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Abstract Serotonin is implicated in mood and affective disorders. However, growing evidence

suggests that a core endogenous role is to promote flexible adaptation to changes in the causal

structure of the environment, through behavioral inhibition and enhanced plasticity. We used long-

term photometric recordings in mice to study a population of dorsal raphe serotonin neurons,

whose activity we could link to normal reversal learning using pharmacogenetics. We found that

these neurons are activated by both positive and negative prediction errors, and thus report

signals similar to those proposed to promote learning in conditions of uncertainty. Furthermore, by

comparing the cue responses of serotonin and dopamine neurons, we found differences in learning

rates that could explain the importance of serotonin in inhibiting perseverative responding. Our

findings show how the activity patterns of serotonin neurons support a role in cognitive flexibility,

and suggest a revised model of dopamine–serotonin opponency with potential clinical implications.

DOI: 10.7554/eLife.20552.001

Introduction
Serotonin (5-HT) is classically known to be implicated in mood and affective disorders (Dayan and

Huys, 2009; Cools et al., 2011; Li et al., 2012), but it also plays a fundamental role when organisms

need to adapt to sudden changes in the causal structure of an environment, such as during extinc-

tion and reversal learning paradigms (Clarke et al., 2004, 2007; Boulougouris and Robbins, 2010;

Bari et al., 2010; Brigman et al., 2010; Berg et al., 2014). These studies have shown that 5-HT

depletion, particularly in the orbitofrontal cortex (OFC) of primates, causes perseverative errors,

that is, difficulties in stopping responses to previously rewarded stimuli which are no longer rein-

forced, without affecting learning of new associations or retention of learned associations

(Clarke et al., 2007). Such results seem to stem from two functions of endogenous 5-HT activation:

inhibiting learned responses that are not currently adaptive (Soubrié, 1986; Bari and Robbins,

2013) and driving plasticity to reconfigure them (Maya Vetencourt et al., 2008; Jitsuki et al.,

2011; He et al., 2015). These mirror dual functions of dopamine (DA) in invigorating reward-related

responses (Niv et al., 2007; Panigrahi et al., 2015) and promoting plasticity that reinforces new

ones (Tsai et al., 2009; Kim et al., 2012; Steinberg et al., 2013). However, while DA neurons are

known to be activated by reward prediction errors (Schultz et al., 1997; Cohen et al., 2012;

Eshel et al., 2015), consistent with theories of reinforcement learning (Sutton and Barto, 1998;

Schultz et al., 1997), the reported firing patterns of 5-HT neurons (Liu et al., 2014; Cohen et al.,

2015; Li et al., 2016) do not accord with any existing theories (Daw et al., 2002; Boureau and

Dayan, 2011; Cools et al., 2011; Nakamura, 2013). Indeed, 5-HT neurons have been proposed to

signal worse-than-expected outcomes by being activated by negative reward prediction errors in

the reinforcement learning framework (Daw et al., 2002; Boureau and Dayan, 2011), but there is

little experimental evidence for such a signal in 5-HT neurons (Cohen et al., 2015; Hayashi et al.,
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2015; Li et al., 2016) and 5-HT activation does not appear to drive aversive learning processes

(Dugué et al., 2014; Liu et al., 2014; McDevitt et al., 2014; Qi et al., 2014; Miyazaki et al., 2014;

Fonseca et al., 2015) the way DA drives appetitive learning (Tsai et al., 2009; Kim et al., 2012;

Steinberg et al., 2013).

To investigate how 5-HT neurons could be involved in cognitive and behavioral flexibility in

changing environments, we recorded their activity over several days in mice engaged in a reversal

learning task in which the associations between neutral odor cues and different positive and negative

outcomes are first well-learned and then suddenly changed. We reasoned that the scarcity of predic-

tion error–like responses in previous recordings of identified 5-HT neurons (Liu et al., 2014;

Cohen et al., 2015; Li et al., 2016) or unidentified raphe neurons (Ranade and Mainen, 2009;

Hayashi et al., 2015) might be due to inadequately strong prediction errors. In these studies, the

omission of rewards in a small fraction of trials was used to generate prediction errors. While increas-

ing the variability of the outcome, this results in expected uncertainty. In contrast, in a reversal task,

there is an abrupt violation of previously stable predictions and a step increase in the frequency of

the prediction errors, termed unexpected uncertainty. Expected and unexpected uncertainty may

differentially activate neuromodulatory systems (Yu and Dayan, 2005).

Results

Pharmacogenetic inactivation of DRN 5-HT neurons slows negative
reversal learning
We first sought causal evidence that 5-HT neurons were linked to reversal learning in mice engaged

in such a task by using a pharmacogenetic approach to silence 5-HT neurons (Ray et al., 2011;

Teissier et al., 2015; Armbruster et al., 2007). Transgenic mice expressing CRE recombinase under

the 5-HT transporter promoter (Gong et al., 2007) (SERT-Cre, n = 8) were transduced with a Cre-

eLife digest Serotonin is a molecule that plays various roles in the human body. In the brain, it

is involved in regulating mood and emotions. Growing evidence suggests that serotonin also helps

animals – including humans – adapt their behavior to changes in their environment. To allow for such

behavioral flexibility, serotonin might promote changes in the underlying brain structures and

activity.

In a type of learning known as ‘reversal learning’, for instance, it is necessary to adapt to a

sudden change in a previously familiar environment. For example, if there were a road closure on a

person’s way to work, they might want to learn to stop following their usual route and learn a new

and better one. Previous research has shown that when serotonin signaling is reduced, people

persevere. That is, they will keep following the old route even if it is no longer the best choice. How

this process works is still largely unknown.

To start unraveling these mechanisms, Matias et al. trained mice in a reversal learning task while

manipulating and recording the activity of the neurons that produce serotonin. The results showed

that when the activity in serotonin neurons was experimentally blocked, the mice tended to keep

looking for a reward that was no longer available. Then, by recording the activity of serotonin

neurons, Matias et al. found that it was the surprise of discovering a change in a previously familiar

environment that activates serotonin neurons. It did not matter whether the change was better or

worse than expected. The findings suggest that together with dopamine, another molecule involved

in learning from rewards, serotonin could play an important role during reversal learning.

One next step will be to determine if serotonin mainly stops perseverance in its tracks, or

whether it works by helping to unlearn the old behavior, or a combination of both. In the future, this

could further our understanding of depression, which can be viewed as a disorder characterized by

patients being unable to adapt to adverse situations, leaving them trapped to repeat behaviors and

thoughts that are not beneficial. Future studies could also build on these findings to guide the

development of new treatments for depression that involve serotonin.

DOI: 10.7554/eLife.20552.002

Matias et al. eLife 2017;6:e20552. DOI: 10.7554/eLife.20552 2 of 24

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.20552.002
http://dx.doi.org/10.7554/eLife.20552


dependent adeno-associated (AAV.Flex) virus expressing the synthetic receptor Di (DREADD,

hM4D) (Armbruster et al., 2007) injected in the dorsal raphe nucleus (DRN), the major source of 5-

HT to the forebrain (Figure 1A). These mice and their wild-type littermates (WT, n = 4) were trained

in a head-fixed classical conditioning paradigm in which one of four odor cues (conditioned stimuli,

CSs) was randomly presented in each trial. After a fixed 2 s trace period, each odor was followed by

a tone and a specific outcome, or unconditioned stimulus (US) (Figure 1B top). For two odors the

US was a water reward, and for the other two it was nothing (that is, only the tone was played). After

training, mice showed learning of the odor–outcome contingencies, as indicated by differences in

the anticipatory lick rate (Figure 1B bottom).

To test the impact of inhibiting DRN SERT-Cre expressing neurons (hereafter simply ‘5-HT neu-

rons’) we used a within-animal cross-over design in which each mouse experienced two reversals

(Figure 1C top), receiving the DREADD ligand clozapine-N-oxide (CNO) during one and vehicle dur-

ing the other; WT mice, which always received CNO, served as additional controls (Figure 1—figure

supplement 1A). As expected, mice adjusted their anticipatory licking according to the new

Figure 1. Inhibition of DRN 5-HT neurons causes perseverative responding. (A) Injections of Cre-dependent

hM4Di-mCherry (right) in the dorsal raphe nucleus (DRN) of SERT-Cre mice (left). (B) Trial structure of the task (top)

and mean lick rate of an example session along the four trial types (bottom). (C) Reversal procedure (top) and

example of adaptation in mean anticipatory licking (baseline lick rate subtracted) across trials around reversals

(bottom, gray), with exponential fits to the reversed odors (red and black traces). Gray shade represents the trials

of sessions after CNO injection. (D) Mean exponential fits of anticipatory licking for each group of mice after

reversal. (E) Mean time constants for the groups in (D) (one-way ANOVA, F2,19 = 6.28, p=0.008 for negative

reversal, F2,16 = 0.34, p=0.715 for positive reversal; multiple comparisons indicated in the figure). *p<0.05.

DOI: 10.7554/eLife.20552.003

The following figure supplement is available for figure 1:

Figure supplement 1. Anticipatory licking is more perseverative when DRN 5-HT neurons are inhibited.

DOI: 10.7554/eLife.20552.004
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associations in both reversals (Figure 1C bottom, gray traces). For worse-than-expected outcomes

(negative reversals), the kinetics of adaptation to the new contingencies were significantly slower in

hM4D mice receiving CNO, compared to hM4D no-CNO controls and WT controls (Figure 1C,D,E;

Figure 1—figure supplement 1B,C). In contrast, for better-than-expected outcomes (positive rever-

sals), there was no significant difference between treatment and control groups (Figure 1D,E).

This experiment shows that a population of 5-HT neurons in the DRN contributes to inhibiting

perseverative responding, suggesting an anatomical and genetic substrate for previous results

obtained with pharmacological and lesion experiments (Clarke et al., 2004,

2007; Boulougouris and Robbins, 2010; Bari et al., 2010; Brigman et al., 2010). These findings

also defined an access point to assess how the net activity of a specific population of 5-HT neurons

could account for its effects on reversal learning.

Photometric monitoring of DRN 5-HT activity patterns in a reversal task
To obtain a broad view of DRN 5-HT activity and compare our results to other DRN recording stud-

ies (Hayashi et al., 2015; Cohen et al., 2015), for the next series of recording experiments we used

a second reversal task in which mice learned to associate four odors with four different outcomes: a

Figure 2. Behavior of head-fixed mice trained in a reversal task. (A) Schematics of the trial structure in the classical

conditioning task (before reversal) with four different outcomes. In each trial, one of four odors was randomly

selected and presented for 1 s after a variable foreperiod (Forep). The associated outcome was delivered after a 2

s trace period, together with a tone (same tone for all trial types). Mice were presented with 140 to 346 interleaved

trials (mean ± SD: 223 ± 30) per session (day). (B) Top: Mean lick rate of SERT-Cre mice in this task (n = 10) along

the duration of each trial type. For each mouse, three sessions of the classical conditioning task where initial

associations had already been learned were averaged. Bottom: Mean eye movement of SERT-Cre mice (n = 6)

along the duration of each trial type. Shaded areas represent s.e.m. (C) Reversal of CS–US contingencies (negative

reversal: CS 1 and 2; positive reversal: CS 3 and 4). (D) Anticipatory licking (mean of 500–2800 ms after odor onset,

after subtracting the baseline) across mice for sessions around reversal, showing that the lick rate triggered by the

presentation of each odor is adjusted after reversal (n = 8, two-way ANOVA with factors day (days �2 and �1 are

considered together) and mouse, main effect of day: F4,2597 = 722.14, p<0.001 for odor 1, F4,2554 = 355.53, p<0.001

for odor 2, F4,2513 = 104.93, p<0.001 for odor 3, F4,2559 = 381.55, p<0.001 for odor 4). Colors follow odor identity as

in (A). ***p<0.001.

DOI: 10.7554/eLife.20552.005
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large water reward, a small water reward, nothing (neutral) and a mild air puff to the eye

(Figure 2A). After approximately two weeks of training, mice showed robust CS-triggered anticipa-

tory licking correlated to the reward value of the associated USs (large water > small water > neutral

» air puff) and eye-blink responses to the delivery of air puffs (Figure 2B). We then reversed the

CS–US associations in pairs, such that the CSs associated with the large and small rewards now pre-

dicted the air puff and neutral outcomes, respectively, and vice versa (Figure 2C). Upon this reversal,

mice experienced strong violations of CS-based expectations (unexpected uncertainty), both posi-

tive and negative in value, when the unexpected USs were delivered. Anticipatory licking measure-

ments showed that mice adapted to reversal of contingencies over 1–3 additional sessions

(Figure 2D).

To record the population activity of 5-HT neurons across days around the time of the reversal, we

used photometry to monitor the activity of these DRN 5-HT neurons through an implanted optical

fiber (Tecuapetla et al., 2014) (Figure 3A). SERT-Cre mice were infected in the DRN using two

AAV.Flex viruses containing the genetically-encoded calcium indicator GCaMP6s (Chen et al., 2013)

and the activity-insensitive fluorophore, tdTomato (Figure 3B,C). We verified the specificity of

GCaMP6s expression to DRN 5-HT neurons using histological methods (Figure 3—figure supple-

ment 1). We used a regression-based method to decompose the dual fluorescence signals into a

GCaMP6s-specific component, reflecting activity-dependent changes, and a shared component,

reflecting general fluorescence changes (for example, movement artifacts; see Methods and Fig-

ure 3—figure supplement 2). We validated the effectiveness of this approach in control mice

(n = 4) infected in the DRN with yellow fluorescent protein (YFP; replacing GCaMP) and tdTomato

(Figure 3—figure supplements 1 and 2).

Before reversal, photometric 5-HT responses were similar to previous electrical (Liu et al., 2014;

Cohen et al., 2015) and photometric (Li et al., 2016) recordings of identified 5-HT neurons: 5-HT

neurons were activated by reward-predicting CSs and air puffs (Figure 3D, Figure 3—figure supple-

ment 3). YFP control mice implanted and recorded in the same manner showed no photometric

responses to these events (Figure 3—figure supplement 4). To compare directly how DA neurons

respond in the same paradigm, we infected TH-Cre mice and targeted neurons in either the poste-

rior lateral ventral tegmental nucleus (VTA) or the substantia nigra pars compacta (SNc) (Figure 3E,

Figure 3—figure supplement 5). DA photometry responses in these two areas were similar and

were therefore combined. As expected, DA neurons were activated by reward-predicting cues, and

showed small responses to predicted rewards (Figure 3F).

DRN 5-HT neurons respond to both positive and negative US prediction
errors
To understand the pattern of 5-HT neural activity that could underlie adaptation to reversal of con-

tingencies, we first analyzed US responses, which could contribute to or modulate reinforcement

learning. In general, we found that the abrupt reversal of cue–outcome associations caused immedi-

ate changes in 5-HT and DA US responses, much more so than in reward omission tests

(Ranade and Mainen, 2009; Cohen et al., 2015; Hayashi et al., 2015; Li et al., 2016), consistent

with sensitivity to the sudden increase in uncertainty that occurred upon reversal after extensive

training.

We first examined the case of positive reversals. 5-HT neurons showed little or no response to

large water rewards before reversal when they were predicted by the preceding CS, but responded

robustly to the same events when they were unpredicted, after reversal (Figure 4A,B). Thus, 5-HT

neurons showed an excitatory response to a better-than-expected outcome, or positive reward pre-

diction error (RPE). The response to the small reward was also modulated by reward expectation

(Figure 4—figure supplement 1), although to a lesser degree, perhaps due to the presence of a

small response even after extensive training (Figure 3—figure supplement 3B). Like 5-HT neurons,

DA neurons also showed stronger excitatory responses to water rewards immediately after

reversal when they violated cue-based predictions, as opposed to before reversal when they

occurred as predicted (Figure 4C, Figure 4—figure supplement 1C). Therefore, both 5-HT and DA

neurons showed an increase in activity in response to positive RPEs, and both showed a larger

response for the larger magnitude RPE.

We next examined the response to the neutral USs. Before reversal, this US elicited little response

from either 5-HT or DA neurons. After reversal, the neutral US was presented when a small water
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reward was predicted. Therefore, it represented a reward omission or negative RPE. Interestingly, 5-

HT neurons showed a robust excitatory response to the neutral US after reversal (Figure 5B). In con-

trast, DA neurons showed an inhibitory response to the same event (Figure 5C).

Taking the neutral and rewarding USs together, the results show that midbrain DA neurons

respond to positive and negative RPEs with modulation of the opposite sign, as reported previously

in reward omission paradigms (Cohen et al., 2012; Schultz et al., 1997); but see Matsumoto and

Hikosaka (2009); Lammel et al. (2011); Kim et al. (2016); Matsumoto et al., 2016). On the other

Figure 3. Responses of 5-HT and DA neurons before reversal. (A) Fiber photometry with movement artifact

correction in head-fixed mice. L: laser; PMT: photomultiplier tube; D.M: dichroic mirror; Ex: excitation; Em:

emission; F: filter. (B) Cre-dependent fluorophores used. (C) Coronal section showing expression of GCaMP6s and

tdTomato in the DRN of a SERT-Cre mouse (scale bar: 200 mm). PAG: periaqueductal gray; Aq: Aqueduct. (D)

Mean responses of 5-HT neurons to the four CSs and USs during an example session of a mouse before reversal.

Shaded areas represent 95% confidence interval (CI). (E) Coronal section showing expression of GCaMP6s and

tdTomato in the ventral tegmental area (VTA) of a TH-Cre mouse (scale bar: 200 mm). RLi: rostral linear nucleus of

the raphe; RPC: red nucleus, parvicellular part; IPR: interpeduncular nucleus. (F) Mean responses of DA neurons to

the four CSs and USs during an example session of a mouse before reversal. Shaded areas represent 95% CI.

DOI: 10.7554/eLife.20552.006

The following figure supplements are available for figure 3:

Figure supplement 1. Expression of GCaMP6s and of tdTomato in DRN 5-HT neurons.

DOI: 10.7554/eLife.20552.007

Figure supplement 2. Linear regression approach to eliminate movement artifacts from neuronal photometric

data.

DOI: 10.7554/eLife.20552.008

Figure supplement 3. Responses of DRN 5-HT neurons to odor cues and to predicted outcomes.

DOI: 10.7554/eLife.20552.009

Figure supplement 4. Fluorescence changes to odor cues and to predicted outcomes in YFP control mice.

DOI: 10.7554/eLife.20552.010

Figure supplement 5. Responses of midbrain DA neurons before reversal.

DOI: 10.7554/eLife.20552.011
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hand, SERT-positive DRN 5-HT neurons show excitatory responses to both positive and negative

RPEs. Thus, DRN 5-HT responses to rewards and reward omissions resemble an ‘unsigned RPE’ or

‘surprise’ signal (see Discussion).

Finally, we examined the response of 5-HT and DA neurons to predicted and unpredicted air

puffs. In contrast to other USs, DRN 5-HT neurons were mildly activated by air puff USs, even after

extensive training (Figure 3; Figure 3—figure supplement 3B). Upon reversal, despite the fact that

the air puff US now represented a large negative RPE (since the large water reward was predicted),

5-HT neurons showed no significant response (Figure 5—figure supplement 1B). Midbrain DA neu-

rons, on the other hand, showed no response to the air puff US after training, but showed a small

but significant inhibitory response after reversal (Figure 5—figure supplement 1C).

The results for all USs are summarized in Figure 6. Overall, midbrain DA responses adhered

closely to the model of a ‘signed RPE’, including for the air puff, whereas the DRN 5-HT neurons

resembled an ‘unsigned RPE’ with respect to rewards and reward omissions, but they diverged from

this model for air puff responses (see Discussion for further interpretation). Thus, 5-HT and DA neu-

rons are both sensitive to violations of expectation that occur during an abrupt reversal, with the

two systems responding in the same way to better-than-expected outcomes but in opposite ways to

worse-than-expected outcomes.

DRN 5-HT neurons are activated by out-of-context delivery of USs
To further investigate the idea that 5-HT neurons might report prediction errors, we examined

responses to USs delivered outside of the normal context. For this, five days after reversal, on a

small fraction (20%) of trials, a randomly-selected US was delivered at the time that a CS was nor-

mally presented (Figure 7A). We found that water rewards produced larger 5-HT responses when

they were presented in this way, compared to when preceded by a well-learned cue (Figure 7B). Of

particular interest was that even neutral tones produced an excitatory response when an odor was

Figure 4. US responses of 5-HT and DA neurons to the large reward during reversal. (A) Schematic of the reversal procedure following the large reward

US. (B) Top: Mean large reward US responses of an example mouse (SERT1) across days around reversal (shaded areas represent 95% CI); Bottom:

change in mean large reward response amplitude (z-scored across days): gray dots represent individual mice (n = 8), black dots average (± s.e.m.) of

mice (two-way ANOVA with factors day and mouse, the main effect of day is F4,2592 = 31.47 p<0.001; multiple comparisons with the two days before

reversal, corrected using Scheffé’s method, are indicated in the figure). (C) Same as (B) for DA neurons (n = 3 mice): F4,853 = 32.46, p<0.001. *p<0.05,

***p<0.001.

DOI: 10.7554/eLife.20552.012

The following figure supplement is available for figure 4:

Figure supplement 1. US responses of 5-HT and DA neurons to small reward during reversal.

DOI: 10.7554/eLife.20552.013
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expected (Figure 7B; Figure 7—figure supplement 1). Therefore, 5-HT neurons were activated by

the substitution of one neutral stimulus with another. DA neurons also responded strongly to uncued

rewards, as previously reported (Schultz et al., 1997; Cohen et al., 2012), but little to other uncued

Figure 5. US responses of 5-HT and DA neurons to neutral outcome during reversal. (A) Schematic of the reversal procedure following neutral US. (B)

Top: Mean neutral US responses of an example mouse (SERT1) across days around reversal (shaded areas represent 95% CI); Bottom: change in mean

neutral response amplitude (z-scored across days): gray dots represent individual mice (n = 8), black dots average (± s.e.m.) of mice (two-way ANOVA

with factors day and mouse, the main effect of day F4,2535 = 10.71, p<0.001; multiple comparisons with the two days before reversal, corrected using

Scheffé’s method, are indicated in the figure). (C) Same as (B) for DA neurons (n = 3 mice): F4,843 = 4.54, p=0.001. *p<0.05, ***p<0.001.

DOI: 10.7554/eLife.20552.014

The following figure supplement is available for figure 5:

Figure supplement 1. US responses of 5-HT and DA neurons to air puff during reversal.

DOI: 10.7554/eLife.20552.015
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Figure 6. Responses of 5-HT and DA neurons to outcomes are differentially modulated by expectations. (A) Mean

(± s.e.m.) response of 5-HT neurons, across mice, to the four USs before (day �1, filled bars) and right after (day 0,

open bars) reversal (n = 8 mice, two-way ANOVA with factors mouse and day, the main effect of day F1,764 = 84.36,

p<0.001 for large reward, F1,748 = 3.49, p=0.062 for small reward, F1,756 = 38.17, p<0.001 for neutral, F1,766 = 2.79,

p=0.095 for air puff). (B) Same as (A) for midbrain DA neurons (n = 3 mice, F1,249 = 67.9, p<0.001 for large reward,

F1,277 = 8.49, p=0.004 for small reward, F1,278 = 10.95, p=0.001 for neutral, F1,250 = 12.74, p<0.001 for air puff.

**p<0.01, ***p<0.001.

DOI: 10.7554/eLife.20552.016
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USs (Figure 7C) (Matsumoto et al., 2016). Thus, consistent with the responses following CS–US

reversal, this experiment also showed that, with respect to water rewards and reward omissions, 5-

HT neurons respond in the same manner to unexpected events, whether negative, neutral or posi-

tive, whereas DA neurons are primarily sensitive to unexpected events that have some reward value.

CS responses of 5-HT neurons have slower kinetics after reversal than
DA neurons’
US responses are appropriate to drive learning across trials, but occur too late within a given trial to

inhibit CS-driven behavioral responses directly. If it is to intervene in time to prevent a response,

behavioral inhibition should be triggered by predictive CS cues. We therefore examined the CS

responses of 5-HT and DA neurons carefully, to test how they might contribute to reversal learning.

Before reversal, both 5-HT and DA neurons showed CS responses that correlated with the relative

value of the US predicted by the CS (large reward > small reward > neutral » air puff) (Figure 3,

Figure 3—figure supplements 3 and 5). After the reversal, both adjusted to the new contingencies

such that, by three days post-reversal, the CS responses reflected their new US associations (Fig-

ure 8). Thus, despite small differences in their relative magnitudes, and in contrast to their distinct

US responses, DA and 5-HT neurons showed CS responses that were remarkably similar, both before

and after reversal learning. If DA and 5-HT have opposing direct effects on behavior (for example,

Cools et al., 2011), these results suggest that they would simply cancel one another out.

However, when we analyzed the time course of the adaptation of the CS responses, we found

that 5-HT CS responses had a markedly slower rate of adaptation to the new contingencies than did

DA CS responses (Figure 9A,B, Figure 9—figure supplements 1 and 2). The difference in the time

constant of CS adaptation was significant for both negative and positive reversals, and was not due

to differences in learning rates between groups of mice (Figure 9C). We also tested whether US

responses, which presumably reflect, in part, CS-related learning, also show a difference in the time

course of adaptation. However, because the US signals showed a smaller signal-to-noise ratio than

the CS signals, reliable time courses could not be extracted.

A potentially important consequence of the difference in CS learning time constants is that it

implies an asymmetry between DA and 5-HT systems in positive and negative reversals

(Solomon and Corbit, 1974). During a positive reversal, because the adaptation of 5-HT cue

responses is much slower than that of DA cue responses, the net signal will be transiently biased
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Figure 7. DRN 5-HT neurons respond more to uncued outcomes. (A) Behavioral task diagram. (B) Mean (± s.e.m.)

response of DRN 5-HT neurons across mice to the four USs when they are predicted (filled bars) and when they

are unpredicted (open bars) (n = 4 mice, two-way ANOVA with factors type (predicted or unpredicted) and mouse,

the main effect of type: large reward F1,923 = 45.17, p<0.001, small reward F1,944 = 8.42, p=0.0038, neutral

F1,924 = 5.36, p=0.0208, air puff F1,924 = 0.61, p=0.4331). (C) Same as (B) but for midbrain DA neurons (n = 3 mice,

large reward F1,642 = 175.05, p<0.001, small reward F1,589 = 17.53, p<0.001, neutral F1,673 = 0.52, p=0.4707, air puff

F1,601 = 0.34, p=0.5598). *p<0.05, **p<0.01, ***p<0.001.

DOI: 10.7554/eLife.20552.017

The following figure supplement is available for figure 7:

Figure supplement 1. Responses of 5-HT and DA neurons to predicted and unpredicted outcomes.

DOI: 10.7554/eLife.20552.018
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towards the effects of DA (Figure 9D, right). Conversely, during a negative reversal, because 5-HT

cue responses persist longer than those of DA, the difference will be biased towards the effects of

5-HT (Figure 9D, left). This suggests a novel mechanism by which 5-HT can contribute to preventing

perseverative responding during negative reversals (Clarke et al., 2007), by directly inhibiting

behavioral responses to CSs that have undergone decreases in associated outcome values.

The DREADD inactivation experiment (Figure 1) supported the contribution of 5-HT to negative

reversal learning, but did not distinguish whether the relevant activity occurs during the CS or the

US. To test for a contribution of the CS-related activity, we asked whether there was a correlation in

the animal-to-animal variability in the time constant of behavioral adaptation (anticipatory licking)

and neural adaptation (CS magnitude). Remarkably, we observed a significant correlation between

the time constant of DRN 5-HT CS response and the time constant of CS-related licking for the neg-

ative reversals but not the positive one (Figure 10), suggesting that these responses could be

involved in adapting to negative reversals. Moreover, during such negative reversals the time con-

stant of DRN 5-HT responses was slower than that of anticipatory licking for all animals (Figure 10;

see Figure 10—figure supplement 1 for DA). We note that, while we expected that the adaptation

of 5-HT CS responses to the reversal should be at least as slow as that of anticipatory licking for the

two to be causally related, the fact that it was much slower (around eight times as slow) requires

an explanation. One possibility is that our behavioral readout (that is, tongue protrusions long

enough to be detected by our sensor) is just a ‘tip-of-the-iceberg’ of motor responses to appetitive

cues, and that other, covert, movements also need to be suppressed by 5-HT during relearning, and

thus 5-HT neurons need to be active until all motor responses to appetitive cues have disappeared.

Alternatively, it may be the case that 5-HT CS responses could serve more than a mere motor sup-

pression function during reversal learning, and contribute to the longer-lasting learning processes

required for reversal learning (He et al., 2015), such as those that prevent spontaneous recovery fol-

lowing extinction training (Karpova et al., 2011).

Discussion
We used a reversal learning task in head-fixed mice to study the role of 5-HT in adapting to the

reversal of cue–outcome contingencies, a model of the cognitive flexibility required to adapt to

dynamic environmental conditions. Pharmacogenetic inhibition of DRN 5-HT neurons showed that 5-

HT activity contributes to preventing perseverative responses to formerly reward-predictive cues,
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Figure 8. 5-HT and DA CS responses are relearned after the reversal. (A) Mean (± s.e.m.) response of 5-HT

neurons across mice to the four CSs before reversal (filled bars) and after adaptation to the reversed contingencies

(open bars) (n = 8 mice, two-way ANOVA with factors day and mouse, the main effect of day: large reward

F1,906 = 17.35, p<0.001, small reward F1,902 = 14.87, p<0.001, neutral F1,882 = 0.13, p=0.72, air puff F1,914 = 17.12,

p<0.001). (B) Same as (A) for midbrain DA neurons (n = 3 mice, large reward F1,294 = 15.35, p<0.001, small reward

F1,336 = 71.72, p<0.001, neutral F1,282 = 3.45, p=0.06, air puff F1,312 = 6.56, p=0.01). *p<0.05, ***p<0.001.

DOI: 10.7554/eLife.20552.019

Matias et al. eLife 2017;6:e20552. DOI: 10.7554/eLife.20552 10 of 24

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.20552.019
http://dx.doi.org/10.7554/eLife.20552


consistent with previous work in rodents and primates (Clarke et al., 2004, 2007; Boulougouris and

Robbins, 2010; Bari et al., 2010; Brigman et al., 2010; Berg et al., 2014; Bari and Robbins,

2013). These observations suggest two possible complementary contributions of 5-HT to behavioral

flexibility: (1) to facilitate the learning of new associations and (2) to directly inhibit responses which

are no longer appropriate. To elucidate how the dynamics of endogenous neural activity could sup-

port these functions, we used fiber photometry to monitor 5-HT and DA during reversal learning.

This revealed two important findings.

DRN 5-HT neurons are activated by both positive and negative reward
prediction errors
First, we found that 5-HT US responses were strongly sensitive to changes in cue–outcome contin-

gency after the reversal. Remarkably, 5-HT neurons responded with a similar transient excitation to

violations of expectation that were either better-than-expected or worse-than-expected reward

Figure 9. Distinct speed of CS reversal learning in DRN 5-HT and midbrain DA neurons. (A) Normalized

exponential fits (black traces) to the mean amplitude of the CS responses (gray traces) across trials for CS 2 and

CS 3 of an example SERT-Cre mouse. Insets on top show mean CS response (and 95% CI) on days �1 (left) and 3

(right). (B) Same as (A) for an example TH-Cre mouse. (C) Mean time constants (± s.e.m., green and purple dots) of

the exponential fits of CS responses obtained for TH-Cre and SERT-Cre mice during reversal learning (neural

activity: unpaired t-tests, p<0.001 for negative reversal, p=0.0023 for positive reversal; no significance obtained for

anticipatory licking). Gray dots represent individual mouse–odor pairs for each category of reversal type; gray dots

with darker edges represent odors 2 or 4, while the remaining dots represent odors 1 or 3. (D) Difference in

the mean fitted amplitude of CS response between DA and 5-HT during negative reversal (left) and during

positive reversal (right). **p<0.01, ***p<0.001.

DOI: 10.7554/eLife.20552.020

The following figure supplements are available for figure 9:

Figure supplement 1. CS responses of DRN 5-HT neurons during reversal.

DOI: 10.7554/eLife.20552.021

Figure supplement 2. CS responses of midbrain DA neurons during reversal.

DOI: 10.7554/eLife.20552.022
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outcomes. Midbrain DA neurons, on the other hand, responded oppositely to better-than-expected

and worse-than-expected outcomes. Thus, whereas DA neurons could be described as reporting a

signed RPE, 5-HT neurons appeared to report, in part, an unsigned RPE (but see below for discus-

sion of responses to aversive events). That is, 5-HT neurons were sensitive not to the direction of

error but to its magnitude. These responses could also be described as a type of ‘surprise’ signal

(for example, Courville et al., 2006). Supporting this idea, we found that 5-HT neurons were also

sensitive to substitution of one neutral cue for a cue of another modality (sound for odor). It remains

to be determined whether these responses were dictated entirely by small differences in reward

value, or whether they reflect sensory as well as value prediction errors.

Unsigned prediction error signals have been proposed on theoretical grounds to be ideal for reg-

ulating learning and attention based on uncertainty (Pearce and Hall, 1980; Courville et al., 2006).

By reporting such signals, 5-HT US responses would be suitable to drive plasticity and re-learning

during reversal of contingencies. The strong excitatory response of the 5-HT system to negative

RPEs, caused by reward omissions, provides a possible explanation for why inhibiting this system

impairs negative reversal learning (Clarke et al., 2007; Bari et al., 2010) (Figure 1). That is, during

negative reversals or extinction learning, the 5-HT system, either directly or through an interaction

with the DA system (Boureau and Dayan, 2011), could facilitate trial-by-trial undoing of DA-depen-

dent learning. Since 5-HT neurons also respond during positive prediction errors, such as during pos-

itive reversal or initial learning, such activation might compete with co-occurring DA signals, slowing

positive learning, as has been described (Fletcher et al., 1999). The preferential involvement of 5-

HT in ‘unlearning’ responses could be explained by the relative effects of 5-HT release on down-

stream targets, where 5-HT may favor long-term depression (LTD) and DA long term potentiation

(LTP) (He et al., 2015).

Response to aversive events by DRN 5-HT neurons
5-HT US responses contained one notable divergence from an idealized prediction error: air puff

USs continued to evoke responses, even after extensive training, and showed only minor sensitivity

to the presence of a predictive cue — observations consistent with a previous report (Cohen et al.,

2015). One possible explanation is that mice failed to learn the predictive relationship between the

CS and the air puff. Indeed, mice showed air puff–triggered blink responses, but failed to learn
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Figure 10. The correlation between the speed of DRN 5-HT cue learning and anticipatory licking. (A) Correlation

between time constants of 5-HT CS responses and anticipatory licking for the negative reversal. A significant linear

relationship was found: y = 8.4*x + 34; r2: 0.288; F = 5.67, p=0.032. (B) Same as (A) for positive reversals (no

relationship was found). Diagonal dashed lines represent y = x.

DOI: 10.7554/eLife.20552.023

The following figure supplement is available for figure 10:

Figure supplement 1. Time constant of DA CS response versus time constant of corresponding anticipatory

licking.

DOI: 10.7554/eLife.20552.024
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anticipatory blinking responses despite extensive training. This result likely depends on the relatively

long duration of the CS–US trace period, here 2 s (Reynolds, 1945; Boneau, 1958; Cohen et al.,

2012, 2015; Caro-Martı́n et al., 2015; cf. Matsumoto et al., 2016). This is consistent with the idea

that mice did not learn the CS–air puff association. If mice formed no CS-dependent predictions

about the air puff, then they might have experienced each air puff as ‘unpredicted’, whether before

or after reversal. In this case, the presence of robust air puff US responses would be consistent with

an unsigned value prediction error. However, since we have no explanation for how mice could suc-

ceed in learning a CS–reward association while failing to learn the CS–air puff association, other

explanations should also be considered.

A second possible line of explanation for the observation that the air puff did not elicit an

increased response after the reversal is that 5-HT neurons report at least two qualitatively distinct

signals: one relating to the processing of rewards and the other to the processing of aversive stimuli.

In principle, following a reversal from large reward to air puff, one would have expected a contribu-

tion of the reward omission response to the US response, as seen in the small reward to neutral

reversal. The lack of such a response could indicate either simple saturation or a suppressive influ-

ence of the air puff on the reward omission signal. A distinction between the encoding of rewarding

vs. aversive events by the DA system has been proposed (Fiorillo, 2013). The presence of dual sig-

nals might reflect the inclusion of multiple 5-HT neuronal populations within our photometric record-

ings. In future experiments, these could be distinguished using a pathway-specific labeling, as has

been done in the DA system (Lerner et al., 2015; see further discussion below). On the other hand,

VTA DA neurons have been reported to integrate reward and aversive outcome values, but with

aversive responses being strongly modulated by the rate of reward available in the current context

(Matsumoto et al., 2016). In future experiments, it will be important to understand how individual

5-HT neurons integrate information from combinations of outcomes, and in different reward

contexts.

An alternative possibility is that the pattern of 5-HT US responses could be understood together

as a variation on a prediction error signal. Whereas mice can control the consumption of available

water, they cannot control the delivery of air puffs; they are afforded no means to escape in the

head-fixed configuration. It is therefore interesting to consider the possibility that 5-HT neurons

might report errors of control rather than errors of prediction. Under this hypothesis, an aversive

outcome such as the air puff continues to generate a response in 5-HT neurons because the organ-

ism has not managed to control this aspect of its environment. If the mouse were offered a means to

escape, we would expect to see the air puff response diminish. Conversely, because the 5-HT US

response is also sensitive to errors of a positive nature, we would also expect to see continued

responses to a non-controllable reward, for example, direct oral infusion of sucrose (Li et al., 2016).

Such ‘unsigned control errors’ could provide the organism with a signal of the magnitude of cogni-

tive or behavioral effort required to adapt to a given situation, a signal that could be read out for

the purpose of energizing or deenergizing actions.

Consistent with the control error hypothesis, predictable but uncontrollable shocks robustly acti-

vate the immediate early gene Fos in DRN 5-HT neurons (Takase et al., 2004), and this activation is

lowered by controllability signals from the ventral medial prefrontal cortex (Bland et al., 2003;

Amat et al., 2005). This proposal also finds support in a recent study showing that DRN 5-HT activ-

ity mediates short-term sensorimotor adaptation in zebrafish, by reporting the difference between

the expected and actual sensory consequences of motor commands (Kawashima et al., 2016). How-

ever, further experiments will clearly be necessary to test these ideas as explanations of the present

data.

5-HT CS responses could be responsible for inhibiting perseverative
responding
5-HT could thus contribute to cognitive flexibility not only through learning and plasticity, but also

by directly suppressing activity in systems responsible for violated predictions. Indeed, 5-HT has

been strongly associated with suppressing both impulsive and perseverative responses through

‘behavioral inhibition’ (Clarke et al., 2007; Boureau and Dayan, 2011; Cools et al., 2011). In addi-

tion to US signals that could explain the contribution of 5-HT to uncertainty-driven learning, we also

found CS or cue responses that could explain a direct and immediate contribution to behavioral con-

trol during environmental change. We found that 5-HT CS responses, like DA CS responses, were
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strongly positively correlated with CS value, consistent with previous reports (Liu et al., 2014;

Cohen et al., 2015; Hayashi et al., 2015). Indeed, 5-HT and DA CS signals were qualitatively

extremely similar, both after initial training and after relearning. Given that 5-HT and DA are thought

to drive opposing processes of behavioral inhibition and invigoration, respectively (Boureau and

Dayan, 2011; Cools et al., 2011), this would suggest that the two systems effectively cancel one

another out. However, surprisingly, we found that the CS responses of 5-HT neurons were not only

much slower than DA neurons to adapt to new associations after the reversal, but were also main-

tained throughout the extinction of the maladaptive perseverative response, as would be needed to

prevent interference of the old appetitive response. Furthermore, there was a significant correlation

across animals in the post-reversal learning rates of trial-by-trial 5-HT activity and that of anticipatory

licking (Figure 10).

This difference in rates of adaptation between the two systems, which to our knowledge was not

previously reported in any neuromodulatory system, implies that the net balance between DA and

5-HT will undergo specific dynamics during learning that resemble the classical proposal concerning

opponent processes by Solomon & Corbit (1974). Specifically, because DA cue responses are

quicker to establish, cues undergoing positive changes in outcome value will temporarily favor DA

signals. Conversely, because DA cue responses are also quicker to withdraw, cues undergoing nega-

tive changes in outcome value will temporarily favor 5-HT signals. Thus, positive changes will favor

DA and behavioral invigoration, and negative changes will favor 5-HT and behavioral suppression.

This may explain why 5-HT is specifically critical in preventing responses to cues that were previously

rewarding, which is observed experimentally (Figure 1; Clarke et al., 2007). The origins of the dif-

ferences in 5-HT and DA learning dynamics will be important to uncover, and might arise from differ-

ences in the systems feeding into the two neuromodulators. Interestingly, neural responses in the

caudate nucleus, a major recipient of DA projections (Clarke et al., 2011), adapt faster during rever-

sal learning, while the PFC, a major target of 5-HT projections (Muzerelle et al., 2016), adapts more

slowly (Pasupathy and Miller, 2005).

Implications of neuronal heterogeneity and other complexities of the 5-
HT system
The technique of fiber photometry of genetically-encoded calcium indicators provides excellent

genetic specificity and stable long-term recordings, but does not allow the resolution of single-neu-

ron responses. It is therefore possible that differential activity patterns within specific subpopulations

of DRN 5-HT neurons exist that could not be resolved by this recording method. In fact, several

studies point to a heterogeneity among DRN neurons, both in terms of physiological responses

(Ranade and Mainen, 2009) and in terms of projection targets of DRN cell groups (Muzerelle et al.,

2016) and single neurons (Gagnon and Parent, 2014). This would suggest that the different signals

we observed—for example, CS vs. US or rewarding vs. aversive USs—could have different origins

and functions.

Even if this is the case to some extent, and given the consistency of our optical fiber targeting

(Figure 3—figure supplement 1), we believe that such heterogeneity probably will not substantially

impact our conclusions for several reasons. First, importantly, we established that the population

from which we are recording contributes to reversal learning, and it is therefore a relevant popula-

tion. Second, activity patterns were consistent across mice (Figure 3—figure supplements 3 and

5, Figure 4, Figure 4—figure supplement 1, Figure 5, Figure 5—figure supplement 1, Figure 9—

figure supplements 1 and 2), despite inevitable small variations in infections and fiber placements

(Figure 3—figure supplement 1), indicating that the findings are robust to the precise population

monitored. Third, single-unit recordings (Cohen et al., 2015; Hayashi et al., 2015) show that

rewarding and aversive events activate the same individual DRN neurons (including identified 5-HT

neurons), and are therefore not generated by distinct populations. Finally, because individual 5-HT

neurons have broad projection fields (Muzerelle et al., 2016) and transmit primarily by volume con-

duction (Dankoski and Wightman, 2013), heterogeneity will tend to be averaged out through pool-

ing by downstream targets.

Another limitation of our study relates to the pharmacogenetic approach to inhibiting 5-HT neu-

rons. While it has good genetic specificity, its spatial resolution is limited by the spread of the viral

particles containing the hM4Di receptor in the DRN, and its temporal resolution is on the order of

dozens of minutes. Additionally, although we know this approach should inhibit 5-HT neurons in vivo
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(Teissier et al., 2015), we did not test the efficacy of this inhibition in our animals. The limited tem-

poral resolution of this approach makes it impossible to distinguish the contribution of CS and US 5-

HT signals to behavioral flexibility. Still, we have an indication that CS responses might play a role in

behavioral inhibition of perseverative responding. This could potentially be resolved in future experi-

ments using optogenetic inhibition.

Implications for the DA–5-HT opponency theory
Our results support, in a general sense, the long-standing notion of DA–5-HT opponency

(Boureau and Dayan, 2011), but call for a refinement of this view. Rather than carrying the positive

and negative sides of a single-signed prediction error (Daw et al., 2002; Boureau and Dayan,

2011; Cools et al., 2011), DA–5-HT opponency seems to be more complex and subtle. As has been

classically described, the activity of DA neurons which we recorded closely resembled a so-called

signed RPE (Schultz et al., 1997). The US-related 5-HT signals, on the other hand, resemble in

important respects, but don’t perfectly match, the concept of an ‘unsigned RPE’ signal. Thus, 5-HT

neurons responded not to an opposing class of events, but to an overlapping and broader range of

events compared to DA. In this respect, they might be acting as a kind of inhibitory ‘surround’ to

DA’s excitatory ‘center’, helping to sharpen the focus of behavioral attention. Nevertheless, just as

DA signaling is increasingly acknowledged to be more complex than classically described

(Cohen et al., 2012; Eshel et al., 2015; 2016; Matsumoto et al., 2016; Wise, 2004), attributing a

single function to 5-HT neurons is also clearly an oversimplification.

With respect to CS responses, 5-HT neurons showed a remarkably similar pattern of activity to

that of DA neurons, scaling closely with the value of the stimuli. A possible explanation for this

observation is that 5-HT CS responses could be learned by the same DA-dependent process that

generates DA CS responses. If this were the entire story, then 5-HT and DA CS responses might sim-

ply balance and nullify one another. However, the fact that 5-HT CS responses evolved much more

slowly than did DA CS responses means that such a balance will not hold in dynamic environments.

This dynamic balance between positive and negative forces resembles the balance of excitation and

inhibition in the cortex (for example, Wehr and Zador, 2003), albeit on a much slower time scale.

Such a temporal asymmetry between opponent processes endows the joint system with novel and

potentially important dynamics, which may be an important substrate in the dynamics of learning, as

previously proposed (Solomon and Corbit, 1974). CS and US responses of a similar nature to those

observed in 5-HT and DA neurons also appear to be observed in other neuromodulatory systems as

well (Yu and Dayan, 2005; Dayan and Yu, 2006; Sara and Bouret, 2012; Hangya et al., 2015).

This suggests that, contrary to the notion that each neuromodulator reports a completely distinct

signal (Daw et al., 2002; Doya, 2008; Dayan, 2012), they have highly overlapping signals, presum-

ably derived from partly overlapping inputs, but with more subtle differences through which their

joint actions are orchestrated.

This description of the dynamics of 5-HT neurons during reversal learning provides novel insights

into how this system can contribute to cognitive flexibility. Moreover, the results also suggest the

need for a refinement in conventional conceptions of 5-HT’s function in the regulation of mood, with

implications for understanding its role in depression and other psychiatric disorders. More than

reporting the affective value of the environment (Boureau and Dayan, 2011; Luo et al., 2016), we

suggest that 5-HT facilitates the ability of an organism to adapt flexibly to dynamic environments

through plasticity and behavioral control. The clinical benefits of an enhancement of 5-HT function

would therefore stem not from directly biasing affective states toward the positive, but by prevent-

ing the negative consequences of maladaptive world views and facilitating adaptive change

(Branchi, 2011).

Materials and methods

Animals
All procedures were reviewed and performed in accordance with the European Union Directive

2010/63/EU and the Champalimaud Centre for the Unknown Ethics Committee guidelines, and

approved by the Portuguese Veterinary General Board (Direcção Geral de Veterinária, approvals

0420/000/000/2011 and 0421/000/000/2016). Thirty-four C57BL/6 male mice between two and nine
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months of age were used in this study. Mice resulted from the backcrossing of BAC transgenic mice

into Black C57BL for at least six generations, and expressed the Cre recombinase under the control

of specific promoters. Twenty-six mice expressed Cre under the serotonin transporter gene (Tg

(Slc6a4-cre)ET33Gsat/Mmucd) from GENSAT (Gong et al., 2007); RRID:MMRRC_017260-UCD), four

mice under the tyrosine hydroxylase gene, two mice (Tg(Th-cre)FI12Gsat/Mmucd) from GENSAT

(Gong et al., 2007); RRID:MMRRC_017262-UCD), and two mice (B6.Cg-Tg(Th-Cre)1Tmd/J) from the

Jackson Laboratory (Savitt et al., 2005); RRID:IMSR_JAX:008601). Animals (25–45 g) were group-

housed prior to surgery and individually housed post-surgery and kept under a normal 12 hr light/

dark cycle. All experiments were performed in the light phase. Mice had free access to food. After

training initiation, mice used in behavioral experiments had water availability restricted to the behav-

ioral sessions.

Stereotaxic viral injections and fiber implantation
Mice were deeply anaesthetized with isoflurane mixed with O2 (4% for induction and 0.5–1% for

maintenance) and placed in a stereotaxic apparatus (David Kopf Instruments). Butorphanol (0.4 mg/

kg) was injected subcutaneously for analgesia and Lidocaine (2%) was injected subcutaneously

before incising the scalp and exposing the skull. For SERT-Cre mice a craniotomy was drilled over

lobule 4/5 of the cerebellum, and a pipette filled with a viral solution was lowered to the DRN

(bregma �4.55 anteroposterior (AP), �2.85 dorsoventral (DV)) with a 32˚ angle toward the back of

the animal. For the two TH-Cre mice from The Jackson Laboratory, the pipette was targeted to the

VTA (bregma �3.3 AP, 0.35 mediolateral (ML), �4.2 DV) with a 10˚ lateral angle, and for the two

TH-Cre mice from GENSAT we targeted the SNc (bregma �3.15 AP, 1.4 ML, �4.2 DV). Although

the TH-Cre lines have been characterized as less specific than other DA-specific lines (Lammel et al.,

2015), we targeted our fibers to areas where this specificity problem is reduced (Lammel et al.,

2015) and that are known to contain the classical DA neurons that show RPE activity and are

involved in reward processing (Lammel et al., 2011, 2012; Matsumoto and Hikosaka, 2009;

Lerner et al., 2015; Kim et al., 2016).

Viral solution was injected using a Picospritzer II (Parker Hannifin) at a rate of approximately 38 nl

per minute. The expression of hM4D and of all fluorophores was Cre-dependent, and all viruses

were obtained from the University of Pennsylvania (with 1012 or 1013 GC/mL titers). For hM4D

experiments 1 ml AAV2/5 - Syn.DIO.hM4D.mCherry was injected in the DRN of 8 SERT-Cre mice. No

virus was injected in WT controls (n = 4). For analysis of GCaMP6s specific expression in 5-HT neu-

rons, four SERT-Cre mice were transduced in the DRN with 1 ml of viral stock solution of AAV2/1 -

Syn.Flex.GCaMP6s.WPRE.SV40. For behavioral experiments in control mice (four SERT-Cre mice),

1.5 ml of a mixture of equal volumes of AAV2/1.EF1a.DIO.eYFP.WPRE.hGH and of AAV2/1.CAG.

FLEX.tdTomato.WPRE.bGH was used. For the remaining mice, a mixture of equal volumes of AAV2/

(1 or 9).Syn.Flex.GCaMP6s.WPRE.SV40 and of AAV2/1.CAG.FLEX.tdTomato.WPRE.bGH was

injected: 1.5 ml in ten SERT-Cre mice (distributed around six points around the target coordinates)

and 0.75 ml of 10 times diluted mixture in four TH-Cre mice (distributed around four points around

the target).

For photometry experiments, optical fiber implantations were done after infection and a head

plate for head fixation was placed above Bregma; the skull was cleaned and covered with a layer of

Super Bond C and B (Morita). An optical fiber (300 mm, 0.22 NA) housed inside a connectorized

implant (M3, Doric Lenses) was inserted in the brain, with the fiber tip positioned at the target for

SERT-Cre mice and 200 mm above the infection target for TH-Cre mice. The implants were secured

with dental acrylic (Pi-Ku-Plast HP 36, Bredent).

Behavioral training and testing protocol
Mice were water-deprived in their home cage on the day of surgery, or up to five days before it.

During water deprivation each mouse’s weight was maintained above 80% of its original value. Fol-

lowing infection and implantation surgery, mice were habituated to the head-fixed setup by receiv-

ing water every 4 s (6 ml drops) for three days, after which training in the odor-guided task started. A

mouse nose poke (007120.0002, Island Motion Corporation) using an IR photoemitter-photodetec-

tor was adapted to measure licking as IR beam breaks. To deliver air puffs, a pulse of air was deliv-

ered through a tube to the right eye of the mouse. Sounds signaling the beginning of the trial and
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the outcomes were amplified (PCA1, PYLE Audio Inc.) and presented through speakers (Neo3

PDRW W/BC, Bohlender-Graebener). Water valves (LHDA1233115H, The Lee Company) were cali-

brated and a custom made olfactometer designed by Z.F.M. (Island Motion) was used for odor deliv-

ery. The behavioral control system (Bcontrol) was developed by Carlos Brody (Princeton University)

in collaboration with Calin Culianu, Tony Zador (Cold Spring Harbor Laboratory) and Z.F.M. Odors

were diluted in mineral oil (Sigma-Aldrich) at 1:10 and 25 ml of each diluted odor was placed inside a

syringe filter (2.7 mm pore size, 6823–1327, GE Healthcare) to be used in two sessions (~100 trials for

each odor). Odorized air was delivered at 1000 ml/min. Odors used were carvone (R)-(-), 2-octanol

(S)-(+), amyl acetate and cuminaldehyde. For the behavioral task used in the hM4D experiment,

these odors were associated with reward, reward, nothing and nothing, respectively. For the behav-

ioral task used in the GCaMP6s experiment, they were associated with a large reward (4 ml water

drop), small reward (2 ml water drop), neutral (no outcome) and punishment (air puff to the eye)

before reversal, and with punishment, neutral, small reward and large reward after the reversal of

the cue–outcome associations, respectively. In each trial, white noise was played to signal the begin-

ning of the trial and to mask odor valve sounds. A randomly selected odor was presented for 1 s.

Following a 2 s trace period, the corresponding outcome was available. Mice completed one session

per day. For hM4D experiments, odors were introduced in pairs. For photometry experiments, train-

ing started by presenting only the large and small reward trials to the mice, followed by the intro-

duction of the neutral type of trial in the next session, and finally the punishment trial in the

following one. Punishment trials were presented gradually until all four types of trials had the same

probability of occurrence and each session consisted of 140–346 trials (minimum to maximum,

223 ± 30, mean ± SD). Time to odor (foreperiod), trace period and inter-trial interval (ITI) were also

gradually increased during training until mice could do the task with their final values: foreperiod

was 3 to 4 s, taken from a uniform distribution, trace was fixed at 2 s, ITI was 4 to 8 s taken from a

uniform distribution.

hM4D experiments were run in two batches: the experiment was run first on the WT animals and

then on the SERT-Cre animals (with some overlapping days). Photometry experiments were run in

five batches in the following sequence: 3 (SERT-Cre, experimental)+3 (SERT-Cre, experimental and

YFP controls)+2 (SERT-Cre YFP controls)+6 (SERT-Cre, experimental)+4 (TH-Cre, experimental).

For the hM4D experiments, mice received a daily injection of vehicle (saline 0.9% and DMSO

0.25%) 40 min. before session start. The volume of these daily injections of vehicle was determined

according to each mouse’s weight, and it required an adjustment of the water drop size for each

mouse to keep them motivated to do 150 trials per session. On the reversal day and the two follow-

ing days, for experimental mice, CNO was diluted in the vehicle solution and delivered at a concen-

tration of 3 mg/kg. In both reversal learning tasks used, we ensured that mice could correctly

perform the task on at least three consecutive days before reversing the odor–outcome contingency

for the first time. On the reversal day, mice started the session as before and the contingencies were

reversed at trial 50 in the hM4D experiment, and between the 32th and the 100th trial (73 ± 12,

mean ± SD) in the GCaMP6s experiments. One SERT-Cre mouse was excluded from the hM4D anal-

ysis for not showing a differential lick rate within 1.5 s of US delivery, between odors 1 and 2

(rewards) and odors 3 and 4 (nothing). Two mice were excluded from the GCaMP6s data analysis for

bad fiber placement assessed after histology analysis (more than 400 mm away from the infection

area): one SERT-Cre and one TH-Cre mouse. Additionally, another SERT-Cre mouse was discarded

from the reversal data analysis because of experimental problems with the fiber during the reversal

session. In four SERT-Cre mice and in all TH-Cre mice, at five to six days after the reversal, we intro-

duced uncued US trials during the task. These trials represented approximately 20% of the total

number of trials in a session during which no odor cue was presented; the typical white noise of the

foreperiod was immediately followed by one of the four possible outcomes, randomly selected

(11 ± 4 uncued vs 44 ± 8 cued trials per session, mean ± SD). To analyze these data, four sessions

with cued and uncued outcomes were pooled together for each mouse. All GCaMP6s experiments

were performed within the limit of one month from the viral injection date, to avoid cell death due

to over-expression of GCaMP6s in neurons.

Fiber photometry setup
The dual-color fiber photometry acquisition setup consists of a three-stage tabletop black case con-

taining optical components (filters, dichroic mirrors, collimator), two light sources for excitation and
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two photomultiplier tubes (PMTs) for acquisition of fluorescence of a green (GCaMP6s) and of a red

(tdTomato) fluorophore.

We used a 473 nm (maximum power: 30 mW) and a 561 nm (maximum power: 100 mW) diode-

pumped solid-state laser (both from Crystalaser) for excitation of GCaMP6s and of tdTomato,

respectively. Beamsplitters (BS007, Thorlabs) and photodiodes (SM1PD1A, Thorlabs) were used to

monitor the output of each laser. The laser beams were attenuated with absorptive neutral density

filters (Thorlabs), and each was aligned to one of the two entrances of the three-stage tabletop black

case (Doric Lenses). At the corresponding entrances the excitation filters used were 473 nm (LD01-

473/10-25 Semrock) and 561 nm (LL02-561-25 Semrock). Inside the black case three interchange-

able/stackable cubes (Doric Lenses) with dichroic mirrors were used: one to separate the 473 nm

excitation light from longer wavelengths (Chroma T495LP), one to collect the emission light of

GCaMP6s (FF552-Di02�25 � 36 Semrock), and one to separate the 561 nm excitation light from

tdTomato’s fluorescence (Di01-R561�25 � 36). A collimator (F = 12 mm, NA = 0.50, Doric Lenses)

focused the laser beams in a single multimode silica optical fiber with 300 mm core and 0.22 NA

(MFP_300/330/900–0.22_2.5m-FC_CM3, Doric Lenses), which was used for transmission of all excita-

tion and emission wavelengths. The three-stage tabletop black case had two exits, one for each fluo-

rophore emission, at which we placed the corresponding emission filters (Chroma ET525/50m for

GCaMP6s and Semrock LP02-568RS-25 for tdTomato), and convergent lenses (F = 40 mm and

F = 50 mm, Thorlabs) before the photodetectors (photomultiplier tube module H7422-02, Hama-

matsu Photonics). The output signals of the PMTs were amplified by a preamplifier (C7319, Hama-

matsu), acquired in a Micro1401-3 unit at 5000 Hz and visualized in Spike2 software (Cambridge

Electronic Design).

Light power at the tip of the patchcord fiber was 200 mW for each wavelength (473 nm and 561

nm) for all experiments (measured before each experiment with a powermeter PM130D, Thorlabs).

This patchcord fiber was attached to the fiber cannula each animal had implanted (MFC_300/330–

0.22_5 mm_RM3_FLT Fibre Polymicro, polymide removed) through a titanium M3 thread receptacle.

Data analysis
All data were analyzed in MATLAB (RRID:SCR:001622). For the behavioral experiments, lick rate was

acquired at 1 KHz and smoothed using convolution with a Gaussian filter of 50 ms standard devia-

tion. Mean anticipatory licking was calculated for each trial as the mean lick rate in the period of

500–2800 ms after odor onset, after subtracting the mean lick rate over a baseline period of �500

to 500 ms around odor onset. To evaluate the aversiveness of the air puff delivered to the mice in

the photometry experiment, we used a CCD camera (Point Grey) to record the right eye of six mice

during several sessions at 60 Hz. To quantify blinking in video data, we manually selected the eye

area in each session and calculated the mean pixel value for that area; then, for each frame, we sub-

tracted this value from the previous frame to obtain a measure of movement. The start and end of

blinking created a sudden increase and decrease, respectively, in the difference between the mean

pixel value of consecutive video frames. In the time course analysis of the licking behavior in the

hM4D experiment, trials of sessions around reversal were concatenated and smoothing over three

trials was performed along the trials. For each reversed odor and each mouse, the last 50 trials

before reversal were fit by a constant function of the form (A+B); the first 200 trials after the reversal

were fit by an exponential function of the form (A+B*exp(-t/t)) using fminsearch in MATLAB.

The conditions for this fitting to be done were: the last 100 trials before reversal had to be statisti-

cally different from trials 100–200 after the reversal (t-test), the change in licking pattern had to fol-

low the correct trend of the reversal (increase in licking for positive reversals and decrease in licking

for negative ones), and the time constant obtained had to be larger than 1. Mouse–odor pairs that

did not fulfill this condition were excluded (that is, odor 4 of mice M#4 and M#5). Time constants

were grouped according to the type of reversal and genotype with drug treatment, and compared

using one-way ANOVA. Then, for each SERT-Cre mouse, the time constant of the reversal with the

vehicle was subtracted from the reversal with CNO. The same was done for WT mice, but subtract-

ing the time constant of reversal two from that of reversal 1 (since CNO was delivered in both). t-

tests were used to determine whether these differences had means significantly different from zero.

Fluorescence data were downsampled to 1 kHz and smoothed using convolution with a Gaussian

filter of 100 ms standard deviation. For each trial, the relative change in fluorescence, DF/F0 = (F-F0)/

F0, was calculated by taking F0 to be the mean fluorescence during a 1 s period before the odor
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presentation for both the red and the green channels ([DF/F0] GREEN and [DF/F0] RED). For each ses-

sion and each mouse, the distribution of green and red values of DF/F0 was fitted by the sum of two

Gaussians along the red channel, and the crossing point between these two Gaussians was used as a

boundary (excluding the first and last 1000 ms of each trial because of filtering artifacts). All values

of [DF/F0]RED below this boundary were used, together with the corresponding [DF/F0]GREEN, to fit a

linear regression line. Then, for each trial we corrected the green DF/F0 values using the parameters

(a - slope; b - offset) obtained with the regression model of that mouse in that session: [DF/F0]GREEN_-

corr = [DF/F0] GREEN - a*[DF/F0] RED - b.

Behavioral data were organized as a function of US type and divided into CS and US responses.

[DF/F0]GREEN_corr US responses were normalized by subtracting the mean [DF/F0]GREEN_corr over the 1

s interval before US onset. The CS or US response was considered the mean of the signal during the

1.5 s period after CS or US onset, respectively. For each mouse, all CS and US responses were

z-scored in the expert phase, so that the amplitudes of responses to the different events could be

compared. Analysis of US responses across days was performed by z-scoring all US responses of

each mouse across days for each US type. Statistical analysis was done by comparing each day with

pre-reversal days �1 and �2. For each mouse, mean amplitude of response to each US on the rever-

sal day was also compared to the day before the reversal. For analysis of uncued US trials, four days

of each mouse were pooled together due to the small number of uncued trials of each US type in

each session.

For the analysis of CS response time courses during a reversal, each mean amplitude change

across trials was fitted by an exponential function with maximum time constant of 225 trials (mini-

mum number of trials after the reversal for any US type of any mouse). The same criteria and param-

eters used for the hM4D experiments were used here. Time constants for mouse–odor pairs were

pooled together in pairs (odors 1 and 2, and odors 3 and 4) which correspond to the negative and

positive reversals, respectively.

The data are available from the Dryad Digital Repository: 10.5061/dryad.649nk (Matias, 2016).

Immunohistochemistry and anatomical verification
Mice were deeply anesthetized with pentobarbital (Eutasil, CEVA Sante Animale), exsanguinated

transcardially with cold saline and perfused with 4% paraformaldehyde (P6148, Sigma-Aldrich). Coro-

nal sections (40 mm) were cut with a vibratome and used for immunohistochemistry. For SERT-Cre

mice used in expression specificity analysis, anti-5-HT (36 hr incubation with rabbit anti-5-HT anti-

body 1:2000, Immunostar, RRID:AB_572263, followed by 2 hr incubation with Alexa Fluor 594 goat

anti-rabbit 1:1000, Life Technologies) and anti-GFP immunostaining (15 hr incubation with mouse

anti-GFP antibody 1:1000, Life Technologies, followed by 2 hr incubation with Alexa Fluor 488 goat

anti-mouse 1:1000, Life Technologies) were performed sequentially. For SERT-Cre mice used in

behavioral experiments, anti-GFP immunostaining was performed (15 hr incubation with rabbit poly-

clonal anti-GFP antibody 1:1000, Life Technologies, followed by 2 hr incubation with Alexa Fluor 488

goat anti-rabbit 1:1000, Life Technologies).

For TH-Cre mice, anti-GFP (15 hr incubation with rabbit polyclonal anti-GFP antibody 1:1000, Life

Technologies, followed by 2 hr incubation with Alexa Fluor 488 goat anti-rabbit 1:1000, Life Technol-

ogies) and anti-TH immunostaining (15 hr incubation with mouse monoclonal anti-TH antibody

1:5000, Immunostar, RRID:AB_572268, followed by 2 hr incubation with Alexa Fluor 647 goat anti-

mouse, 1:1000, Life Technologies) were performed sequentially.

To quantify the specificity of GCaMP6s expression in 5-HT neurons of SERT-Cre mice, we used a

confocal microscope (Zeiss LSM 710, Zeiss) with a 20X objective (optical slice thickness of 1.8 mm) to

acquire z-stacks of three slices around the center of infection. Images for DAPI, GFP and Alexa Fluor

592 were acquired, and cells expressing GCaMP6s and cells stained with 5-HT antibody were quanti-

fied in a 200 � 200 mm window in the center of the DRN. The same was done for quantification of

specificity in DA neurons of TH-Cre mice, but acquiring Alexa Fluor 647 instead of 592, and taking

the 200 � 200 mm window on the infection side. To evaluate fiber location in relation to infection,

images for DAPI, YFP or GFP and tdTomato were acquired with an upright fluorescence scanning

microscope (Axio Imager M2, Zeiss) equipped with a digital CCD camera (AxioCam MRm, Zeiss)

with a 10X objective. The location of the fiber tip was determined by the most anterior brain dam-

age made by the optical fiber subtracted by its radius. The center of infection was estimated through

visual inspection of slices as the location where there were most infected cells. The distance between
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the fiber tip location and center of infection was calculated as an anterior–posterior distance, which

was estimated by comparing each corresponding location in the mouse brain atlas (Paxinos and

Franklin, 2001). To determine the overlap between cells expressing YFP or GCaMP6s and tdTomato

in SERT-Cre mice, we used a confocal microscope (Zeiss LSM 710, Zeiss) with a 20X objective (optical

slice thickness of 1.8 mm) to image three slices around the center of infection (slices �1, 0 and 1, rel-

ative to it). All cell counts were done using the Cell Counter plugin of Fiji (RRID:SCR_002285).
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