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Abstract: Binary (Chitosan-Cu(II), CCu) and Ternary (Chitosan-Alginate-Cu(II), CACu) composite
materials were synthesized at variable composition: CCu (1:1), CACu1 (1:1:1), CACu2 (1:2:1) and
CACu3 (2:1:1). Characterization was carried out via spectroscopic (FTIR, solids C-13 NMR, XPS and
Raman), thermal (differential scanning calorimetry (DSC) and TGA), XRD, point of zero charge and
solvent swelling techniques. The materials’ characterization confirmed the successful preparation of
the polymer-based composites, along with their variable physico-chemical and adsorption properties.
Sulfate anion (sodium sulfate) adsorption from aqueous solution was demonstrated using C and
CACu1 at pH 6.8 and 295 K, where the monolayer adsorption capacity (Qm) values were 288.1 and
371.4 mg/g, respectively, where the Sips isotherm model provided the “best-fit” for the adsorption
data. Single-point sorption study on three types of groundwater samples (wells 1, 2 and 3) with
variable sulfate concentration and matrix composition in the presence of composite materials reveal
that CACu3 exhibited greater uptake of sulfate (Qe = 81.5 mg/g; 11.5% removal) from Well-1 and
CACu2 showed the lowest sulfate uptake (Qe of 15.7 mg/g; 0.865% removal) from Well-3. Generally,
for all groundwater samples, the binary composite material (CCu) exhibited attenuated sorption and
removal efficiency relative to the ternary composite materials (CACu).
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1. Introduction

Sulfate is one of the naturally occurring ubiquitous oxyanions commonly found in most
water supplies. Sulfate contamination of water originates from both natural and anthropogenic
sources. The natural sources include dissolution and oxidation of sulfate minerals such as gypsum
and pyrite along with precipitation and volcanic activity. On the other hand, anthropogenic sources
include sewage streams, synthetic detergents, industrial wastewater, mining drainage and mineral
tailings, where levels can reach 10,000 mg/L [1–4]. The sulfate anions can exist in various forms with
varying concentrations according to the water source and the nature of the industrial activities of the
region [4,5]. The toxicological effects of sulfate in humans and animals have been reported to include
catharsis, diarrhea, and dehydration as well as changes in methaemoglobin and sulfhaemoglobin
levels [1,6]. In freshwater species, sulfate can be lethal at elevated concentrations due to osmoregulatory
stress [7,8]. The latter occurs upon bacterial reduction of sulfate under anaerobic conditions to produce
hydrogen sulfide (H2S) [9] The weak acid properties of aqueous hydrogen sulfide solution can be
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significantly harmful to human beings, while also raising corrosion concerns [10,11]. The presence
of aqueous hydrogen sulfide is a serious toxicity concern since it does not alter the physicochemical
properties (odour and taste) of water and may not be easily detected at low concentrations [11].
The consumption of a toxic dose of H2S in drinking water can cause dehydration, cardiac arrhythmias,
amnesia, pulmonary edema, neural paralysis and other physiological problems [12–14]. Microbially
assisted formation of H2S has led to water quality guidelines that recommend sulfate levels ca.
250–500 mg/L sulfate to ensure safe water for human and livestock consumption [6,15,16].

The toxicity challenges presented by the presence of sulfate species in water along with its high
solubility and mobility calls for an efficient and cost-effective strategy for its controlled removal
from groundwater as well as industrial effluent [17,18]. Techniques for sulfate removal such as
precipitation [1,19], biological degradation [20,21], reverse osmosis [22], membrane filtration [23],
electrocoagulation [24], crystallization [25], adsorption [26] and/or ion exchange [27], are commonly
known methods. Among these techniques, adsorption-based removal with biopolymer adsorbents
may offer advantages (minimal infrastructure and operational cost) over synthetic adsorbent
materials or conventional treatment methods such as reverse osmosis [26]. As well, the synthetic
utility of biopolymers for tailored modification add to its technical feasibility, cost effectiveness,
sustainability, selectivity and treatment efficiency for diverse effluent sources with variable sulfate
concentration [28,29]. Additionally, the aforementioned properties of biopolymers lend to their
suitability for various environmental applications that include but are not limited to flocculation, drug
delivery and agriculture [30–35]. By contrast, conventional materials such as zeolites are naturally
occurring minerals, however; the production and regeneration costs may pose limitations on their
sustainable utility as adsorbents. By contrast, renewable biomass such as alginate and chitosan continue
to generate great interest due to their relative abundance and synthetic versatility [36–38].

Chitosan has found many applications that build upon its unique properties such as
biocompatibility, lack of odour and biodegradability [39]. In particular, chitosan is a partially
deacetylated form of chitin that is characterized by available amino and hydroxyl groups. At pH
conditions below 6.5, the amino groups of chitosan are protonated, which results in variable water
solubility according to the type of acid media and the degree of deacetylation [40]. The –OH and –NH2

groups of chitosan offer potential ligation sites to form complexes with transition metal ions [41–43]
along with anionic biopolymers such as alginate [44,45]. On the other hand, alginate is an anionic
biopolymer obtained from brown algae and bacteria where, α-L-guluronic (G) and β-D-mannuronic
(M) acid constitute its monomer units [44,46]. The formation of chitosan- or alginate-metal ion binary
complexes afford modification of the physicochemical and structural properties of the biopolymer or
metal ion precursors upon complex formation due to changes in electrostatic potential. The unique
properties of such complexes has led to their utility as dialysis and ultrafiltration membranes [47],
drug delivery agents [48] and biosorbent materials [49]. Recent review articles [39,50–52] on alginate
and chitosan-based adsorbents reveal their application as adsorbents for cation and anion species.
As well, such biopolymers are established for removal of dyes and heavy metals, whereas studies of
biopolymer-metal ion complexes are sparsely reported for the adsorption of sulfate from aqueous
solution, according to the examples provided in Table 1.

Table 1. Summary of various chitosan/alginate-based sorbent materials reported in the literature for
the removal of SO4

2− species from aqueous solution.

Adsorbent Year References

Chitin-based shrimp shells 2003 Moret and Rubio [53]
Biopolymeric alginate/clinoptilolite pellets 2009 Chmielewská et al. [54]

Protonation modified chitosan 2014 Guo et al. [55]
Chitosan-grafted-polyacrylamide 2015 Fosso-Kankeu et al. [56]

Chitosan-bentonite composite 2016 Mbakop et al. [6]
Chitosan flakes 2018 Schwarz et al. [57]

Magnetic chitosan microspheres 2019 Tian et al. [58]
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This study focuses on the synthesis and characterization of binary (two-component) and ternary
(three-component) composite materials that contain animal and/or plant biopolymers (chitosan and
alginate) as building blocks in conjunction with copper (II) species. The unique contribution of Cu(II)
species to the formation the ternary biopolymer composites yield enhanced adsorption capacity of
sulfate anions for laboratory and groundwater samples will be demonstrated herein. A comparison of
related materials in this study will reveal that the composition of composites (binary and ternary) and
their sulfate uptake properties are unique at pH 7.

2. Materials and Methods

2.1. Materials

Low molecular weight industrial grade chitosan (C) powder with ~75–85% deacetylation, copper
(II) chloride (≥97%), barium chloride (≥99.9%), KBr (spectroscopic grade), sodium hydroxide, HCl,
sodium chloride (≥99.9% crystalline), sodium sulfate anhydrous (≥99.9%) and acetic acid were
obtained from Sigma Aldrich (St. Louis, MO, USA). Alginic (A) acid sodium salt (low viscosity)
was obtained from Alfa Aesar (Tewksbury, MA, USA). All materials were used as received without
further purification.

2.1.1. Synthesis of a Chitosan Copper (II) Binary Composite: CCu

Chitosan (1 g) was dissolved in 50 mL (5% acetic acid) solution. The pH of the solution was
raised to pH 5.6 using 1M NaOH. CuCl2 solution (0.006 mol) was then added dropwise to the chitosan
solution and incubated for 3 h, where the final solution pH was near pH 7. The pH of the resulting
mixture was adjusted to 7 with 2M NaOH to precipitate the chitosan-copper (CCu) binary composite.
The composite was washed with copious amount of Millipore water to remove the unreacted reagents.
The product was dried in an oven at 60 ◦C and the composite was ground in a mortar and pestle and
passed through a 40-mesh sieve prior to use.

2.1.2. Synthesis of Chitosan, Alginate and Copper-Based Ternary Composites: CACu

The synthesis of CACu1 ternary composite was carried out according to the procedure reported
in Section 2.2.1 with minor modification, as follows: 1 g (0.006 mol) of chitosan was dissolved in 50 mL
of 5% acetic acid solution, while 1.3 g (0.006 mol) of alginate (A) was dissolved in 50 mL of Millipore
water. The pH of the solution was adjusted to pH 5.6 using 1M NaOH added dropwise to the alginate
solution with stirring until a homogeneous blend was obtained. CuCl2 solution (0.006 mol) was
added to the chitosan-alginate blend with stirring and incubated for 3 h. The pH of the mixture was
adjusted to 7 with 2M NaOH to precipitate the chitosan-alginate-copper (CACu1) ternary composite.
The composite was washed with a generous amount of Millipore water to get rid of unreacted reagents.
The product was dried in an oven at 60 ◦C and the composite was ground in a mortar and pestle and
passed through a 40-mesh sieve prior to use. The other composite materials CACu2 and CACu3 were
synthesized according to the above procedure, where the weight of chitosan and alginate were varied
to yield the desired weight ratio (cf. Table 2).

Table 2. Mass of reactants used in the preparation of binary and ternary composite materials.

Reaction Conditions CCu CACu1 CACu2 CACu3

Mass of Alginate (g) 0 1.3 2.6 1
Mass of Chitosan (g) 1 1 1 2

Mass of CuCl2 (g) 0.83 0.83 0.83 0.83
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2.2. Characterization

2.2.1. Fourier Transform Infrared (FTIR) Spectroscopy

The FTIR spectra of the chitosan (C), alginate (A), CCu and CACu composite materials were
obtained using a Bio-RAD FTS-40 IR spectrophotometer (Bio-Rad Laboratories, Inc., Philadelphia, PA,
USA). Dried powder samples were mixed with pure spectroscopic grade KBr in a 1:10 weight ratio
with grinding in a small mortar and pestle. The DRIFT (Diffuse Reflectance Infrared Fourier Transform)
spectra were obtained in reflectance mode at 295 K with a resolution of 4 cm−1 over a spectral range of
400–4000 cm−1. Multiple scans were recorded and corrected relative to a KBr background.

2.2.2. X-ray diffraction (XRD)

X-ray diffraction (XRD) profiles of the composite materials were obtained using a Rigaku
Ultima IV X-Ray diffractometer, Cu-source, wavelength 1.54056Å (Austin, TX, USA) in the range of
2θ = 10◦–80◦ at 40 kV potential and 40 mA current.

2.2.3. Thermal Gravimetric Analysis (TGA)

Thermal profiles of the composite materials were obtained using a TA Instruments Q50 TGA
system (New Castle, DE, USA) using a heating rate of 5 ◦C/min up to 500 ◦C and nitrogen as the carrier
gas. The results reported herein are shown as first derivative (DTG) plots of weight with temperature
(%/◦C) against temperature (◦C).

2.2.4. Solids C-13 NMR Spectroscopy

A Bruker AVANCE III HD spectrometer (Bruker Bio Spin Corp., Billerica, MA, USA) furnished
with a 4 mm DOTY CP-MAS (cross-polarization with magic angle spinning) solids probe operating
at 125.8 MHz (1H frequency at 500.2 MHz) was used to acquire the C-13 solids NMR spectra of the
chitosan, alginate and the composite materials. The experimental conditions are given as follows:
spinning speed of 10 kHz, a 1H 90◦ pulse of 3.5 µs, a contact time of 0.75 ms, with a ramp pulse on
the 1H channel, MAS rate of 10 kHz, a 13C 90◦ pulse width of 3.15 µs and a 25 kHz SPINAL-64 1H
decoupling sequence during acquisition. In general, 600–5000 scans were accumulated, with a recycle
delay of 2 s. All experiments were recorded using a 71 kHz SPINAL-64 decoupling sequence during
acquisition, and the 13C NMR chemical shifts were referenced to adamantane at 38.48 ppm (low field
signal).

2.2.5. Raman Spectroscopy

One-dimensional (1–D) Raman spectra were obtained using a Renishaw InVia Reflex Raman
microscope (785 nm solid state diode laser with a 1200 lines/mm grating system) (Renishaw plc,
New Mills, UK) with a Pelletier cooled CCD (charge coupled device) detector (400 × 576 pixels).
The instrument wavelength was calibrated at 520 cm−1 using an internal Si (110) sample.

2.2.6. Differential Scanning Calorimetry (DSC)

DSC thermograms were acquired using a TA Q50 (New Castle, DE, USA) thermal analyzer over a
variable temperature range (30–180 ◦C). The scan rate was set to 10 ◦C/min while nitrogen gas was
used to regulate the sample temperature and purge the sample compartment housing, where ca. 10 mg
of sample was used for analysis.

2.2.7. Point-of-Zero-Charge (PZC)

The point-of-zero-charge (PZC) of sample materials was determined according to a reported
method [59]. A stock solution of NaCl (0.01 M) was prepared and 25 mL portions were transferred into
five vials (8-dram). The solution pH conditions of the samples were adjusted between pH 2 to 10 using
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aqueous NaOH or HCl solutions. The sorbent materials (ca. 50 mg) were added to each solution and
allowed to equilibrate for 48 h before the final pH was recorded.

2.2.8. Solvent Swelling Test

The solvent swelling properties in water of the composite materials (ca. 100 mg) was measured
upon equilibration in Millipore water (30 mL) for 24 h. The degree of swelling (Sw) in water for the
composites was calculated according to Equation (1):

Sw =
Ws −Wd

Wd
× 100% (1)

Ws is the wet sample weight, and Wd refers to the dry sample weight after oven drying at 60 ◦C
for 24 h to a constant value.

2.2.9. X-ray Photoelectron Spectroscopy (XPS)

All XPS measurements were collected using a Kratos (Manchester, UK) AXIS Supra system
equipped with a 500 mm Rowland circle monochromated Al K-α (1486.6 eV) source, combined
hemi-spherical analyzer (HSA) and spherical mirror analyzer (SMA). A spot size of hybrid slot
(300 × 700 microns) was used. All survey scan spectra were collected in the 5 to 1200 binding energy
range in 1 eV steps with a pass energy of 160 eV. An accelerating voltage of 15 keV and an emission
current of 15 mA were used for the XPS data collection.

2.2.10. Leaching of Cu(II) Species

For the leaching test, the adsorbent (ca. 100 mg) was added to 30 mL Millipore water and
equilibrated at 295 K on a horizontal shaker table for 24 h to determine whether the Cu(II) concentration
exceeded 1000 µg/L, according to measurements acquired using ICP-OES.

2.3. Adsorption Studies

2.3.1. Equilibrium Adsorption Experiments

The equilibrium adsorption studies were carried out in batch mode using Na2SO4 (aq) at variable
concentration (100–5000 ppm) as the adsorbate system. A fixed amount of adsorbent (~10 mg) was
added to 6-dram vials and 15 mL of Na2SO4 (aq) solution at variable concentration at pH 6.8 was
transferred to the vials. The mixtures were equilibrated at 295 K on a horizontal shaker table for
24 h. The initial concentration (C0) before sorption and residual concentration after sorption were
determined using a Thermo ScientificTM SPECTRONIC 200E (Ottawa, ON, Canada) spectrophotometer
at 420 nm. The samples were centrifuged prior to UV-vis spectroscopy analyses as required. The uptake
of sulfate ions by the adsorbents was determined according to Equation (2). For the ground water
samples, ~100 mg of the composite materials and 30 mL of the groundwater samples were used for the
batch mode experiments.

Qe =
C0 −Ce

m
V (2)

Qe is the quantity of adsorbed species (SO4
2−) in the solid phase at equilibrium (mg/g); C0 is initial

concentration of the adsorbate (mg/L) in solution; Ce is concentration of SO4
2− at equilibrium (mg/L)

in aqueous solution; V is volume of adsorbate solution (L) and m is the weight (g) of sorbent. Herein,
four adsorbents were used for the removal of sulfate ions for a synthetically prepared solution, along
with groundwater samples labeled as Well-1, -2 and -3. The elemental analyses of these water samples
are listed in Tables S1–S3, respectively, as listed in the Supplementary Materials (SI).
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2.3.2. Sorption Isotherms and Modeling

The adsorption results were analyzed using the Sips isotherm model (Equation (3)) where the
“best fit” of Equation (3) to the data was obtained by minimizing the SSE (Equation (4)) for all data
across the range of conditions [60]. Qei is the experimental value, Qef is the calculated value from the
data fitting and N is the number of Qe data points.

Qe =
Qm(KsCe)

ns

1 + (KsCe)
ns

(3)

SSE =

√
(Qei −Qef)

2

N
(4)

3. Results and Discussion

The structural characterization of the composites is described in the following sections by several
complementary spectroscopic, thermal analysis and other methods. As well, the sulfate adsorption
properties were studied using laboratory and groundwater field samples at variable conditions.

3.1. Fourier Transform Infrared (FTIR) Spectral Analysis

Functional groups and chemical bonds of a molecule can be characterized by use of IR spectral
results. Figure 1 shows the DRIFT spectra of the biopolymers and composites (C, A, CACu1 CACu2,
CACu3 and CCu) over the 4000 to 500 cm−1 spectral region. The IR spectrum of pristine chitosan has a
broad band at 3473 cm−1, which is assigned to the N–H and hydrogen bonded O–H vibrational bands.
The absence of a sharp absorption band near 3500 cm−1 in all composite materials indicates the relative
absence of free OH groups. Moreover, the C–H stretch region had a high intensity (2898 cm−1) and
lower intensity band (2877 cm−1) assigned to the symmetric and asymmetric modes of the CH2 groups,
respectively [61]. A characteristic CH2 scissoring band is present at 1418 cm−1 along with a C=O
stretch of an amide band at 1663 cm−1 for chitosan, where the bending vibrations of a secondary amide
(δN–H) is noted at 1596 and 1541 cm−1 [62]. The IR spectrum of sodium alginate has a characteristic
–OH stretching band at 3480 cm−1, C–H stretching vibrations at 2927 cm−1 and asymmetric stretching
vibration for –COOH at 1648 cm−1. The bands at 1306 and 1426 cm−1 relate to symmetric C–O stretching
of the carboxyl groups, whereas the IR bands at 937 and 1104 cm−1 were assigned to elongation of C–O
groups [63–65]. Upon composite formation, the C=O stretching and bending bands exhibit broadening
along with a shift to lower wavenumber values, respectively. The broadening and shifting of the IR
bands indicate the involvement of the C=O groups in composite formation between chitosan and
alginate along with Cu(II) species [66]. The IR results indicate the coordination of amine groups and
the amide C=O groups with Cu(II) species yield the formation of composites. However, in the case of
CACu2, asymmetric and symmetric stretching vibrations for the –COOH groups of alginate did not
reveal any significant change. Thus, these results suggest that limited coordination occurs between
alginate and the Cu(II) species upon ternary composite formation.
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Figure 1. FTIR spectra of chitosan (C) and alginate (A) biopolymers, and its composite forms: CACu1,
CACu2, CACu3 (ternary) and CCu (binary) materials.

3.2. Raman Spectroscopy

While IR spectroscopy provides insight on functional groups that undergo a change in the dipole
moment, Raman spectroscopy is complementary due to its sensitivity to transitions that undergo a
change in polarizability. The Raman spectral data of the biopolymers and their composites is inferred
to provide additional information on the binary and ternary composites reported herein. For example,
in the case of IR spectra, it is evident that the amide (C=O) and amine groups undergo coordination
with Cu(II) species to form both binary and ternary composites. The Raman spectra of chitosan,
alginate and the films for the composite materials CCu, CACu1, CACu2 and CACu3 are shown in
Figure 2. The characteristic Raman bands that reveal an interaction between Cu(II) species ion and
carbonyl groups (C=O) of chitosan for the composites are observed between 281 to 349 cm−1 [67–69].
The formation of composites is also supported by the DRIFTS results, as evidenced by broadening of
the C=O stretching band of amide groups between 1647 and 1655 cm−1 (cf. Figure 1). In the case of
the CACu1, characteristic Raman spectral shifts are noted for interactions between the Cu(II) species
and the carbonyl groups of chitosan but were not clearly observed for the other composites as noted
in Figure 2. Additionally, Raman bands at 219/226/230/422/439/441/442/443 cm−1 may relate to the
interaction between Cu(I) species and the amide carbonyl group (C=O) of chitosan for the composite
materials [70].

The Raman results provide support that reduction of Cu(II) species to Cu(I) species may occur
upon binding with the C=O groups of chitosan. A noteworthy observation is the absence of obvious
signatures related to interactions between the carboxyl groups of alginate and Cu(II) species in the
Raman spectra. The absence of such bands provide support that coordination occurs between Cu(II)
species with chitosan. This may be due to steric interactions that occur due to hydration of the
carboxylate anion that screens interactions with the Cu(II) species. In the case of the C=O groups of
chitosan, a more apolar environment exists at ambient pH conditions that may favour complexation of
chitosan with Cu(II) species versus the –COO– groups of alginate.
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3.3. Thermogravimetric Analysis (TGA)

Thermal stability, resistance to oxidation and physical phenomena that show weight-loss events
relates to the compositional nature of copolymer materials which can be studied from TGA-Differential
Thermal Analysis (TGA-DTA) profiles [71,72]. Moreover, TGA is particularly sensitive for the detection
of differences in structurally similar materials and complex multicomponent systems that vary according
to their composition. The latter case applies to the composite materials reported herein. The thermal
decomposition behavior of chitosan, alginate, CCu1 and the ternary composite materials are illustrated
in Figure 3 and Figure S2a–f. These profiles reveal two or three thermal events that vary across a
temperature range up to 400 ◦C, in parallel agreement with a related study [73]. In general, the
first thermal event occurs between 36 to 120 ◦C that relates to loss of bound surface water and/or
entrapped water from the composite network [74]. The first thermal event (36 to 120 ◦C) for the
composite materials reveal a large fractional weight loss (8.2%) for CACu2, whereas 3.0% was observed
for CACu2. This affirms the presence of abundant polar groups in CAlCu3 that affirm the formation
of hydrogen bonds with water relative to CACu2. However, the weight loss of CCu and CACu1
was similar (6.9% and 7.2% respectively), as noted in Figure S2a–f. The thermal events above 150 ◦C
relate to decomposition of the polymer framework. In the case of the biopolymers (C and A), thermal
event occur at different Tmax values: 295 ◦C for C and 247 ◦C for A. These thermal events relate to the
depolymerization and dehydration of the saccharide rings [75]. In the case of CCu, the weight loss
events at ~215 ◦C result due to the breakdown of the biopolymer framework, whereas the thermal event
at ~267 ◦C relates to bond breaking between Cu(II) species and the carbonyl group (C=O) of chitosan.
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The thermal event between 170–350 ◦C for CACu1, ca.180–320 ◦C for CACu2 and CACu3 materials
relate to decomposition of C and A domains, along with bond breaking between Cu(II) ions and the
carbonyl (C=O) group of chitosan, respectively. The lowest onset degradation temperature displayed
by CACu2 may arise due to the higher alginate content in the composite; thereby resulting in a weaker
interaction of Cu(II) species with the carbonyl group of chitosan. By comparison, CACu2 and CACu1
composites exhibit lower thermal stability relative to CCu and CACu3, in agreement with the more
efficient binding of Cu(II) species to chitosan.
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3.4. Solid State 13C NMR Spectroscopy

Solid state 13C NMR spectroscopy allows for the elucidation of changes in the chemical environment
of biopolymer materials due to changes in the chemical shifts of nuclei that undergosolvation or
interactions with other chemical species. The spectral assignment of chitosan in Figure 4 is given:
δ105.1 = C-1; δ57.1 = C-2; δ74.9 = C-3/C-5; δ83.1 = C-4 and δ61.1 = C-6. Since the deacetylation of chitosan
(~75–85%) is moderate, the acetyl group signature is noted at δ173.9 = C7 and δ23.6 = C8 [76]. The spectral
assignment for alginate is also provided: δ101.1 for C-1; the four ring carbon (C-2, C-3, C-4 and C-5)
lines at δ59.87 to δ85.3, where the characteristic C=O group appears at δ175.4. In the spectra of CACu1,
CACu2, CACu3 and CCu composite materials, the merging of the signals for both carbonyl groups (C-7
for chitosan and C-6 for alginate) along with a broader 13C NMR signature at δ59.87–85.3 are observed.
A new upfield 13C NMR line occurs for all composites near the δ28.7-35.9 region. These signals appear at
δ31.4, δ30.1, δ30.8 and δ31.7 for CACu1, CACu2, CACu3 and CCu, respectively. These new peaks provide
evidence of effective interaction between the copper species and the carbonyl oxygen of chitosan rather
than interaction between Cu(II) with the carboxylate group of alginate, in agreement with the Raman
spectral results in Figure 2. Moreover, the C-8 peak of chitosan becomes broadened for all composites,
in agreement with the interaction of Cu(II) species and the C=O (acetyl) group of chitosan. In addition,
ring carbon signatures for chitosan and alginate show broadening in the composites upon complex
formation between the precursor units (Cu(II), chitosan and alginate). The 13C NMR spectra (Figure 4)
and other results (cf. Figures 1–3) provide support that interactions occur between Cu(II), chitosan and
alginate, where the Cu(II) species are bound at the C=O (acetyl) moiety of chitosan, in agreement with
the TGA and Raman results.
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Figure 4. Solid state C-13 NMR of the biopolymers (C, A), binary (CCu) and ternary (CACu1, CACu2,
CACu3) composites.

3.5. Differential Scanning Calorimetry (DSC)

DSC studies were carried out to identify the effect of structural differences on the hydration of
C, CCu and CACu composite materials since hydration effects are known to play a key role in the
adsorption properties of biopolymer materials. The DSC results are summarized in Table 3 along with
the accompanying thermograms in Figure 5.

Table 3. TGA parameters for the differential scanning calorimetry (DSC) thermogram profiles for
chitosan and its composite materials.

Material Tmax (◦C) T0 (◦C) DSC Peak Area (J g−1)

C 97.5 59.1 45.9
CCu 135.5 70.3 811.4

CACu1 130.8 52.7 2016
CACu2 125.3 51.9 1491
CACu3 146.6 120.8 786.6

Note: Tmax = maximum peak temperature; T0 = onset temperature.
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Figure 5. DSC of chitosan (C)), ternary composites (CACu1, CACu2, CACu3) and binary composite
(CCu) materials.

In general, all composite materials display one endothermic peak within the range of 30–180 ◦C
with Tmax values between 97.5–146.6 ◦C while onset temperatures resided between 51.9–120.9 ◦C.
The endotherms reveal characteristic features of water desorption that concur with the temperature
range observed by TGA analysis. Among the four composites, CACu2 showed the lowest Tmax

value of 125.3 ◦C while CACu3 displays the highest the Tmax value (146.6 ◦C). The maximum ∆Hdes
value (2016 J g−1) for CACu1 composite material provides evidence of strongly bound water with the
active sites of the biopolymers and/or with Cu(II) species. Based on these results, a higher portion of
bound water can be found in the CACu1 composite versus the other composites. The DSC results
provide support that accounts for trends in water swelling at equilibrium that are further described in
Section 3.6.

3.6. Swelling Tests

The relative hydrophile-lipophile balance (HLB) of chitosan and the composite materials can
be estimated via solvent swelling (Sw) in water at equilibrium conditions. The estimated Sw values
for the composites were reported as a triplicate average at ambient pH and 23 ◦C. The values of Sw

provide an account of the accessibility of polar functional groups on the biopolymer surface. It can be
inferred that the level of crosslinking and/or interaction between Cu(II) species and chitosan likely play
an important role in the overall hydrophilicity of the composite materials. CCu showed the lowest
swelling ratio (Sw = 87.4%) among the composites due to more effective Cu(II) coordination with
chitosan. Similarly, greater crosslinking between the biopolymers (chitosan/alginate) is also likely to
influence the relative accessibility of the polar functional groups of the composites. In turn, reduced
accessibility of polar groups contribute to a lowering of the Sw values. An increased amount of alginate
(beyond the stoichiometric equivalency) in the case of CACu2 led to a slightly higher Sw (91.37%)
value relative to CCu, in agreement with the DSC results. The role of incomplete crosslinking or
the accessibility of active functional groups for Cu(II) species in CACu2 material contributes to its
slightly higher Sw ratio relative to CCu. By comparison, CACu1 and CACu3 showed higher Sw values
(148.6% and 162.6%, respectively) which concur with an observed stronger interaction of Cu(II) species
with the active sites of chitosan that account for greater hydration and increased Sw values for these
composite materials.
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3.7. X-ray Photoelectron Spectroscopy (XPS)

Atomic composition (At. %) of CACu1 was studied using XPS after exposure to the various
groundwater samples (Well-1, Well-2 and Well-3) that contain SO4

2− ions. The XPS results are shown
in Figure S5a–c and Table 4. In general, comparable C, N, O and Cu bands were observed with
acceptable atom content (At. %) in Table 4 that indicate negligible leaching of Cu(II) ions occur from
the composites into water. The wide scan spectra in Figure S5a–c indicate that the composition of the
sorbent does not change markedly before and after the adsorption process. However, no pronounced
sulfur signature was observed in the XPS spectra for CACu1.

Table 4. Atom content (At. %) of CACu1 from the XPS wide scan spectra.

Element Well-1 (At. %) Well-2 (At. %) Well-3 (At. %)

C 56.35 53.35 54.01
N 2.14 2.27 1.42
O 27.27 25.99 25.89

Cu 1.17 1.19 1.42
S - - -

3.8. X-ray Diffraction (XRD) Results

X-ray diffraction (XRD) is a complementary structural method that can provide insight on the
atomic arrangement or the crystalline nature of biopolymers. X-ray diffraction provides insight on the
lattice arrangement and is dependent on the scattering of X-rays by the electron density of atoms, and
the crystalline nature of multi-component materials. XRD studies of powdered chitosan show two
broad signatures at 2θ = 13◦ and 27◦ (cf. Figure S3). These XRD features provide support that chitosan
exists in a semi-crystalline form [77]. By contrast, alginate shows a comparatively sharp band at
2θ = 32◦. However, no significant broad and sharp XRD bands are observed from the profiles of
CCu- and the CACu-based composites. These results suggest that the composite materials possess
more amorphous structural features relative to that of chitosan in its semi-crystalline state. This trend
compares well with the anticipated amorphous composite structure for such multi-component
biopolymer systems.

3.9. Sorption Studies

Adsorption isotherm studies enable an investigation on the role of functional groups, surface
structure, morphology and chemical composition of binary and ternary composite materials that
contain Cu(II) species. The variation in composite structure in relation to the uptake of sulfate is inferred
to provide insight on the structure-adsorption properties of binary and ternary systems. In this work,
the sorption capacities of the composite materials were studied with a synthetic sodium sulfate solution
to assess their inherent sulfate removal properties. In addition, three Saskatchewan groundwater
samples with a multitude of potentially interfering anions was investigated to ascertain the sulfate
adsorption properties in environmental matrices of variable composition. The equilibrium adsorption
isotherms of sulfate species with powdered chitosan and CACu1 are shown in Figure 6. For both
sorbents, the adsorption of sulfate increases nonlinearly as Ce increases, until the surface-active sites
become saturated at elevated sulfate levels, as evidenced by the appearance of the plateau region in
the isotherm.
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aqueous solution.

Unmodified chitosan powder has comparatively lower adsorption than the CACu1 composite.
The trend can be accounted for by the increase in surface area (SA) and availability of favourable
adsorption sites on the CACu1 composite material. The trend may relate to the presence of Cu(II) along
with the greater amorphous nature of such ternary composites versus the semi-crystalline properties of
chitosan (cf. XRD pattern in Figure S3). The isotherm parameters are well described by the Sips model
according to the best-fit results (R2 = 0.98 to 0.99 for C and CACu1), where the best-fit parameters
are summarized in Table S4. At pH 7, a comparison of the adsorption capacity Qe (mg/g) of various
sorbents for SO4

2− anion removal from the aqueous phase are listed in Table 3. According to the data
in Table 5, CACu1 showed greater adsorption capacity (Qm = 371.4 mg/g) at pH 6.8 and 295 K relative
to other reported adsorbents adsorbents (cf. Table 6). Furthermore, to assess the suitability of the
composite materials for practical removal of sulfate anions from water, the sorption capacity of C and
CACu1, along with three chitosan-based materials (CACu2, CACu3 and CCu) were independently
evaluated with three groundwater (Well-1, -2 and -3) samples. The variable concentration of sulfate
ions and other chemical components for the groundwater sample are listed in Tables S1–S3 in the SI.

Table 5. Anion concentration and total hardness (calculated) of the groundwater samples.

Water Composition Well-1 (mg/L) Well-2 (mg/L) Well-3 (mg/L)

Sulfate 2062.6 2653.7 6030.0
Nitrate 6.9 27.6 1.6

Chloride 98.3 146.8 328.1
Bicarbonate 422 593 722

Total Hardness 1912 2198 4194

Note: additional compositional analysis is provided in the Supporting Material.

Figure 7a–f display the results for Qe (mg/g) and removal efficiency (%) of sulfate ions for the
various composite materials. A comparison of the results reveal that the uptake (Qe; mg/g) of sulfate
for the CACu1 composite was greatest (Qe = 77.1 mg/g) for the Well-3 sample. This result suggests that
the presence of Cu(II) species in the chitosan-alginate network enhanced the affinity toward SO4

2− ions.
Among the ternary composites, CACu3 displayed the best sorption capacity for Well-1 and Well-2
samples, whereas unmodified chitosan displays the lowest SO4

2− removal of for the Well-3 sample.
This may be explained by the composition of the different well water samples with respect to effects
due to the role of competing anions in the groundwater samples, as shown in Table 5.
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1 
 

 

Figure 7. (a–f) Experimental results of Qe and sulfate removal (%) by five sorbents in Well-1, -2 and -3
groundwater samples.

The comparison of groundwater in Table 5 reveals variation in sulfate concentration, overall
hardness and matrix anion composition of the samples. The variance in anion compositions provides
an account of competitive binding to the adsorption sites of the biopolymer materials. CACu1 showed
the lowest sulfate uptake capacity for Well-2, where the nitrate concentration is notably higher relative
to Well-1 and -3 samples. Greater uptake of sulfate by CACu1 for the Well-3 sample parallels its
greater sulfate content. CACu2 shows low uptake for Well-2 and -3 samples irrespective of the
sulfate concentration, indicating that other anions exhibit greater affinity with this composite material.
CACu3 exhibited the highest capacity at the lowest sulfate concentration in conjunction with the
lowest chloride and bicarbonate concentration in the Well-1 sample. The lowest performance was
observed in Well-3 sample despite its 3-fold-greater sulfate concentration as in the Well-1 sample.
This trend may indicate that bicarbonate and nitrate are competitor ions for the active sites, despite the
increase in sulfate concentration. Also, CCu showed the highest sulfate uptake capacity with the lowest
concentration of nitrate, bicarbonate and chloride, whereas the Well-3 sample had marginally higher
uptake than the Well-2 sample. This trend indicates that bicarbonate, and nitrate show competitive ion
adsorption with sulfate. Regarding the influence of Cu(II) chloride or sulfate salts, it has been reported
that sulfate anions tend to preferentially exchange with chloride [78]. The sulfate uptake properties by
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the various biopolymer materials differ significantly with regards to the matrix composition of the
water samples, and this should be considered for practical applications of such composite materials for
sulfate uptake in different aquatic environments.

Table 6. Comparison of adsorption capacity Qm (mg/g) of various sorbents for the removal of SO4
2−

anions from aqueous solution.

Adsorbent Qm (mg/g) Reaction Conditions References

Pulp and paper waste 2.786

Adsorbent: 40 g
Mixture SO4

2−/Cl− 1000 mL
pH: not reported

Time: 480 h

Lakovleva [72]

Alkali-treated fly ash 43.0

Adsorbent: 2 g
SO4

2− soln: 1000 mL
pH: 7

Time: 2.5 h

Geethamani [79]

Organo-nano-clay 63.5

Adsorbent: 500 mg
SO4

2− soln: 100 mL
pH: 7

Time: 2 h

Wei and Hai-cheng [80]

Ba-modified
blast-furnace-slag

geopolymer
119

Adsorbent: 10 g
SO4

2− soln: 1000 mL
pH: 7–8

Time: 3 h

Runtti [81]

Chitin-based shrimp
shells 250.7

Adsorbent: 750 mg
SO4

2− soln: 200 mL
pH: 7

Time: 1 h

Moret and Rubio [44]

Chitosan power (C) 288.1

Adsorbent: 20 mg
SO4

2− soln: 15 mL
pH: 6.8–7
Time: 24 h

This study

CACu1 371.4

Adsorbent: 10 mg
SO4

2− soln: 15 mL
pH: 6.8

Time: 24 h

This study

Based on the characterization results reported herein, an adsorption mechanism for the removal
of sulfate ions from the groundwater is proposed to involve electrostatic attractions between the
sulfate ions and the free amine groups of chitosan as well as the accessible sites of complexed Cu(II)
species within the composite material (cf. Figure 8). While leaching of Cu(II) can pose a risk to aquatic
organisms, the ICP-OES results (cf. Table S5) show that minor Cu(II) leaching from the biopolymer
materials was observed. It is noted that the presence of Cu(II) in the aqueous phase remained below
1000 µg/L. This value is below the drinking water regulatory standards set forth by the Saskatchewan
Health Authority (cf. Tables S1–S3) and provides additional support for the use of Cu(II) in the
biopolymer composites reported herein for practical applications.
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4. Conclusions

Binary chitosan-Cu(II) (CCu)- and ternary chitosan-alginate-Cu(II) (CACu)-based composite
materials were synthesized at variable composition. The products were characterized by several
complementary methods: spectroscopic (FTIR, solids C-13 NMR, XPS and Raman), thermal analysis
(DSC and TGA), XRD, point-of-zero-charge and solvent swelling. The incorporation of Cu(II)
species into the chitosan-alginate composite was supported by the materials’ characterization results.
Batch adsorption reveals a favourable adsorption of sulfate anions in laboratory-prepared samples
of sodium sulfate, along with adsorption of sulfate anions in a complex groundwater matrix.
The adsorption data are well described by the Sips isotherm model, where CACu1 had a Qm value of
371.4 mg/g, notably higher than a selection of reported literature values (cf. Table 6). Under similar
reaction conditions, various ternary chitosan-alginate-Cu(II)-containing adsorbents displayed variable
sorption capacities for sulfate anions in groundwater. CACu3 displays the best uptake properties
(Qe = 81.5 mg/g; 11.9% removal efficiency) among the adsorbents reported herein. The results obtained
in this study provide support on the role of Cu(II) species in stabilizing the chitosan-alginate network
that additionally favour sulfate adsorption for environmental water samples. This research highlights
a green strategy for tuning the adsorption properties of binary and ternary composite materials that
contain chitosan and alginate along with Cu(II) species to afford enhanced uptake of sulfate ions from
laboratory and groundwater samples. Such types of binary and ternary biopolymer-based adsorbents
have practical utility as green adsorbents for the treatment of industrial wastewater and other types of
anion pollutants in aquatic environments. The unique contribution of Cu(II) species in the biopolymer
framework of composite materials is shown via a modular synthetic strategy that yield enhanced
adsorption properties (cf. Table 5) toward sulfate anions.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/7/1502/s1.
Table S1: Chemical analysis report of Well-1 sample, Table S2: Chemical analysis report of Well-2 sample, Table S3:
Chemical analysis report of Well-3 sample, Table S4: Sips isotherm adsorption parameters for sulfate dianion species
at 298 K and pH 6.8 in aqueous solution, Table S5: Measured (ICP-OES) copper concentration in well water samples
and various composite materials (chitosan powder (C), chitosan pellet (CP), CAAl (chitosan-alginate-aluminium)
and two CPCu (chitosan pellet; copper) as well as two CACu (chitosan, alginate, copper) materials) to assess
potential health hazards from copper leaching of the polyelectrolyte composite materials and comparison to
C-BMS, where copper was replaced with aluminum to compare it with the copper containing materials concerning
leaching, Figure S1: DSC thermograms of composite materials (a) CCu, (b) CACu1, (c) CACu2 and (d) CACu3,
Figure S2: Derivative plot from TGA for C, A, CCu, CACu1, CACu2, and CACu3, Figure S3: XRD patterns of C,
A, CACu1, CACU2, CACu3 and CCu, Figure S4: PZC graph for C, A, CCu and CACu1-3 materials, Figure S5:
XPS wide scan spectra of CACu1 after the adsorption process.
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