupling algorithm. 

Generalized Molecular Mechanics (MM/GBSA) has become a widely 
accepted thermodynamic method for calculating bind free energy by 
balancing accuracy and computational efficiency. These are more ac-
curate (and less computationally expensive) than most scoring func-
tions. To better understand the binding affinities and binding energies of 
protein/ligand complexes, the gmx_mmpbsa tool (Vald é s-Tresanco 
et al., 2021) was used to perform MM/GBSA analysis FDA approved 
drugs based on their stability throughout the simulation process. A total 
of 2000 frames were extracted throughout the simulations, then 
MM/GBSA was calculated for the aforementioned complexes. An 
average calculation of all the frames was considered. 

Free binding energy between ligand and protein is calculated based 
on the equation:  

ΔGbinding = Gcomplex – Greceptor – Gligand                                            

Gcomplex: Energy of protein-ligand complex, 
Greceptor: Energy of protein only, 
Gligand: Energy of unbound ligand. 

2.5. Pharmacokinetics and drug-likeness profile predictions 

The pharmacokinetics and drug-likeness properties of the selected 
natural product candidates were predicted using SwissADME (Daina 
et al., 2017). 

3. Results and discussion 

3.1. Multiple sequence alignment of different NSP6 proteins 

Since NSP6 of SARS-CoV-2 is a novel protein without a 3D structure, 
so we explored the similarity of NSP6 among relevant 10 beta corona-
virus species to explore its sequence compared to closely related species. 
The multiple sequence alignment (MSA) and phylogenic tree indicate 
that NSP6 of both SARS-CoV-1 and SARS-CoV-2 is the most similar with 
87.2% identity, as shown in Fig. 1A–C, while the rest species display a 

Fig. 2. 3D structure of the generated model and structural validation using Ramachandran plot and statistics. (A) NSP6 model predicted by AlphaFold. (B) Ram-
achandran plot shows 94.7% of residues in most favored regions, and 5.3% in allowed regions. (C) ERRAT output with overall quality factor 99.270. 
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low percentage identity with SARS-CoV-2 NSP6 ranging from 28.7%– 
35.8% Fig. 1B. Nevertheless, none of these NSP6 protein structures were 
solved yet and, hence, there is a lack of template information for 
comparative modeling of SARS-CoV-2 NSP6. Therefore, we utilized a 
“template-free modeling” approach to construct a model for the SARS- 
CoV-2 NSP6 protein. 

3.2. Structure modeling of NSP6 

NSP6 model is predicted by Alphafold employing deep-learning 
approach and conventional neural network. This approach can predict 
the distance and torsion distribution of protein-based on training 
schemes of PDB structures after getting the amino acid sequence and 
MSA features of a protein. Besides, Alphafold uses an algorithm based on 
what is called “template-free modeling” which can predict challenging 
proteins that lack structural similarity with other proteins (Senior et al., 
2020). 

AlphaFold model of NSP6 reveals 290 amino acids mainly formulates 
one C-terminal, two anti-parallel beta-sheets, sixteen turns and fourteen 
α helices from which eight transmembrane helices can be determined by 
TMHMM Fig. 2A and supplementary data 1). To assess the quality of 
the Alphafold model, we used SAVES v6.0 server (https://saves.mbi. 
ucla.edu/). The Ramachandran Plot shows 94.7% of residues (252 
from 290 residues) are in the most favored regions and the rest 5.3% of 
residues (14 from 290 residues) are found in additional allowed regions 
indicating no outliers Fig. 2B. According to the ERRAT server, the 
overall quality factor is 99.27 Fig. 2C. Globally, these matrices indicate 
the high quality model of NSP6. 

3.3. Binding site prediction and virtual screening 

Our prediction of the binding site of the NSP6 model is based on the 
consensus predictions of both CASTp server and PrankWeb (supple-
mentary data 2). The binding site is formed by the following amino: 
SER-1, LYS-4, ARG-5, THR-6, LYS-8, GLY-9, THR-10, HIS-12, TRP-13, 
MET-58, LYS-61, LYS-63, TYR-224, LEU-259, LEU-260, PRO-261, 
PRO-262, LYS-263, ASN-264, SER-265, ASP-267, LYS-270, LEU-271, 

LYS-274, THR-288, and GLN-290. Interestingly, based on literature, 
such binding site prediction came in-coherence with that involved for 
SR1-NSP6 interaction (Alsulami et al., 2021) (https://sars3d.com 
/model/nsp6). Based on the inspection, the amino acids involved in 
the interface of SR1-NSP6 and responsible for the interactions are LYS-4, 
ARG-5, THR-6, LYS-61, TYR-224, PRO-261, PRO-262, LYS-263, and 
THR-288 as seen in Fig. 3. 

We virtually screened the DrugBank, NANPDB and SANCDB using 
AutoDock Vina against the predicted binding site of NSP6. Top candi-
dates of the score-ordered rank of the screened databases can be found in 
(supplementary data 3). The postulated binding poses of the best- 
scored molecules from the three databases show optimum binding at 
the predicted binding site of NSP6, as seen in Fig. 4 which would hinder 
SR1-NSP6 interactions. 

Elucidating the docking pose of Cephalostatin 2 (SA1 from SANCDB) 
illustrates H-bond interactions with both THR-288 and GLN-290 of 
NSP6 binding site. Besides, other favorable interactions such as pi-cation 
with LYS-63, pi-alkyl with TRP-13, and hydrophobic interactions with 
GLY-9, TRP-13, LYS-63, and GLN-290 can be observed in Fig. 5A and B. 
Likewise, Cephalostatin 11 (SA2 from SANCDB) docking pose displays 
H-bond interactions with THR-288, pi-cation with LYS-63 as well as 
hydrophobic interactions with THR-6, GLY-9 and LYS-63 displayed in 
Fig. 5C and D. Both Cephalostatin 11 and Cephalostatin 2 are products of 
Cephalodiscus gilchristi organism and have roles in cell growth inhibitory 
activities (Moser, 2008; Pettit et al., 1994; GR Pettit et al., 1988). 

An example of NANPDB, Chebulagic acid (NA1) docking pose ex-
hibits H-bond interactions with LYS-63, TYR-224, and ASN-264. Also, 
other favorable interactions such as hydrophobic interactions with ARG- 
5, GLY-9, LYS-63, TYR-224, LYS-263, ASN-264, and GLN-290 can be 
detected as shown in Fig. 5E and F. Chebulagic acid is extracted from the 
fruit of Terminalia chebula Retz with Topoisomerase 1 and Lipoxygenase 
inhibitory activities (Reddy et al., 2009). Also, it was reported to possess 
in-vitro anti-SARS CoV-2 activity (Du et al., 2021). 

Revealing five examples of FDA-approved drugs, the docking pose of 
Venetoclax (DB11581 from DrugBank) shows H-bond interactions with 
SER-1, ARG-5, LYS-8, and ASN-264, as well as other favorable interac-
tion types. For instance, its docking pose displays pi-cation interactions 

Fig. 3. Protein-protein interaction of SR1 and NSP6. (A) SR1 and NSP6 protein-protein interaction as an output of docking experiment (Alsulami et al., 2021), as 
shown in yellow and green cartoons, respectively. (B) a closer view of NSP6-SR1 interaction. Represented as violet sticks of Sigma Receptor 1 and amino acids of NSP 
6 involved in the binding site. 
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with LYS-63, pi-sigma with TRP-13 and LYS-63, pi-sulfur with MET-58, 
pi-pi stacking with HIS-12 and TRP-13, pi-alkyl with LYS-4, ARG-5, TRP- 
13 and LYS-263 as shown in Fig. 6 A and B. Venetoclax, is a potent B-cell 
lymphoma-2 (Bcl2) inhibitor which is primarily approved for patients 
with chronic lymphocytic leukemia (CLL) with or without 17p deletion 
and small lymphocytic lymphoma (SLL). Recently in April 2020, it was 
approved to be indicated in combination therapy for Acute Myeloid 
Leukemia (AML). 

Digitoxin (DB01396 from DrugBank) docking pose demonstrates H- 
bond interactions with ASN-255, LEU-259, and SER-265 displayed in 
Fig. 6C and D. Digitoxin is a cardiac glycoside that can sometimes 
interchange with Digoxin (Belz et al., 2001). Originally, it is extracted 
from the leaves of Digitalis lanata and indicated for dysrhythmia patients 
as it affects Sodium–Potassium ATPase enzyme that regulates the 
quantity of Sodium and Potassium inside the cell (Belz et al., 2001). 

Also, Dactinomycin (DB00970 from DrugBank) docking pose ex-
hibits H-bond interactions with LYS-263 and THR-288, as well as hy-
drophobic interactions with ARG-5, LYS-263, VAL-286, and THR-288 as 
shown in Fig. 6 E and F. Dactinomycin is an antineoplastic antibiotic 
originally derived from Streptomyces parvulus. It is indicated for the 
treatment of solid tumors in children and choriocarcinoma in adult 
women. Its mechanism of action is through intercalation between two 
adjacent guanine-cytosine base pairs blocking the process of DNA 
transcription and RNA synthesis (Kwok et al., 2017). 

Likewise, Glecaprivir (DB13879 from DrugBank) docking pose ex-
hibits H-bond interactions with LYS-63, LYS-263, and ASN-264, and 
hydrophobic interactions with ARG-5, THR-6, LYS-63, LYS-263, and 
ASN-264. Also, other favorable types of interactions can be detected for 
Glecaprivir, such as pi-cation with ARG-5 as shown in Fig. 7 A and B. 
Similarly, ledipasvir (DB09027 from DrugBank) docking pose shows H- 
bond interactions with LYS-63, ASN-264, and LYS-285. Also, hydro-
phobic interactions with ARG-5, LYS-61, LYS-263, VAL-286, ASN-264, 
and GLN-290 can be observed as seen in Fig. 7C and D. Interestingly 
both Glecaprevir and Ledipasvir are antiviral drugs via inhibiting RNA 
viral replication. Glecaprevir is an inhibitor of HCV NS3-4A protease and 
was approved for chronic hepatitis c virus (HCV) genotype 1–6 (Salam 
and Akimitsu, 2013) in combination therapy with pibrentasvir. Unlike 
Glecaprevir, Ledipasvir targets Non-Structural Protein 5A which plays a 
vital role in viral replication as well (Kamal and Kamal, 2018). 

Generally, such postulated binding poses of DrugBank, SANCDB and 
NANPDB display favorable binding events at the predicted binding site 

of NSP6 which is believed to inhibit SR1-NSP6 protein-protein 
interactions. 

3.4. Molecular dynamics simulations 

For further assessment, we evaluated the ligand-protein stability via 
performing molecular dynamics (MD) simulation of the representative 
five DrugBank docking poses, two SANPDB docking poses and one 
NANPDB pose for 100 ns. Besides, a MD simulation for the NSP6 apo 
form was conducted as a reference for comparison purposes. This ended 
up with a total of 9 MD simulations for 100 ns each. 

The stability of each system throughout the simulation was evaluated 
by estimating the root mean-squared deviation (RMSD), root mean 
square fluctuation (RMSF), and radius of gyration (Rg). Also, the number 
of H-bond interactions of ligand-protein complexes was also 
determined. 

The calculated RMSD profiles of the natural and FDA approved drugs 
are shown in Fig. 8 A and B. The apo system displayed a significant 
fluctuation throughout simulation course with an average RMSD value 
of 0.44 nm. FDA approved drugs with exception of DB00970 (Dactino-
mycin) showed a stable protein RMSD profile with an average value of 
0.27, 0.36, 0.30 and 0.29 nm for DB01396 (Digitoxin), DB09027 
(Ledepasvir), DB11581 (Venetoclax) and DB13879 (Glecaprevir) 
respectively. Notably, DB00970 (Dactinomycin) demonstrated signifi-
cant conformational changes in relation to the initial structure, with an 
average value of 0.67 nm reaching equilibrium at 20 ns. The analysis of a 
representative structure revealed two notable features that influenced 
the overall protein RMSD profile: I) the N-terminus helix was partially 
unfolded, resulting in the loss of key hydrophobic interactions and 
hydrogen bonding between the inhibitor and ARG5; and II) the short 
helix (residues 84–109) displayed significant spatial displacement with 
respect to its initial position. Natural products, on the other hand, 
exhibited less stable profile compared to FDA approved inhibitors as 
evidenced by substantial fluctuations through the simulation process. 

Fig. 9 demonstrates that DB00970 (Dactinomycin) and DB11581 
(Venetoclax) inhibitors exhibited remarkable binding mode stability 
among all FDA-approved inhibitors. However, the binding modes of 
DB01396 (Digitoxin) and DB13879 (Glecaprevir) have changed 
dramatically, with average values of 1.54 and 2.34 nm, respectively. We 
also noticed that the binding mode of DB09027 (Ledepasvir) has 
partially changed at the end of the simulation course, reaching a 

Fig. 4. Overall binding modes of molecules generated by molecular docking of the top 14 FDA-approved drugs and top 5 natural products with the selected region in 
the NSP6 protein. (A) Docking poses of 14 top-scored FDA-approved drugs (Venetoclax, Glecaprevir, Digitoxin, Dactinomycin, Oritavancin, Ledipasvir, Ergotamine, 
Irinotecan, Apixaban, Siponimod, Dihydroergocristine, Acetyldigitoxin). (B) Docking poses of 5 top-scored natural products from NANPDB (Euphoroscopin, Arjunin, 
Chebulagic acid, 3′-O-methyl-4-O-(3′′,4′′-di-O-galloyl-alpha-L-rhamnopyranosyl), and Owerreine). (C) Docking poses of 5 top-scored natural products from SANCDB 
(Cephalostatin 2, Cephalostatin 11, Cephalostatin 3, Cephalostatin 16, and Cephalostatin 19). All poses appeared to occupy the predicted binding site and were 
speculated to inhibit SR1-NSP6 protein-protein interactions. 
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maximum RMSD value of 1.46 nm as displayed in Fig. 9. NA1 (Chebu-
lagic acid) and SA1 (Cephalostatin 2) natural products have a very stable 
binding mode throughout the simulation, with average RMSD values of 
0.36 and 0.19 nm, respectively, demonstrating the reliability of the 
generated pose from molecular docking. On the other hand, SA2 
(Cephalostatin 11) compound displayed major binding mode changes at 
the end of the simulation course with a maximum RMSD value of 1.65 
nm. 

The root mean square fluctuations (RMSF) of all systems were used 
to assess the flexibility of the protein backbone as displayed in Fig. 10. 
We observed common flexibility patterns in all systems in regions with 
residue numbers 30–50, 87–108, and 193–202. The flexibility of these 
regions was significantly reduced in systems with FDA approved drugs, 
except for the NSP6-DB00970 system that demonstrated high flexibility 

in the region 87–108 like the apo system. Natural products complex 
systems, on the other hand, demonstrated greater flexibility in previ-
ously indicated regions than FDA approved inhibitors, except for the 
NSP6-NA1 system and NSP6-SA1, which demonstrated less flexibility in 
regions 30–50 and 87–108, respectively. 

The radius of gyration was used to explore the effect of the selected 
compounds on the protein compactness (Fig. 11) throughout the simu-
lation course. The NSP6 apo system displayed several fluctuations, 
indicating less stability and compactness. Chebulagic acid (NA1) and 
Cephalostatin 2 (SA1) showed better protein compactness than Cepha-
lostatin 11 (SA2), which is consistent with protein backbone RMSD 
analysis. Furthermore, the systems with FDA approved inhibitors dis-
played relatively stable protein compactness profile, with an exceptional 
profile for the NSP6-DB00970, which was the most compacted system 

Fig. 5. Generated binding modes of the selected natural products with the selected region in the NSP6 protein. Cephalostatin 2 (SA1) (A, B), Cephalostatin 11 (SA2) 
(C, D) and Chebulagic acid (NA) (E, F), were presented as cyan sticks in the predicted binding site of NSP-6 in three- and two-dimensions. Their docking scores are 
− 10.3, − 10.1 and − 9.2 (kcal/mol), respectively. 
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among all systems with an average value of 1.99 nm compared to NSP6- 
DB11581 with an average value of 2.03 nm. 

The H-bond interactions between the protein and the ligand are 
essential for ligand affinity and stability. The higher the number of H- 
bonds, the greater the stability and affinity of the ligand-protein com-
plex. The number of H-bonds formed between the protein and its ligands 
were estimated by the Gromacs gmx hbond module, and the results are 
shown in Fig. 12. Chebulagic acid (NA) displayed the highest number of 
H-bonds (10) among the tested natural products. The number of H- 

bonds for Cephalostatin 2 (SA1) and Cephalostatin 11 (SA2) are 4 and 6, 
respectively, throughout the simulation course. For the FDA-approved 
drugs, Venetoclax (DB11581), Digitoxin (DB01396), and Dactinomy-
cin (DB00970), reached H-bond count with the surrounding residues of 
5, 7, and 5, respectively. The relative lower number of H-bond count of 
Glecaprivir (DB13879) and Ledipasvir (DB09027) can be explained by 
involvement of other types of interactions between the ligand and pro-
tein, such as the hydrophobic interactions, as discussed earlier. 

Due to the already known pharmacokinetics and toxicity, 

Fig. 6. The binding modes of the selected FDA-approved drugs. Docking poses of FDA-approved drugs, namely: Venetoclax (DB11581) (A, B), Digitoxin (DB01396) 
(C, D), Dactinomycin (DB00970) (E, F). Their docking scores are − 9.7, − 9.1, − 9 (kcal/mol), respectively. 
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repurposing approved drugs as NSP6 inhibitors may significantly reduce 
the time to approval as a treatment for SARSCoV2. So, we performed the 
MMGBSA analysis on the FDA approved drugs that showed better sta-
bility throughout the MD simulation run. 

Based on the promising results from the previous assessment and 
metrics, we focused on NSP6-DB00970, NSP6-SA1, NSP6-NA1, and 
NSP6-DB11581 systems compared to the unliganded NSP6 for further 
conformational sampling analysis. We investigated the conformational 
sampling of each system using principal component analysis (PCA) by 
evaluating their dominant modes of motion. The eigenvalues were 
computed by diagonalizing the covariance matrix of protein alpha car-
bon atoms. We concentrated our analysis on the first two principal 
components (PCs), which represent the most dominant protein motions 
in each system that accounts for 73%, 64%, 53%, 51%, and 44% of the 
motion variance for NSP6, NSP6-DB00970, NSP6-SA1, NSP6-NA1, and 
NSP6-DB11581 systems, respectively. 

To mechanistically explore the effect of ligand binding on confor-
mational landscape, we calculated the free energy landscape (FEL) as a 
function of the first two PCs acquired from PCA analysis as shown in 
Fig. 13. FEL can be used to effectively describe conformational re-
distributions triggered by binding events (Pandey et al., 2020, 2021). 
The deeper color (towards the red color) in the plot reveals lower-energy 
conformational states. Interestingly, NSP6 unliganded form showed one 
major global minimum in the conformational subspace (red basin) with 

the occasion of less stable multiple local minima (yellow valleys), as 
shown in Fig. 13A. On the other hand, the FDA-approved drugs complex 
systems displayed wide and single basin implying one major ensemble of 
favorable conformations, as seen in Fig. 13B-C. Like the unliganded FEL 
behavior, the natural products, SA1 and NA1 complex systems with 
NSP6 exhibited distinct multiple low energy basins highlighting the 
presence of diverse ensembles of flexible and low energy conformations 
during 100 ns simulation, as shown in Fig. 13 D-E. These results thus 
clearly highlight that such compounds binding to NSP6 can alter its 
conformational subspace towards low energy conformations, and 
therefore, modulate its function. 

The MM-GBSA method was used to estimate the binding free en-
ergies of selected complexes obtained from MD simulations. The 
calculated binding energies are shown in Table 1. DB11581 (Ven-
etoclax) had the best binding energy among other inhibitors, with a 
value of − 47.24 kcal/mol, confirming its high affinity for NSP6, which is 
also consistent with its high binding energy obtained from molecular 
docking (− 9.7 kcal/mol). This is due to its high van der Waal and 
electrostatic interaction energies of − 58.04 ± 5.34 and − 28.8 ± 9.2, 
respectively, which resulted in a strong G gas of − 86.9 ± 10.9. 
Following that, DB00970 had relatively high binding free values of 
− 29.62 ± 3.16 kcal/mol. DB09027 demonstrated week affinity towards 
NSP6 with binding energy of -17.04 ± 3.48 kcal/mol. 

The per-residue energy decomposition of the NSP6-DB11518 

Fig. 7. Docking poses of FDA-approved drugs, namely: Glecaprevir (DB13879) (A, B) and Ledipasvir (DB09027) (C, D). Their docking scores are − 9.2 and − 8.8 
(kcal/mol), respectively. 
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(Venetoclax) complex system revealed that ARG5, THR6, LYS8, GLY9, 
TRP13, MET58, LYS63, LYS263 and ASN264, among other residues, had 
significant binding energies and contributed significantly to the binding 
of DB11581 as seen in Fig. 14. Notably, ARG5 interacted strongly with 
the binder, with an energy value of − 11.321.80 and strong Vdw and 
electrostatic contributions of − 5.330.74 and − 4.15 3.1 kcal/mol, 
respectively. These strong interactions are consistent with the docking 
pose in which the ARG5 side chain formed a hydrogen bond with the 
oxygen atom of Methyl 3-nitrophenyl sulfone, as well as two pi-Alkyl 
interactions with salicylamide and Methyl 3-nitrophenyl aromatic 
moieties. In addition, THR6 displayed a strong VdW interaction with 
DB11581. It is worth to be noted that THR6 was not observed in the 
docking pose but contributed to the ligand binding with an energy value 
of − 7.75 kcal/mol implying its role in increasing stability of DB11581 
inside the binding site. LYS8, MET85, TRP13 and LYS263 showed fewer 
binding energies with values of − 4.9, − 4.3, − 3.7 and − 3.7 kcal/mol, 
respectively. LYS63, GLY9 and ASN264 displayed binding energies of 
− 3.1, − 3.4 and − 3.5 kcal/mol. 

Free energy decomposition analysis of NSP6-DB00970 (Fig. 14 B) 
revealed key interactions with surrounding residues involved in inhib-
itor stability, including I) strong electrostatic interactions with LYS263 
and LYS285 with energy values of − 25.7 and − 13.0 kcal/mol, respec-
tively: II) van der Waals interactions with VAL241, LY263, LYS285, 
ALA287, THR288, GLN290 with energy values of − 1.9, − 2.4, − 2.3, 
− 1.2, − 3.1 and − 2.0 kcal/mol respectively. The only common residue 

found to interact with both inhibitors DB00970 and DB11581 is LYS263, 
with no observable interactions with the N-terminus helix with DB0070 
as seen in the docking pose, particularly ARG5. This is due to the helix 
partial unfolding, which results in the loss of residual interactions with 
DB00970, particularly ARG5. Despite the strong interactions of 
DB00970 with surrounding residues, which resulted in the highest ΔGgas 
with a value of − 100.25 ± 8.42 Kcal, DB00970 displayed an unfavor-
able polar contribution (ΔEGB) and solvation energy (ΔGsolv) of 76.01 ±
7.28 kcal/mol and 70.63 ± 7.24 when compared to DB11581, resulting 
in a higher binding affinity for DB11581. All these interactions with 
favorable binding energies explain the docking score obtained with 
DB11581 (Venetoclax) and DB00970 (Dactinomycin) provides more 
insights into its high in-silico affinity throughout MD simulation. 

3.5. Pharmacokinetics and drug-likeness profile predictions 

Since the pharmacokinetics properties and toxicity profiles of the 
FDA-approved drugs are well documented, this section is dedicated for 
the selected natural product candidates only. To demonstrate drug- 
likeness with respect to bioavailability, automated SwissADME server 
was used to predict the pharmacokinetic profile of the selected natural 
products candidates, namely, Cephalostatin 2, Cephalostatin 11 and 
Chebulagic acid. Such predictions give a general overview about the 
effectiveness of drug-candidates for treating a certain disease. However, 

Fig. 8. The root mean squared deviation of the protein backbone atoms during 
the MD simulation of (A) FDA approved and (B) natural compounds. Fig. 9. Assessment of protein-ligand complexes stability throughout the simu-

lation process the computed root mean squared deviation (RMSD) of candidates 
from FDA approved drugs (A) and natural compounds (B). 
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further biological studies and validation experiments should be 
performed. 

According to pharmacokinetics properties (Table 2), SwissADME 
server provides predictive models to estimate individual ADME behav-
iors of the putative compounds through the predictions of passive 
human gastrointestinal (GI) absorption and blood–brain barrier (BBB) 
permeation by specific methods such as BOILED-Egg (Daina et al., 2017; 
Daina and Zoete, 2016). The three putative natural products showed low 
BBB permeability which are critical for the protection of central nervous 
system (CNS) from any possible compounds’ adverse effects. In addition, 
all these compounds exhibited low gastrointestinal absorption and this 
finding was consistent with drug-likeness properties (Table 3) as 
Cephalostatin 2, Cephalostatin 11 and Chebulagic acid showed three 
violations for Lipinski rule and one violation for Veber rule. 

Lipinski #violations show the number of violations of Lipinski rule 
as: lipophilicity (logP) ≤ 5, molecular weight ≤500, number of 
hydrogen bond donors ≤5 and number of hydrogen bond acceptors ≤10. 
Veber #violations show the number of violations of Veber rule sum-
marized as: NRB ≤10 and TPSA ≤140 Å2. PAINS #alerts: counts the 
number of pan-assay interference compound. All calculations were done 
using SwissADME (Daina et al., 2017). 

An Insight into compounds behavior with CYP family is doubtlessly 
of great importance as inhibition of these isoenzyme impact 

pharmacokinetic related drug-drug interactions (Hollenberg, 2002). As 
shown in Table 2, the three natural compounds did not show inhibitory 
actions on CYP450 isoforms except for the two southern African natural 
products Cephalostatin 2 and Cephalostatin 11 exhibited inhibitory ef-
fects with CYP2C9. 

Permeability glycoprotein (Pgp) is an efflux pump powered by ATP 
and plays an important role in control the drug transportation through 
cell membranes protecting critical systems such as CNS (Sharom, 2011). 
Thus, the assessment of Pgp substrate parameter gives us a crucial 
insight whether the drug is a substrate to the Pgp or not (Daina et al., 
2017). The three compounds of interest tend to be a substrate to Pgp as 
shown in (Table 2). 

Pleasantly, all compounds did not exhibit any alert to be PAINS (pan- 
assay interference compounds) (Baell and Holloway, 2010) as shown in 
Table 3. 

4. Conclusion 

In the current emerging situation of the pandemic, many efforts were 
made to investigate possible therapeutics that could be indicated for 
SARS CoV-2 infection. Our focus is to target NSP6 protein via structure- 
based virtual screening via repurposing existing libraries, such as FDA 
approved drugs (DrugBank), Northern African Natural Products Data-
base (NANPDB) and South African Natural Compounds Database 

Fig. 10. Protein flexibility assessment using root mean square fluctuations 
(RMSF) throughout the simulation process. The protein backbone atoms root 
mean-squared fluctuations (RMSF) acquired from candidates from FDA 
approved drugs (A) and natural compounds (B). 

Fig. 11. Protein compactness evaluation by radius of gyration (Rg). Protein 
compactness using the radius of gyration (Rg) including the apo form and 
candidates from FDA approved drugs (A) and natural products (B). 
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(SANCDB). However, this task is challenging due to the lack of crystal 
structures of NSP6. Therefore, we considered the NSP6 model predicted 
by Alphafold for our investigation. Next, we predicted a putative bind-
ing site using a consensus output of both CASTp and PrankWeb. Inter-
estingly, the predicted binding site came in consistency with the 
reported literature indicating the site of Sigma receptor1 (SR1)-NSP6 

protein-protein interaction. 
Then, virtual screening was performed using AutoDock Vina for the 

three databases including 2224 compounds from DrugBank, 4922 
NANPDB and 1012 SANCDB. Based on the docking scores and visual 
inspections, we selected five candidates from DrugBank, (Venetoclax, 
Digitoxin, Dactinomycin, Glecaprevir, and Ledipasvir), and three 

Fig. 12. Evaluation of protein-ligand hydrogen bonds. H-bond count calculated between the protein and candidates from natural products and FDA approved drugs.  
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candidates from both SANCDB and NANPDB as Cephalostatin 2, Ceph-
alostatin 11 and Chebulagic acid. For additional in-silico validation, we 
performed 8 molecular dynamics (MD) simulations for 100 ns for these 
candidates complexed with NSP6, and compared to the apo form. The 
results showed high stability of most of these candidates in the NSP6 
binding site. The calculated MM-GBSA binding free energy of 

Venetoclax presented the highest in-silico affinity among the top five 
FDA-approved drugs towards NSP6. Furthermore, the per-residue en-
ergy decomposition emphasized the significance of the interaction with 
ARG5, and subsequently, possible inhibition of the NSP6-SR1 protein- 
protein interactions. Furthermore, in-silico predictions of the pharma-
cokinetics and drug-likeness properties of the selected natural product 

Fig. 13. Free Energy Landscape (FEL) of NSP6 and top selected complex systems. (A) NSP6, (B) NSP6-DB00970, (C) NSP6-DB11581, (D) NSP6-SA1 and (E) NSP6- 
NA1 systems. 
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candidates displayed encouraging results. 
In conclusion, this study provides a pipeline on how to target a 

challenging target of SARS-CoV2 via virtual repurposing of FDA- 
approved drugs and natural products. Also, the recommended hits are 
endorsed for further biological assessment against NSP6 to cease the 
rapidly growing pandemic. 
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Abraham, M.J., Murtola, T., Schulz, R., Páll, S., Smith, J.C., et al., 2015. GROMACS: high 
performance molecular simulations through multi-level parallelism from laptops to 
supercomputers. Software, 1-2 19-25.  

Alsulami, A.F., Thomas, S.E., Jamasb, A.R., Beaudoin, C.A., Moghul, I., et al., 2021. 
SARS-CoV-2 3D database: understanding the coronavirus proteome and evaluating 
possible drug targets. Briefings Bioinf. 22, 769–780. 

Baell, J.B., Holloway, G.A., 2010. New substructure filters for removal of Pan assay 
interference compounds (PAINS) from screening libraries and for their exclusion in 
bioassays. J. Med. Chem. 53, 2719–2740. 
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