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Abstract: Diseases not only manifest as internal structural and functional abnormalities, but also have
facial characteristics and appearance deformities. Specific facial phenotypes are potential diagnostic
markers, especially for endocrine and metabolic syndromes, genetic disorders, facial neuromuscular
diseases, etc. The technology of facial recognition (FR) has been developed for more than a half
century, but research in automated identification applied in clinical medicine has exploded only in
the last decade. Artificial-intelligence-based FR has been found to have superior performance in
diagnosis of diseases. This interdisciplinary field is promising for the optimization of the screening
and diagnosis process and assisting in clinical evaluation and decision-making. However, only a few
instances have been translated to practical use, and there is need of an overview for integration and
future perspectives. This review mainly focuses on the leading edge of technology and applications
in varieties of disease, and discusses implications for further exploration.

Keywords: facial recognition; disease diagnosis; artificial intelligence; automated identification

1. Introduction

The face is a unique marker of bioidentity for humankind. It provides information in
regards to age, sex, race, consciousness, emotion, and health status. As it is conveniently
accessible and cost-effective, the face is widely accepted for reliable biometrics compared
with the fingerprint and iris [1,2]. Various diseases manifest not only as internal structural
and functional abnormalities, but they also have facial characteristics and deformities.
Diseases with facial manifestations are mainly endocrine and metabolic disorders [3],
genetic syndromes [4], and neuromuscular diseases [5], some of which are complex and
rare diseases. Early diagnosis and differentiation of these diseases are essential for timely
therapy and better prognosis. To identify typical facial features is a part of the traditional
diagnosis path, and largely depends on expertise and experience.

Automatic technology for facial recognition appeared in the 1960s, and mature ap-
proaches have been developed in real-world applications, covering areas of security surveil-
lance, identity verification, forensic science, law enforcement, etc. [1]. Pioneer research
on facial recognition applications in disease diagnosis dates back to the 2000s. Children’s
genetic syndromes [6,7] and facial neuromuscular dysfunction [8] were the first diseases
detected by knowledge-based methods. In recent years, the emergence of artificial intelli-
gence (AI) has changed human life and has also led to breakthroughs in healthcare. Medical
image analysis is the most rapidly developed domain in AI medicine, and broad progress
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has been made in radiology, pathology, ophthalmology, dermatology, and gastroenterol-
ogy [9,10]. Facial recognition, as an essential part of automatic image analysis, also displays
outstanding efficacy in the era of AI. The number of publications has presented exponential
growth since the year 2013. Facial recognition has been introduced at a larger scale to assist
diagnosis of diseases that feature facial abnormalities. More disease varieties and racial
groups have been incorporated into this dynamic division of AI medicine.

As automated image-based diagnosis is becoming mature, facial-recognition-based di-
agnosis is becoming one of the most promising and novel fields in interdisciplinary medical
practice. It accelerates the screening and detection process of diseases, resulting in an earlier
start of comprehensive treatment. Though facial manifestations potentiate identification
simply from patients’ appearance, diseases with such particular facial characteristics are
mostly complex and rare. In traditional diagnosis methods, to be aware of these diseases is
the first challenge, especially for doctors who do not have sufficient experience. The second
challenge is to select proper inspections and achieve definite analysis of results. Therefore,
the effectiveness of AI facial recognition technology has hypothetically given rise to the
opportunity for a more time-saving and cost-saving diagnosis path with less interference
from empirical error.

However, to date, numerous advancements in algorithms and applications were
widely scattered. Few studies summarize or integrate developments and cutting-edge
updates in depth or in breadth. Thus, this is the first review on facial-recognition-based
applications in disease diagnosis. The aim is to discuss the evolution and classification of
technology, and to focus on clinical implications and advantages of facial recognition in
diagnosis. This will be helpful to both clinicians and computer scientists in the following
ways: to have an overview of current research, to promote medical engineering cooperation,
and to stimulate interest in more investigation.

2. The Facial Recognition System: Approaches and Algorithms
2.1. Image Capture

Static cameras, video cameras, and mobile devices installed with photography soft-
ware [4] have been used for image capture. After the development of three-dimensional
(3D) photography, 3D scanners have also been used to photograph and synthesize facial
features [11,12]. The environment setting is mostly in a hospital or a medical organization.
In some advanced designs, the application is both patient-side and physiotherapist-side,
connected via the cloud network. Images could be taken by patients themselves at home
and viewed by doctors through the cloud [13].

Some controllable factors in photography were found to affect the accuracy of facial
recognition, including occlusion, low resolution, noise, illumination, pose variation, and
expressions [14]. Defects originated from the environment, camera conditions, user’s face
conditions, and user-camera positioning [15]. To acquire images with high quality, the
process of image capture is standardized. In current studies, clinicians ask patients to
expose the entire face and ears; to tidy up hair; to open the eyes and look straight; to close
the mouth; to present a neutral and relaxed expression [16,17]. In neurological disorders,
patients are asked to perform speech or motor tasks to evaluate their facial neuromuscular
function [18]. The position of the camera and patients is fixed in a preset distance and
angle to ensure stable illumination intensity. A light source is also required to illuminate
the face uniformly. In some research, photos of both sides of the face are taken for more
information [3].

2.2. Workflow of Facial Recognition Technology

After facial images of acceptable quality are obtained, these images are processed in
three steps: face detection, feature extraction, and classification (Table 1) [1]. The image is
first preprocessed for further normalization. Face detection corresponds to localization of
the human face in the image [19]. After detection, facial phenotypes are extracted based
on knowledge, statistical analysis, or deep learning [1]. Then, similarity is calculated by
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matching these features to the database. When the similarity exceeds a certain threshold, the
image is classified [20]. In the user’s interface, they input facial images of a suspected patient
into the facial recognition system. Then, the automated classifier outputs a categorical
variable as to whether the subject is a patient or a healthy control (Figure 1).

Table 1. Facial Analysis Algorithms.

Category Algorithm

Appearance-based

Principal Component Analysis (PCA)
Eigenface-Based Methods PCA Algorithm

Kernel Principal Component Analysis (Kernel PCA)
2D-Image Principal Component Analysis (2D Image IPCA)

Linear Discriminant Analysis (LDA)
Discriminant Common Vectors (DCV)

Independent Component Analysis (ICA)
IPCA-ICA

Super Vector Machine (SVM)

Feature-based

Geometric Features
Local Binary Patterns (LBP)

Elastic Bunch Graph Matching (EBGM)
Histogram of Oriented Gradients (HoG)

Elastic Bunch Graph (EBG)
Hidden Markov Model (HMM)

Deep learning
Probabilistic-Decision-Based Neural Networks (PDBNN)

Radial Basis Function (RBF)
Convolutional Neural Network (CNN)
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Figure 1. Workflow of facial recognition in disease diagnosis.

In the development stage of the system, both images of patients and controls are
collected. Controls are normally age- and sex-matched individuals without the target
disease. In some conditions, the sample is divided into a training set and a testing set
processed by cross-validation [17,21]. The training set is to establish the algorithm and
refine parameters. The testing set is to test the performance and diagnosis accuracy.

2.3. Facial Analysis Algorithms

Facial recognition algorithms are categorized into the appearance-based method, the
local-feature-based method, and deep learning [14,19]. Classical and frequently used
algorithms in disease diagnosis are summarized in Table 1.

2.3.1. Traditional Methods

The appearance-based method, also known as the global feature method, is a model
that processes the human face as a whole subject. It extracts global features and matches
the holistic face to the database. Not requiring geometry knowledge, the human face is
reduced to only a few features or vectors. Principal Component Analysis (PCA), Linear
Discriminant Analysis (LDA), Discriminant Common Vectors (DCV), and Independent
Component Analysis (ICA) are common algorithms. Support Vector Machine (SVM) is
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often utilized to accomplish feature discrimination. SVM optimizes the performance of
PCA and ICA. The appearance-based method is prone to environmental interference and
the patient’s face conditions [1,14,19].

In contrast to appearance-based models, the feature-based method, also known as the
local feature method, divides the human face into regions based on biological difference,
such as nose, eyes, and mouth. This method has been proven to have higher accuracy.
Geometric Features, Local Binary Patterns (LBP), Elastic Bunch Graph Matching (EBGM),
Histogram of Oriented Gradients (HoG), Elastic Bunch Graph (EBG), and Hidden Markov
Model (HMM) are utilized for computation. However, these algorithms need previous
knowledge to select proper facial features in the first step of division, which still remains
challenging [1,14,19].

2.3.2. Deep Learning Methods

Neural networks, machine learning, and deep learning have addressed the prob-
lem of processing multidimensional data. Probabilistic-Decision-Based Neural Networks
(PDBNN) and Radial Basis Function (RBF) are neuronal-network-based algorithms with
impressive performance in small datasets. Convolutional Neural Network (CNN) has
been prevalently used in facial recognition lately with its improvement in accuracy. Deep
learning also makes it possible to eliminate emotional variance and the impact of illumina-
tion [1,14,19]. Similar to static images, deep learning algorithms to analyze videos recording
facial pathological movements for certain diseases have been developed. Three-dimensional
CNN, derived from CNN, captures information in multiple adjacent frames [22]. It is ap-
plied to detect neurological diseases with facial dysfunction. Other advanced deep learning
models, such as long short-term memory (LSTM) were combined with traditional methods
for classification [23].

2.3.3. Mature Software

The mature facial recognition software has been gradually incorporated into clinical
development of diagnostic approaches. OpenFace 2.0 is an open-source facial behavior
analysis tool available to users and researchers. Its framework includes facial landmark
detection, head pose tracking, eye gaze, and facial action unit recognition [24]. Some
studies directly built their model based on this software [5,25]. The software enables clinical
researchers to focus more on improvement of methods according to disease characteristics.

3. The Facial Recognition System: Applications and Advantages
3.1. Performance in Varieties of Disease
3.1.1. Endocrine and Metabolic Diseases

Endocrine diseases are characterized by abnormal hormone levels. Patients present
metabolic disorders and typical changes in facial features of bones, muscles, and soft
tissues. General symptoms of these diseases at the early stage are easily confused with
other metabolic syndromes. The gold standard diagnosis process is complex, with multiple
instances of hormone testing and imaging examinations [26,27]. High performance of facial
recognition in diagnosis has caused it to be considered a fast, accessible screening approach.

Acromegaly Due to increased release of growth hormone, individuals with acromegaly
often have a rectangular face, enlargement of the nose and lips, prognathism, and bulging
forehead [26]. Various algorithms have been developed to detect the face of acromegaly
patients. In 2006, Learned-Miller et al. [28] proposed a 3D morphable model to classify the
frontal face into different categories in a semi-automated manner. Forty-nine acromegaly
patients and controls were identified at an accuracy rate of 85.7%. Another study in
2013 [29] generated a method based on Gabor wavelet transformations to reduce unwanted
noise. They tested it with 57 patients and 59 controls who were gender- and age-matched,
reaching an overall correct classification rate of 81%. Gencturk et al. [30] raised a coupled
system of local binary patterns (LBP) and Manhattan classifiers, resulting in an accuracy
rate of 97%. The introduction of larger datasets and machine learning methods makes the
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facial recognition system more effective. Kong et al. [31] constructed a dataset of 527 cases
of acromegaly and 596 controls. The machine-learning-based system proved effective,
with sensitivity and specificity both 96%. Wei et al. [32] enrolled 1131 individuals with
acromegaly, and 12,598 normal individuals. The achieved area under the receiver operating
characteristic curve (AUC) was 0.9556 and accuracy was 94.79%.

Cushing’s Syndrome Under prolonged exposure to cortisol, Cushing’s syndrome is fa-
cially characterized by “moon face” with plethora and acne [33]. Kosilek et al. [34] included
60 female Caucasian Cushing’s syndrome patients in their first study. The automatic face
classification system achieved an overall accuracy rate of 91.7%. To eliminate the impact of
obesity sequelae, they further designed a body mass index (BMI)-matched sample study [3].
They enrolled controls suspected but ultimately negative for Cushing’s syndrome, and
matched the two groups by age, gender, and BMI. The sample size was also increased
to 180 patients. The classification accuracy decreased to 61.1% in females and 66.7% in
males [33]. Semi-automatic facial nodes analysis was used in their research. In 2020, Wei
et al. [32] constructed a facial image database of 814 endocrinally verified instances of
Cushing’s syndrome. The deep learning model generated AUC of 0.9647 and accuracy
of 95.93%.

3.1.2. Genetic and Chromosome Abnormalities

Genetic and chromosome abnormalities present as systemic syndromes and complica-
tions. Hereditary changes directly dysregulate fetal face development or indirectly affect
facial phenotype under the abnormal systemic environment. Standard diagnosis methods
are genome sequencing and chromosome karyotyping to confirm the abnormalities of
genetic materials. This process requires the clinicians’ early awareness of the possibility,
techniques for detection and analysis, and patients’ payment of the cost for genetic tests.
Regardless of these conditions, facial recognition makes screening possible in clinical prac-
tice. Early diagnosis will be beneficial for patients in terms of start of early therapy and
lifelong support.

Down Syndrome (DS) DS is the most common chromosome aberration caused by
trisomy 21, occurring in 1/800 newborns worldwide [35]. Facial features of DS patients
include a flattened face, upward slanting palpebral fissures, epicanthus, small ears, and pro-
truding tongue [36]. In early studies [37–39], non-deep-learning methods were proposed
for small numbers of samples. In 2014, Zhao et al. [36] designed a hierarchical constrained
local model using ICA. This model located the anatomical facial landmarks accurately,
achieving accuracy of 96.7% in classifying 50 DS pediatric patients and 80 controls. Deep
convolutional neural networks (DCNN) in a larger-scale database of 10,562 subjects were
formed by Qin et al. [40]. This model reached 95.87% in accuracy and 97.40% in specificity,
demonstrating the potential of AI-based facial recognition for fast detection of genetic
syndromes. These systems were trained and tested in Caucasians. In another three stud-
ies, Thai neonates [41], Thai children [42], and Congolese children [43] were enrolled as
Asian and African subjects. Since DS is globally prevalent and race brings about natural
facial variations, there is considerable AI performance in these studies, further indicating
its practicability.

Turner Syndrome (TS) TS is a complete or partial loss of one chromosome X that
occurs in women. The prevalence is approximately 1/2000 in women. Patients display
phenotypic changes in multiple systems. Typical TS face is characterized by epicanthus,
deformity of the external ear, micrognathia, high-arched palate, and multiple pigmented
nevus [44]. Song et al. [16] first constructed a 68 feature-points model based on endocrinol-
ogy observations. This computer-aided automatic classification system had an accuracy
rate of 84.6%. A facial diagnostic system based on DCNN was developed by Pan et al. [45]
later. They also had a larger dataset of 207 TS patients and 1074 female controls. As most of
these patients had been photographed several times in their follow-up, the research study
designed different photo selecting scenarios to eliminate bias. This system achieved high
accuracy with AUC over 0.95. They further conducted a small-sample-size prospective
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study of two TS patients and 35 controls. The system reached 96.7% in sensitivity and 97.0%
in specificity. Photographs in both studies were collected from Chinese subjects.

Genetic Disorders Both DS and TS are chromosomal diseases. Genetic disorders not
involving chromosomal abnormalities also have facial characteristics. Efforts have been
made to establish facial image analysis in recent years. Facial dysmorphology novel analysis
(FDNA) is an automatic face classification framework based on Bayesian networks and
LBP [46]. DeepGestalt [4] is a facial image analysis framework using computer vision and
deep-learning algorithms incorporated in a smartphone app Face2Gene (FDNA Inc., Boston
MA, USA). DCNN was also proposed for congenital adrenal hyperplasia [21]. Method,
sample size, and efficacy for eight genetic diseases tested by these novel approaches
are summarized in Table 2. All except one study generated accuracy or AUC over 90%,
indicating high efficacy of the facial recognition system in diagnosing genetic diseases.

Table 2. Studies of facial-recognition-based diagnosis system for genetic disorders.

Study Disease Method Sample Size Efficacy

Basel-Vanagaite et al. [46] Cornelia de Lange syndrome FDNA 31 cases in training set,
17 cases in testing set

Accuracy = 87% (training),
accuracy = 94% (testing)

Latorre-Pellicer et al. [47] Cornelia de Lange syndrome Face2Gene 49 cases Accuracy = 83.7%

Hadj-Rabia et al. [48] X-linked hypohidrotic
ectodermal dysplasia Face2Gene 136 cases, 717 controls AUC ≥ 0.98

Liehr et al. [49] Emanuel syndrome (ES)
Pallister-Killian syndrome (PKS) Face2Gene 59 ES, 70 PKS, 973 controls,

973 others AUC ≥ 0.98

Amudhavalli et al. [50] Aymé-Gripp syndrome Face2Gene 13 cases, 20 controls, 20 DS AUC = 0.994 (controls),
AUC = 0.994 (DS)

Pode-Shakked et al. [51] Mucolipidosis type IV Face2Gene 26 cases, 98 controls, 99 others AUC = 0.822 (controls),
AUC = 0.885 (others)

Wang et al. [52] Kabuki syndrome Face2Gene 14 cases Accuracy = 93%

AbdAlmageed et al. [21] Congenital adrenal hyperplasia DNN 102 cases, 144 controls AUC = 92%

Porras et al. [53] Noonan syndrome (NS)
Williams-Beuren syndrome (WBS) LBP, SVM 286 NS, 161 WBS Accuracy = 85.68%

Abbreviations and explanations: cases, patients; controls, patients without genetic disorders; others, patients with
other genetic disorders; FDNA, facial dysmorphology novel analysis; Face2Gene (FDNA Inc., Boston, MA, USA);
AUC, area under the curve; DS, Down syndrome; DNN, Deep Neural Network; LBP, Local Binary Pattern; SVM,
Support Vector Machines.

3.1.3. Neuromuscular Diseases

Facial phenotypes are essential manifestations in neuromuscular diseases. AI has been
extensively applied in the diagnosis of neurological diseases. Though facial recognition is
still limited compared to other applications [54], it has demonstrated impressive prospective
benefits in a few diseases.

Facial Paralysis Facial paralysis is loose facial muscle or movement dysfunction due to
neuropathy. Its diagnosis depends on the doctor’s subjective ranking scale of facial features
and muscle movement [55]. Traditional methods are based on asymmetry extraction of
two sides of the face. Video clips of 75 patients and 10 controls were evaluated by a
method combining Gabor filter, LBP, and Adaboost classification, yielding an accuracy
rate of 60.7% [56]. To increase the objectivity of assessment, deep learning methods have
been proposed. Guo et al. [57] raised an end-to-end solution that directly analyzes facial
image via fine-tuned DCCN. They collected four facial expression images of 105 patients
and 75 controls in the experiment and produced a classification accuracy rate of 91.25%.
3DPalsyNet [58] is a facial palsy grading and motion recognition framework using fully 3D
CNN, showing accuracy of 82% in facial palsy and 86% in mouth motions, respectively.

Neurodegenerative Diseases Damage or death of neurons in the central nervous sys-
tem causes neurodegenerative diseases. Parkinson’s disease (PD) results from insufficient
secretion of dopamine. Patients often appear with a masked face. Alzheimer’s disease (AD)
is the most common form of dementia. Patients progressively lose memory and thinking
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skills due to brain atrophy and brain cell death. Amyotrophic lateral sclerosis (ALS) is
a rare but severe loss of the motor neurons that control voluntary muscles. Automated
static image or movement video analysis has been invented to recognize these diseases [59].
Table 3 shows a summary of data type, sample size, method, and efficacy of studies of
PD, AD, and ALS. As a novel non-invasive diagnosis approach, facial recognition shows
considerable efficacy.

Table 3. Facial-recognition-based diagnosis system for neurodegenerative diseases.

Study Disease Data Sample Size Method Efficacy

Bandini et al. [60] PD Video 17 PD, 17 HC Intraface tracking algorithm, Euclidean
distance, SVM

Difference (p < 0.05)
between PD and HC

Rajnoha et al. [61] PD Image 50 PD, 50 HC Random Forests, XGBoost Accuracy = 67.33%

Jin et al. [23] PD Video 33 PD, 31 HC Face++ [62], tremor extraction, LSTM
neural network Precision = 86%

Ali et al. [5] PD Video 61 PD, 543 HC OpenFace 2.0 [24], SVM Accuracy = 95.6%

Hou et al. [63] PD Video 70 PD, 70 HC HOG, LBP, SVM, k-NN, Random Forests F1 = 88%

Nam et al. [25] AD Video 17 AD, 17 HC
OpenFace 2.0 [24], extract movement
coordinates to calculate Spearman’s

correlation coefficient

Difference (p < 0.05)
between AD and HC

Umeda et al. [64] AD Image 121 AD, 117 HC Xception, SENet50, ResNet50, VGG16, and
simple CNN with SGD and Adam optimizer

Xception with Adam
showed the best
accuracy = 94%

Bandini et al. [18] ALS Video 11 ALS, 11 HC AAM, CLM, ERT, SDM, FAN Accuracy = 88.9%

Abbreviations and explanations: PD, Parkinson’s disease; AD, Alzheimer’s disease; ALS, amyotrophic lateral
sclerosis; HC, healthy control; SVM, Support Vector Machines; LSTM, Long Short-Term Memory; HOG, Histogram
of Oriented Gradient; LBP, Local Binary Pattern; k-NN, k-Nearest Neighbors; AAM, active appearance models;
CLM, constrained local model; ERT, ensemble of regression trees; SDM, supervised descent method; FAN, face
alignment network.

Real-World and Public Datasets Efforts have also been made to construct datasets
from real-world scenes and make them available for sharing. Recently, Zhuang et al. [65]
built a “in-the-wild” static image dataset of facial weakness from YouTube, Google Image,
and other public repositories. They combined landmarks and intensity features to detect
pathological facial asymmetry, which yielded considerable accuracy. Bandini et al. [18] have
established an accessible gesture video dataset of oro-facial motion impairment, including
post-stroke, amyotrophic lateral sclerosis (ALS), and healthy controls. They incorporated
clinical data, manual annotation, and DCCN models. To propel the development of accurate
approaches and improvement of automatic identification of neurological disorders from
videos and images, more real-world-based and public data are needed.

3.1.4. Other Types of Disease

Acute and Severe Illness In recent years, facial recognition has been applied in acute
illnesses for faster screening and patient triage in the emergency room. Forte et al. [66] estab-
lished a CNN model to distinguish between healthy and simulated acutely ill individuals,
yielding sensitivity of 100% and specificity of 42.11%. For severe illnesses, Lin et al. [67]
proposed a deep learning model to identify coronary artery disease. In a multicenter
cross-sectional study of 5796 patients, this method achieved sensitivity of 0.80, specificity of
0.54, and AUC of 0.730. Zhuang et al. [65] has also built a model to identify the asymmetric
face of stroke. These studies represented the potential of an automated facial video- or
image-based assessing system to detect acute and severe diseases.

Syndromes without Genetic Abnormality Fetal alcohol syndrome (FAS) results from
excess alcohol ingestion during maternal pregnancy. Stereo-photogrammetry was used
to measure facial features of 44 FAS subjects in an automated manner [7]. FDNA was
further applied in fetal alcohol spectrum disorders, and showed considerable performance
compared to manual examination [68]. Chronic fatigue syndrome (CFS) is a complicated
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disorder characterized by extreme fatigue with an unclarified underlying mechanism.
Chen et al. [69] proposed a method based on Gabor wavelet filtering and AdaBoost clas-
sification for CFS facial recognition diagnosis. They enrolled 294 CFS volunteers and
297 healthy volunteers in their study and the system reached an average accuracy rate of
89.04% on the training set and 88.32% on the testing set.

3.2. Clinical Applications

Automated facial analysis has been incorporated in software, e.g., Face++ [62]. These
tools are used for identity recognition, security surveillance, etc. in our daily life. Clinical
researchers have been working to develop a similar technology so that the patient’s facial
picture could be analyzed in a mobile phone so they could receive a diagnosis in seconds.
Face2Gene (FDNA Inc., Boston, MA, USA) is one of the most widely used smartphone
apps for facial recognition diagnosis [4]. Trained by 216 different genetic syndromes using
17,106 images of 10,953 subjects, this app has been employed in several studies and has
proven efficiency. Auto-eFACE is a facial assessment tool based on deep learning software
Emotrics (http://www.sircharlesbell.com/, accessed on 18 May 2022) for unilateral facial
paralysis grading and evaluation [70].

Relevant programs have also attracted attention from the National Human Genome
Research Institute (NHGRI), part of the National Institutes of Health (NIH). Research
with NHGRI has been used to develop software to identify 22q11.2 deletion syndrome,
also known as DiGeorge syndrome [71]. This system was trained by images of patients
from diverse populations, including Caucasians, Africans, Asians, and Latin Americans.
Sensitivity and specificity were both greater than 96.6% for all ethnic groups.

3.3. Advantages over Traditional Methods

Facial-recognition-based diagnosis has presented the potential to resolve problems
in traditional approaches. Diseases amenable to facial diagnosis are mostly complicated
with various but not typical clinical manifestations. Due to difficulties in making a definite
diagnosis from general inspection, these diseases are diagnosed with a latent period. For
instance, acromegaly and Cushing’s syndrome have a delay of 6 years and 2~6 years,
respectively [3]. Since these diseases are relatively rare, clinicians, especially basic-level
doctors, require experience and knowledge to recognize them. Differential diagnosis
between diseases with similar symptoms is another challenge. Moreover, traditional
approaches are complex and both time- and money-consuming. To be compared in these
aspects, facial detection is more accurate, informative, and time- and cost-saving.

3.3.1. Accurate and Objective

Accurate Studies have found that when compared to clinicians, the automatic sys-
tem achieved higher accuracy in identifying the same facial image. In early diagnosis of
acromegaly, the computer program achieved 86% over 26% accuracy in physicians [72].
Another acromegaly-detecting system showed higher performance than medical experts
and general internists, particularly in patients with moderate features [73]. Further studies
invited medical workers of different levels. Chen et al. [74] asked physicians and medical
students to complete a web-based test including the same photographs of Turner syndrome
used in computer testing. The automatic facial classification system showed higher sensi-
tivity and specificity (p < 0.001) than participants. Wei et al. [32] compared their AI-based
face classifier of acromegaly and Cushing’s syndrome with medical students, residents,
and attending doctors, respectively. The system was more accurate than human doctors.

Objective In addition to clinicians, researchers also compared facial analysis to several
diagnostic approaches to explore its practicalities. Pioneer studies in the 2000s compared
the automated facial recognition system with manual measurement, demonstrating the
objectivity of AI-based diagnosis. In conventional diagnosis of FAS, facial anthropometric
measurements made with a hand-held ruler by trained dysmorphologists was thought to
be the best approach. A stereo-photogrammetric method was developed to measure the

http://www.sircharlesbell.com/
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facial dysmorphology of FAS children and showed consistency with experts [7]. Another
study developed an automated method to quantify facial motion. Its analysis was con-
sistent with that of manual tracking in facial nerve disorders [8]. For diseases relying on
subjective assessment with scales, AI classifiers also proved their accuracy. Studies have
been conducted in facial paralysis [57] and AD [64]. Facial-recognition-based diagnostics
resulted in similar predictions to the House–Brackmann facial nerve grading system and
mini-mental state examination (MMSE) in these diseases, respectively.

3.3.2. Comprehensive and Informative

Comprehensive This novel screening technology not only differentiates patients from
healthy individuals, but also provides comprehensive diagnostic possibilities. For each
input image, the mobile app Face2Gene (FDNA Inc., Boston, MA, USA) outputs a ranked
list of 30 possible genetic disorders, with an accuracy rate of 91% in top 10 diseases [4].
Mishima et al. [75] validated Face2Gene (FDNA Inc., Boston, MA, USA) with Japanese
populations and proved its efficacy. Porras et al. [76] have also invented a deep phe-
notyping screening technology to support early risk stratification at the point of care in
global populations.

Informative In addition to classification results of diagnosis, the automatic facial
analysis generated much more clinical information. Due to the emergence of 3D technology,
facial phenotypes could be quantified more accurately and could act as predictors. In
acromegaly, facial features have been elucidated relative to disease severity, progression,
and recurrence after surgery. Meng et al. [12] found a few vital variables for disease
prediction and gender variation. Guo et al. [77] revealed that insulin-like growth factor 1
(IGF-1) levels were linearly correlated to certain features. In another research study of
668 patients, Fan et al. [78] showed that facial features provided better estimation of
transsphenoidal surgical (TSS) responses compared with traditional invasive grading based
on pituitary image examination (Knosp Grade).

3.3.3. Improvement of Healthcare System

The convergence of medicine and AI is not only beneficial to patients and clinicians,
but also improves the healthcare system [79]. Though direct evidence in the field of facial
analysis is insufficient, studies have showed that AI improves workflow and reduces
medical errors. The most prominent advantage of AI-based facial recognition diagnosis
is the breakdown of the knowledge barrier. Since the size of the dataset far exceeds the
upper limit of patients seen by an experienced doctor, it enables doctors at any level to
have access to a precise diagnosis. Moreover, as the system can be easily installed in a
mobile device and processes images in seconds, it takes much less time than the traditional
pathway for diagnosis.

4. Future Outlook
4.1. Expansion of Database Volume

The sample size affects the performance of machine learning models. It is acknowl-
edged that systems trained by larger datasets have better estimation and less bias. Moreover,
facial features vary by age, sex, and race naturally. Demographic influence on the per-
formance of face recognition algorithms has been studied, suggesting female, Black, and
younger individuals are more difficult to recognize [80]. For diseases with malformations
or dysfunction of the trunk and limbs, simultaneous identification would be essential.
Langevin et al. [81] has established PARK for PD diagnosis and subsequent monitoring.
This interactive framework asks the patient to complete six motor exercises and one au-
dio task with webcam. Considering that the previous atlas featured only individuals of
northern European ancestry, NHGRI launched Atlas of Human Malformations in Diverse
Populations (https://research.nhgri.nih.gov/atlas/, accessed on 16 May 2022) in Septem-
ber 2016. This atlas aims to collect photos of physical traits of different inherited diseases
around the world. Therefore, in addition to genetic syndromes, comprehensive data of face

https://research.nhgri.nih.gov/atlas/
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and physical images covering different groups and various diseases are forthcoming to
refine current systems.

4.2. Factors Affecting Diagnostic Accuracy

Factors affecting the accuracy of automated facial analysis have been demonstrated
such as aging, pose variation, partial occlusion, illumination, and facial expression [14].
Technology is continuously being optimized to reduce the impact of these factors. Clinical
scientists also investigated potential confounding factors influencing performance of the
facial-recognition-based diagnosis system. Pantel et al. [82] selected genetic disorders with
overlapping phenotypic spectra and demonstrated that the growing cohort increased the
true positive rate, while ethnicity or sex had no significant effect. Furthermore, only the tip
of the iceberg has been discovered in patterns underlying disease severity and phenotypes.
To interactively quantify facial classification in disease diagnosis, Wu et al. [83] performed
a systematic meta-analysis of 12,557 participants in seven single diseases. They found that
the complexity of facial features, defined as Facial Recognition Intensity (FRI), contributed
to diagnostic accuracy (p = 0.021). Increasing the training size and applying deep learning
models will help to improve accuracy of low-FRI diseases. Object’s Complexity Theory
(OCT) was hypothetically proposed, as the complexity of the targeted objects determines
the complexity of AI processing and plays a vital role in performance of the model. More
supportive evidence is needed to reveal the laws behind this.

4.3. Integration of Novel Technology

In recent years, 3D photography has begun to contain facial depth information and
reduce shape distortion. Corresponding machine learning algorithms have been developed
to discriminate between genetic syndromes [11]. Three-dimensional CNN has also been
proposed to extract and process motion features [22]. This novel technology broadens the
range of identification and interpretation, especially for neuromuscular diseases. Moreover,
real-time detection could be added to the system to optimize its clinical use. Facial live
detection to capture eye blinking discriminates the human face from a photograph [84]. The
elaborate analysis of each organ in the face is also promising. Liu et al. [85] has invented
a clinically aided diagnosis system to analyze eye images of ocular myasthenia gravis
patients. To combine local feature analysis might yield better performance for the whole
face identification.

In addition to facial images, human posture and movement could be identified with
deep learning methods for kinematic analysis [86]. Emotion and expression are other
essential dimensions in facial recognition technology. Emotional neural networks can
detect expressions and improve AI learning and generalization [87]. Automatic pain
detection technology was invented for non-communicative patients. It assists caregivers
and provides more objective assessments [88]. The automatic emotion annotation system
based on 2.5D facial landmarking was also proposed to help people with difficulties in
interpreting facial expressions. Social lives of individuals with AD, low vision, and autism
spectrum disorder patients’ responses would be improved [89]. Another model to evaluate
facial reanimation after facial surgery has also been developed [90].

Meanwhile, a systematic review has been performed to figure out algorithm refinement
within a limited sample size [91]. Through analysis of machine learning prediction of
autism, this study found that Nested Cross-Validation, train/test split stably produces
robust and unbiased estimation regardless of sample size. The state-of-the-art of machine
learning will keep bringing about expansion and improvement of application in this field.

4.4. Applications beyond Diagnosis

Besides diagnosis and evaluation, facial analysis also has potential for prospective
therapy and medical education. Ridha et al. [13] has designed a 3D printed headgear
for facial paralysis physical therapy. A Google Machine Learning kit was inputted into a
paralysis prediction neural network (PPNN) to predict the percentage of paralysis. Cou-
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pled with the headgear, this AI system suggests routine therapy time for physiotherapists.
Further tests in real patients and tech convergence are to come. AI-based image analysis
has been applied in pathology and radiology education [92,93]. For instance, pathologists
generate synthesized images for training. This is also useful for quality control and elimi-
nating perceptual and cognitive bias. In the field of facial recognition, phenotypes could
be three-dimensionalized as a model to educate medical students and help understand
disease occurrence and development.

4.5. From Research to Products

The list of the Food and Drug Administration (FDA)-approved AI image interpretation
algorithms is expanding rapidly [79]. Though studies and articles have proliferated over
the last decade, only a few research studies have been translated into diagnostic aiding tools.
Apps or tools that could be easily installed onto mobile devices, such as Face2Gene (FDNA
Inc., Boston, MA, USA), are the most practical. To ensure safety and effectiveness of AI
and machine-learning-based software as a medical device, FDA has issued the regulatory
framework and an action plan [94]. In the future, the focus will not only be to productize
the algorithms, but to eliminate bias and validate performance in real-world clinical scenes.

4.6. Privacy and Security

Currently, the human face is a sensitive individual privacy concern. When being
asked to take photos of their faces, more patients worry about information leak than
before [95]. NHGRI asked the patient to sign a consent form before contributing facial
images to their atlas website. Ethical implications of facial recognition technology require
more regulations and laws. Security, privacy, autonomy, and democratic accountability
are the most considered aspects [96]. In a comparative analysis of regulatory frameworks
in the United States, Europe, and the United Kingdom, facial recognition technology
will improve when considering data protection impact assessments and human rights
impact assessments [97]. Another integrative review by Roundtree et al. synthesized [98]
academic studies in the past ten years about ethical issues in facial recognition. In clinical
practice, facial images of patients should be taken seriously as the medical record. However,
external or internal attacks to the deep learning frameworks could exert a safety threat [99].
Another security concern is the vulnerability to adversarial perturbations, especially in
deep neural network (DNN) systems. Defenses against adversarial attacks could be divided
into gradient masking, robust optimization, and adversarial example detection [100]. In
facial recognition, though evaluations and examinations were made to test existing models,
few optimized models have been proposed [101,102]. More efforts should be made to
secure the facial classifiers in clinical practice. All in all, more regulations and consensus are
forthcoming to raise ethical awareness when using this novel technique in disease diagnosis.

5. Conclusions

Facial recognition technology has been developing for decades, but the intersection
of facial analysis and disease diagnosis is still an emerging field. In clinical settings, the
image capture process is standardized to ensure image quality. Traditional computing
methods (appearance-based algorithms, feature-based algorithms) and deep learning have
been developed for facial detection. The facial recognition system has showed considerable
performance in various types of disease, including endocrine and metabolic disease, ge-
netic and chromosome abnormality, neuromuscular disease, and acute and severe illness.
A few software programs have been applied in the clinical practice. Compared to the
routine diagnostic approach, facial-recognition-based detection is more accurate, objective,
comprehensive, and informative. It also makes it possible to improve healthcare system
efficiency. For future perspectives, the facial database volume could be expanded, and
factors affecting diagnostic accuracy are to be investigated. Cutting-edge technology could
be incorporated into the system to improve its performance. More mature products devel-
oped from research are forthcoming. Applications beyond diagnosis are under exploration.
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Privacy and security are essential ethical problems that need more consideration and reg-
ulation. Clinicians and scientists are making continuous efforts to better serve medicine
and healthcare.
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