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A B S T R A C T

Interactions between cancer cells and non-cancer cells composing the tumour microenvironment play a primary
role in determining cancer progression and shaping the response to therapy. The qualitative and quantitative
characterisation of the different cell populations in the tumour microenvironment is therefore crucial to un-
derstand its role in cancer. In recent years, many experimental and computational approaches have been de-
veloped to identify the cell populations composing heterogeneous tissue samples, such as cancer. In this review,
we describe the state-of-the-art approaches for the quantification of non-cancer cells from bulk and single-cell
cancer transcriptomic data, with a focus on immune cells. We illustrate the main features of these approaches
and highlight their applications for the analysis of the tumour microenvironment in solid cancers. We also
discuss techniques that are complementary and alternative to RNA sequencing, particularly focusing on ap-
proaches that can provide spatial information on the distribution of the cells within the tumour in addition to
their qualitative and quantitative measurements.

This article is part of a Special Issue entitled: Transcriptional Profiles and Regulatory Gene Networks edited by
Dr. Federico Manuel Giorgi and Dr. Shaun Mahony.

1. Introduction

Cancers arising from epithelial cells account for 80–90% of all solid
cancers [1]. However, cancer cells do not grow in isolation. The ma-
lignant epithelium is in fact surrounded by stromal cells including fi-
broblasts, immune and endothelial cells which altogether form the tu-
mour microenvironment (TME). Stromal cells in the TME sustain and
regulate tumour growth, immune evasion and drug resistance me-
chanisms [2]. In the past decade, the interest of the cancer research
community in the TME has progressively grown because of its role in
new therapies that target the host immune system [2–4]. In particular,
T cells are able to recognise and eliminate tumour cells. However, tu-
mours develop resistance mechanisms preventing T cell activation.
Immunotherapies currently used in the clinic have two main mechan-
isms of action. They either boost the immune response by activating T
cells or they restore the immune response that has been inactivated
during tumour growth. Anticancer vaccines and chimeric antigen re-
ceptor T cells represent successful attempts to activate the anticancer
immune response [3]. Immune checkpoint inhibitors release the brakes
imposed by tumour cells on T cells, restoring the host antitumour

immune response. These drugs are already successfully applied to treat
a variety of tumours, including melanoma, lymphoma, lung, renal cell,
head and neck squamous, bladder, liver and gastro-oesophageal cancers
[3,5]. However, despite their encouraging success, still many patients
do not respond to immunotherapy or develop resistance over time.
Understanding TME complexity is therefore essential to predict which
patients would benefit from immunotherapy, in full agreement with a
personalised approach to cancer therapy.

Tumour infiltrating immune cells can be either beneficial or detri-
mental for cancer development depending on their localisation, abun-
dance and function. For instance, the presence of CD8+ T cells and T
helper cells is usually associated with good prognosis [2,6] while
myeloid derived suppressor cells are predictive of bad outcome [7].
Therefore, the detailed characterisation of immune infiltrates is being
progressively incorporated into the clinical practice [6,8]. A method
widely used in the clinic to estimate the abundance of tumour in-
filtrating immune cells is the haematoxylin and eosin (H&E) staining.
Although this staining is not specific for any particular cell type, it has
proven to be clinically relevant for several cancer types [6]. For in-
stance, high levels of lymphocyte infiltration estimated from H&E
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staining are predictive of better prognosis in non–small cell lung cancer
[9]. More cell-specific methods for the clinical quantification of im-
mune cells include the combination of up to five antibodies to detect
the presence of different immune cell populations using im-
munohistochemistry (IHC) or immunofluorescence (IF) [6]. These
chromogenic or fluorescent labelling-based approaches also provide
some spatial information on how epithelial and stromal cells are dis-
tributed within the tumour. This analysis is however restricted to the
small portion of the tumour that can be sliced from a formalin-fixed
paraffin embedded (FFPE) cancer block. It therefore may not be re-
presentative of the whole tumour mass. Moreover, the number of cell
populations that can be identified is limited due to the small number of
markers that can be tested. In this respect, serial IF constitutes a major
improvement allowing several rounds of sequential staining of the same
sections using up to 12 antibodies [10]. Similarly, high-parameter flow
cytometry can profile up to 27 markers in disaggregated cells from
several centimetres of tumour mass [11]. These approaches are still
being developed and are not yet part of the clinical practice.

Similarly, approaches based on the quantification of protein ex-
pression with mass-spectrometry can also reveal detailed profiles of the
tumour immune infiltrates. Imaging mass cytometry (IMC) [12] and
multiplex ion beam imaging (MIBI) [13] allow the simultaneous iden-
tification of up to 40 markers in about 1mm2 of tissue area. IMC and
MIBI provide spatial information on the distribution of cells within the
tissue, which adds additional layers of relevant information. Other
methods rely on mRNA quantification either using fluorescent probes,
like the NanoString nCounter [14], or next-generation sequencing
(NGS). NanoString nCounter can be applied to slices of FFPE or fresh
frozen (FF) tissues leading to the quantification of up to 800 markers.
NGS-based approaches like RNA sequencing (RNA-seq) can be applied
to bulk cancer samples or to previously isolated single cells. Despite not
providing any spatial information, RNA-seq enables a comprehensive
and unbiased characterisation of tumour infiltrating immune cells
[15,16]. Moreover, the latest advancements in the field of tran-
scriptomics are beginning to provide spatial resolution ranging from a
few cells to subcellular levels [17,18].

In this review, we describe the main methods currently used to
quantify tumour-infiltrating cell populations, with a particular focus on
those based on bulk and single cell RNA sequencing (scRNA-seq). We
also comment on alternative and complementary approaches that are
emerging for TME characterisation.

2. RNA sequencing of cancer samples

RNA-seq allows the quantification of gene expression and enables
the profiling of a number of genes far greater than other approaches
based on probes or antibodies. In the context of cancer biology, RNA-
seq is a useful tool for tumour classification, patient stratification and
for studying response to therapy, [19,20].

2.1. Bulk RNA sequencing

Bulk RNA-seq refers to the sequencing of RNA from the bulk cancer
mass and it consists of four steps (Fig. 1A).

The first step is the extraction of RNA from either FF or FFPE cancer
samples. FF samples yield higher quantity and better quality RNA and
are thus preferentially used in large scale sequencing projects such as
The Cancer Genome Atlas (TCGA). However, the vast majority of
samples archived in hospital cancer biobanks are FFPE tissue blocks
[21]. Paraffin embedding and long-term storage are known to cause the
fragmentation of nucleic acids, while crosslinking is a direct con-
sequence of formalin fixation. This usually leads to low quantity and
bad quality RNA [21]. A de-modification step in which the RNA is
heated in amine-rich or organocatalytic buffers can be performed to
revert formaldehyde linkages and improve RNA quality [21]. In-
dependently of the sample source, the quality of the extracted RNA is a

key factor for all downstream analysis and should be carefully eval-
uated. The main RNA quality metric is the 28 s:18 s rRNA ratio, gen-
erally expressed as a RNA integrity number (RIN), with a higher value
indicating more intact RNA. While there is no consensus on the RIN
value to be used as a quality threshold, generally RIN values below 5
can negatively impact the library preparation and sequencing steps
[22].

The second step is the depletion of rRNAs that usually con-
stitute> 80% of the total RNA. There are several approaches for rRNA
depletion, depending on RNA quality [23]. In one of them, mRNA is
enriched through poly-A enrichment using oligo-dT beads. This method
generates high quality expression data that strongly correlates with
measurements from independent techniques such as microarrays [24].
However, it requires high quality and intact input RNA, because the
capture is done with a poly-T primer against the 3′ end of the transcript.
Thus, it is not always suitable for FFPE samples [23]. mRNA enrichment
can also be achieved through exon capture probes after cDNA synthesis.
In a comparative study with matched FF and FFPE tissue, the best
correlation between FF and FFPE expression data was obtained with
exon capture RNA [23]. However, the coverage is mostly limited to the
captured sequences. This, is because the RNA is partially fragmented so
the exonic probes will pull down small fragments containing the target
sequences. This approach allows to recover RNA fractions of> 98% of
the exome [25]. Alternatively, rRNAs can be removed with techniques
based on hybridisation, duplex digestion, or not-so-random RT-PCR
priming [23].

In the third step the RNA is fragmented, generally by heat digestion
with divalent cations. Finally, in the fourth step the fragmented RNA is
converted into cDNA and ligated to adapters to generate the library for
sequencing. The most commonly used NGS platforms for RNA-seq are
HiSeq and MiSeq Illumina.

2.2. Single-cell RNA sequencing

The recent development of high-throughput scRNA-seq technologies
allows to profile the transcriptome of thousands of individual cells per
sample [26] (Fig. 1B). These approaches mostly differ in the techniques
used for single-cell isolation. Cells can be isolated by fluorescence-ac-
tivated cell sorting (FACS), as in the MARS-Seq method, which performs
scRNA-seq on thousands of cells previously sorted into 384-well plates
[27]. Alternatively, single cells can be separated using microfluidic
chambers. This is achieved through micron-scale well arrays (as in Seq-
Well [28]) or by separating cells in aqueous microdroplets forming an
emulsion with an oil phase (as in Chromium [29], Drop-seq [30] and
inDrop [31]). Microfluidic-based methods require lower reaction vo-
lumes and enable the screening of up to hundreds of thousand cells at
lower costs [26]. Cell shape and stickiness (for example of fibroblasts or
cancer cells) can affect the efficiency of these methods, biasing single
cell capture towards certain cell types over others [32]. Due to the high
number of cells, sequencing depth is limited to around 50,000 reads/
cell, which is sufficient for clustering and identifying different popu-
lations [33].

FFPE samples represent a major challenge for scRNA-seq because
the tissue cannot be disaggregated to obtain single cells. However,
single cells can be isolated using a computer-guided laser capture mi-
crodissection (LCM) system. Although this approach has a throughput
of hundreds of cells only, it offers the advantage that each sequenced
cell can be mapped back to its original location in the tissue [34].

In the case of FACS or microfluidic-based methods, cells are bar-
coded during the cDNA synthesis step using beads bound to primers
containing a cell-specific barcode, a poly-T capture sequence, and a
Unique Molecular Identifier (UMI). While cell-specific barcodes are
identical within each cell-containing droplet or well, UMI sequences are
different and allow the counting of individual mRNA molecules. This
reduces the effects of duplicates that can be generated during cDNA
amplification [35]. Since a poly-T capture sequence is used, only the 3′
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RNAs ends are sequenced [26]. This achieves a throughput of thousands
to hundreds of thousands of cells, despite the limitations imposed by
sequencing cost and capacity. The main drawbacks of poly-T capture
beads are that low abundance transcripts may be lost mainly due to
limited capture efficiency [36] and it is not suitable for detecting mu-
tations or splicing variants [33].

In the case of LCM, isolated cells are generally sequenced at lower
throughput using full-length scRNA-seq protocols, like Smart-seq2 [37].
These methods use Switching Mechanism at 5′End of RNA Template
(SMART) chemistry. In this respect the recently developed Smart-3SEQ
protocol is particularly suited for FFPE samples [38].

2.3. RNA-seq data analysis

Conceptually similar analytical approaches can be applied to the
quantification of gene expression from either bulk RNA-seq or scRNA-
seq data [36] (Fig. 1C). In fact, although scRNA-seq-specific methods
have started to be developed [36], bulk RNA-seq analysis tools are still
successfully applied to scRNA-seq data [39].

The input data for the quantification of gene expression are the raw
sequencing reads, which undergo pre-processing to remove adaptor
sequences, trim poor-quality bases, and discard low-quality reads,
usually derived from poor quality RNA. Libraries with a high number of
low-quality reads have lower complexity. This affects the detection of
lowly expressed genes and can negatively bias the quantification of
gene expression [22].

Pre-processed reads are then aligned to either the reference tran-
scriptome or genome. Aligned reads may undergo post-mapping quality
control to evaluate sequence overrepresentation and fragment-size
biases. Finally, reads mapping to the exons are counted using union-
exon counting methods. In the case of bulk RNA-seq, read counts are
normalised to account for gene length and library size and obtain the
sample gene expression profile. Different types of gene expression
measures can be used, including Reads Per Kilobase of transcript per

Million mapped reads (RPKM), Fragments Per Kilobase of transcript per
Million mapped reads (FPKM), or Transcripts Per Million (TPM). In the
case of scRNA-seq a direct molecule counting based on UMIs can be
performed providing an absolute measure of gene expression [35]. If
UMIs are not used, scRNA-seq specific normalisation tools can be ap-
plied [39]. Moreover, several quality control metrics are usually used to
exclude cells with too few or degraded RNA or cell doublets acciden-
tally captured in the same reaction chamber. For instance, bad quality
reads or a large percentage of unmapped reads in scRNA-seq can be an
index of RNA degradation. Also, high mitochondrial-to-nuclear gene
mapping ratio or low mRNA abundance are linked to apoptotic or da-
maged cells which have lost most of their cytoplasmic mRNAs [39].

The resulting gene expression data from either bulk or scRNA-seq
can be used as input for determining the cell-type composition in the
sample. Furthermore, scRNA-seq data can be used to define refined cell-
type specific expression profiles. These applications of bulk and scRNA-
seq are described in detail in the next sections.

3. Quantification of non-cancer cells from bulk transcriptomic
data

The bulk transcriptomic profile of a cancer sample is an admixture
of transcripts from cancer and non-cancer cells. It therefore offers a
qualitative and quantitative representation of the diverse cell types that
are present in the sample.

In recent years, many computational approaches have been de-
signed to estimate the abundance of the various cell populations of the
TME from bulk transcriptomic data [15] (Table 1). Such approaches
leverage on reference signatures consisting of either marker genes and/
or expression profile matrices that are specific for a given cell popula-
tion. Therefore, to quantify the non-cancer component of the TME from
cancer expression data, it is paramount to derive robust marker genes
or profile matrices. These are generated using a signature derivation
pipeline that consists of three main steps (Fig. 2). In the first step, gene
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Fig. 1. Workflows of bulk and scRNA-seq experiments. (A)
Bulk RNA-seq of solid tumours is based on four steps: RNA
extraction from the cancer tissue, rRNA depletion, RNA
fragmentation, and cDNA library synthesis for sequencing.
(B) scRNA-seq from solid tumour samples requires single cell
isolation either through FACS or microfluidics-based methods
or laser capture microdissection. cDNA libraries from in-
dividual cells are then synthesised and sequenced. (C)
Analytical approaches for the quantification of gene expres-
sion for bulk RNA-seq and scRNA-seq data. After pre-pro-
cessing, the reads are aligned to the reference transcriptome
or genome. Reads mapping to the exons are counted and
normalised to generate gene expression profiles.
FACS= fluorescence-activated cell sorting.
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expression data of the cell populations of interest are collected from
gene expression databases (e.g. GEO, IRIS, ArrayExpress) and/or from
the literature (Fig. 2A). In the second step, these expression data are
curated and normalised to allow their comparative analysis (Fig. 2B).
Finally, cell type-specific markers (Fig. 2C) or reference expression
profile matrices (Fig. 2D) are derived from the normalised transcrip-
tional profiles of cell populations.

3.1. Cell type-specific signatures based on marker genes

A marker gene signature consists of a set of genes that should be
expressed specifically by the cell population represented by that sig-
nature. The first approaches that were developed to build cell type-
specific marker gene signatures used microarray data of purified cell
populations (Table 1). One of the first large-scale efforts to build such
signatures used microarray-derived expression profiles of immune cells
sorted from different tissues, including peripheral blood and bone
marrow [40]. Differentially expressed marker genes across cell popu-
lations were then identified using ANOVA and further refined by ap-
plying a fold-change threshold based on their median expression.

Furthermore, as the marker genes of a cell population are expected to
be co-expressed, only those with an average correlation coefficient
between all other markers of the same population of at least 0.6 were
kept. Following this approach, a final set of 812 immune-related marker
genes was obtained. The signatures derived from these markers were
then used to estimate the abundance of 31 colorectal cancer-infiltrating
immune cell populations [40]. The same pipeline was later applied to
build signatures for 28 immune cell populations used to characterise
the TME of TCGA tumours [41].

Another approach based on signatures derived from microarray data
of purified stromal populations is MCP-counter [45]. In this case,
however, the area under the curve (AUC) and the signal-to-noise ratio
were used in addition to the expression fold-change threshold to select
the marker genes. In addition, the signatures were derived taking the
hierarchical classification of immune cells into account. This allowed
the generation of robust signatures for both parental populations (e.g.
all T cells) and subpopulations (e.g. CD8+ T cells). In total, 522 marker
genes were derived to define ten stromal cell populations. MCP-counter
was applied to estimate the abundance of these populations in a large
dataset of non-hematopoietic human tumours [45]. A recent

Table 1
Examples of approaches for the quantification of tumour-infiltrating cells from bulk transcriptomic data. For each approach, we report the underlying mathematical
method, the type of expression data used to derive the signatures, the total number of marker genes included in the signatures and the final number of non-cancer cell
populations considered. Only methods that implement their own reference signatures and that have been applied to the analysis of cancer samples are reported.
ssGSEA= single sample gene set enrichment analysis, GSVA=gene set variation analysis.

Approach Computational method Source of expression data Marker genes (n) Cell populations (n)

Angelova et al. [40] ssGSEA Microarray 812 31
Charoentong et al. [41] ssGSEA Microarray 782 28
ConsensusTME [42] ssGSEA Microarray, bulk RNA-seq Cancer type specific 18
xCell [43] ssGSEA and spillover compensation Microarray, bulk RNA-seq 10,808 64
Tamborero et al. [44] Scoring (GSVA) Microarray, bulk RNA-seq 401 16
MCP-counter [45] Log-transformed geometric mean of expression Microarray 522 10
Danaher et al. [46] Log-transformed geometric mean of expression Microarray, bulk RNA-seq 60 14
ImSig [47] Arithmetic mean of expression Microarray, bulk RNA-seq 318 7
CIBERSORT [48] Deconvolution, nu support vector regression Microarray 547 22
TIMER [49] Deconvolution, constrained least square fitting Microarray Cancer type specific 6
EPIC [50] Deconvolution, constrained least square fitting scRNA-seq 118 10
quanTIseq [51] Deconvolution, constrained least square fitting Bulk RNA-seq 153 10
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benchmark study found MCP-counter particularly reliable for the
comparison of immune infiltrates across samples due to the robustness
of its signatures [52]. It performed particularly well in the quantifica-
tion of B cells, CD8+ T cells, macrophages, natural killer (NK) cells and
cancer-associated fibroblasts (CAFs).

More recent approaches started to use cancer RNA-seq expression
data to derive marker gene signatures. For example, xCell [43] employs
signatures derived from RNA-seq, microarray and Cap Analysis of Gene
Expression datasets of tumours and normal tissues from different
sources. Unlike other methods, xCell uses more than one signature for
each considered population. Signatures were first derived from each
data source individually based on marker gene overexpression analysis
with different thresholds. Then, for each data source, the top three
signatures were kept based on the t-statistic of their enrichment scores
(ES) between the cell population they define and all the others. A total
of 489 signatures were obtained to define 64 cell populations, making
xCell the broadest and most comprehensive quantification approach to
date. xCell was applied to characterise infiltrates in TCGA and TARGET
data [43]. In the comparative study cited above [52], xCell resulted
particularly suitable to estimate the abundance of CD4+ T cells, T
regulatory cells and endothelial cells.

In addition to deriving ex novo signatures, cancer RNA-seq data has
also been used to refine pre-existing signatures to make them more
specific for the quantification of infiltrates in tumour samples. Danaher
et al. [46] were the first to derive signatures from an initial compen-
dium of 14 previously published immune cell signatures. Using bulk
RNA-seq data from 24 TCGA cancer types, the authors measured the co-
expression patterns of markers associated with a given signature using a
pairwise similarity metric. Then, they built a pairwise similarity matrix
for each cancer type and applied hierarchical clustering using the
average similarity values across the 24 cancer types. They only con-
sidered as final markers for a specific cell type the genes with the
highest co-expression patterns across tumours. By using bulk RNA-seq
data from the TME, the differences between intratumoral and purified
immune cell expression patterns are accounted for [46].

A very similar RNA-seq dataset from TCGA was used to select the
most representative signatures from an initial list of marker gene sets
obtained from three literature sources [44]. The specificity of the initial
signatures was assessed through a correlation analysis using the sig-
nature ESs instead of marker gene expression as in other approaches.
For each literature source, a pairwise correlation matrix was computed
for all the ES of the signatures across the TCGA samples. Sources were
discarded when the overall correlation picture of their signatures
poorly agreed with biological knowledge. For instance, sources with
signatures from cell populations known to be highly co-infiltrated, but
that resulted to be negatively correlated, were discarded. Compared to
Danaher et al., this approach is less susceptible to the quality of gene
expression data, since the correlations are done on the ES values. This
strategy yielded a curated set of 16 immune signatures defined by 401
marker genes that were then used to characterise the immune infiltrates
in the same TCGA cohort [44].

ConsensusTME [42] is a more inclusive approach as compared to
the others because it integrated pre-existing signatures instead of re-
fining them separately. For each cell population, a new set of markers
was obtained combining previously defined sets. Additionally, genes
whose expression showed a correlation coefficient higher than −0.2
with tumour purity scores derived from 32 TCGA cancer types were
filtered out. This step was justified because the correlation of gene
expression with tumour purity is indicative of the fact that cancer cells
may express these marker genes thus invalidating their specificity for a
particular stromal population [42].

In addition to using expression profiles from purified cell popula-
tions or refining previous signatures, gene sets can also be derived ex
novo from bulk transcriptomic data. For instance, ImSig [47] relies on a
collection of immune signatures derived from microarray datasets of
healthy and disease human samples. For each dataset, a gene

correlation network was computed and subsequent clustering was
performed to identify modules of co-expressed genes. These modules
were then manually annotated to identify those corresponding to im-
mune cell types and extract 318 associated marker genes defining seven
immune cell populations. ImSig was applied to characterise the immune
infiltrates in TCGA samples [47].

3.2. Cell type-specific signatures based on profile matrices

Instead of sets of marker genes, cell type-specific signatures can also
consist of reference expression profile matrices of marker genes in a
particular cell population. CIBERSORT [48] was the first tool to use a
curated signature matrix of reference expression profiles to estimate the
proportion of 22 immune cell populations. Marker genes were first
selected from microarray expression data of isolated immune cells using
differential expression analysis and fold-change ranking. The expres-
sion value of each marker gene and immune cell population in the re-
ference matrix was defined as the median expression of that gene across
all transcriptome profiles for that population [48]. TIMER [49] uses a
different expression profile matrix for each one of 23 TCGA cancer
types to estimate the abundance of six immune cell populations. In this
case, marker genes were collected from the Immune Response In Silico
database [53] and filtered out if positively correlated with TCGA tu-
mour purity. Expression profiles of isolated immune cells were then
obtained from the Human Primary Cell Atlas [54]. For each immune
cell type, the reference profile was taken as the median expression of
the filtered marker genes across corresponding transcriptome profiles.
Unlike the profile matrices of the above methods, EPIC [50] was the
first to use a profile matrix derived from scRNA-seq data of primary and
non-lymphoid metastatic melanoma samples. Marker genes were
identified by differential expression analysis and the resulting profile of
a cell type was taken as the average expression of corresponding mar-
kers. Out of the considered stromal populations, EPIC was re-
commended for the deconvolution of B cells, CD4+ and CD8+ T cells,
NK cells, CAFs and endothelial cells [52]. quanTIseq [51] was the first
method to derive its signature matrix entirely from bulk RNA-seq data
of purified cell populations. Marker genes were selected based on their
differential expression between cell types and filtered out if highly
expressed in tumour cells. The reference profile of each cell population
was computed as the median expression over corresponding RNA-seq
purified profiles. The approach was found to be particularly suitable for
the deconvolution of regulatory and CD8+ T cells [52]. Notably,
quanTIseq implements a whole RNA-seq data processing pipeline, from
read pre-processing to TME cell type quantification. This avoids tech-
nical differences between the bulk tumour sample and the reference
profile matrix.

3.3. Computational methods for the quantification of tumour-infiltrates

The cell type-specific signatures derived from either marker genes
or profile matrices can then be used to quantify non-cancer cells of the
TME. Computational approaches developed so far can be broadly di-
vided into gene set scoring approaches and deconvolution approaches.

Gene set scoring approaches leverage on marker gene signatures to
provide relative abundance scores indicative of how enriched a cell
population of interest is in the bulk tumour sample. Most of these ap-
proaches implement Gene Set Enrichment Analysis (GSEA) methods to
quantify cell populations defined by their corresponding marker gene
set in each individual sample. In these GSEA-based methods, genes from
bulk transcriptomic data are first ranked in decreasing order of their
expression. Cell populations are then considered to be enriched or de-
pleted if their marker genes are among the top or bottom expressed
genes, respectively. An example of GSEA-based methods is single-
sample GSEA (ssGSEA) [55] that computes an ES in each sample by
ranking the genes according to their absolute expression value. ESs are
calculated for every pair of sample and marker gene set. This is
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achieved by integrating the difference between the empirical cumula-
tive distribution of the rank-normalised gene expression inside and
outside the gene set [55]. ssGSEA was directly used for the character-
isation of the TME in several cancer types [40–42]. xCell uses ssGSEA
for the calculation of the raw enrichment score of a cell population,
which is then adjusted through a spillover technique to correct for cell
type collinearity [43]. xCell is therefore less prone to background
predictions, i.e. the artificial abundance estimation of cell types that are
actually absent. For this reason, it was recommended for use when the
main interest is to identify the presence of a particular cell population
in the sample [52]. Unlike ssGSEA, Gene Set Variation Analysis (GSVA)
[56] still applies GSEA but accounts for expression variability across
large and heterogeneous datasets. It uses a non-parametric estimation
of the cumulative density function of the expression profile of each
gene. GSVA has been used to quantify tumour-immune infiltrates and
characterise the immunophenotypes of TCGA samples [44].

Other gene set scoring methods that are not based on GSEA use the
log-transformed geometric [45,46] or arithmetic [47] mean of the
normalised marker gene expression values in the tumour sample
(Table 1). Although these methods are more dependent on the quality
of gene expression data than GSEA-based methods, they provide
abundance scores that are directly proportional to marker gene ex-
pression [46]. This facilitates their interpretation. For instance, if
marker genes associated to a particular cell population are twice as
expressed in sample A than in sample B, one can infer that this cell
population is twice as abundant in A than in B (assuming the absence of
aberrant expression of any of those markers by some tumour cells). This
fold change would not be reflected by GSEA-based approaches as they
provide scores computed from gene ranks.

Deconvolution approaches estimate the fraction of each cell popu-
lation in the sample from transcriptomic data using both marker gene
sets and expression profile matrices. These methods consider the ex-
pression profile of a heterogeneous tissue sample as the sum of the
expression profiles of the composing cell populations weighted by their
relative fractions [57]. Deconvolution can be partial to find only the
fraction of each cell population, or complete to derive also the asso-
ciated expression profiles [57]. Partial deconvolution requires a re-
ference expression profile matrix containing an aggregate of the ex-
pression profile of each marker gene. It is usually based on least square
regression to minimise the differences between the bulk expression
values and the product of the reference expression profiles with the
estimated fractions [57]. Tools implementing least square regression
include PERT [58], DeconRNASeq [59], TIMER [60], EPIC [50], and
quanTIseq [51]. Machine learning based on nu-support vector regres-
sion (nu-SVR) has also been applied in the context of partial deconvo-
lution, such as CIBERSORT [48] and Mysort [61]. Although nu-SVR was
a first step towards handling outlier gene expression values, the re-
cently proposed FARDEEP [62] was the first approach to directly ad-
dress this issue. FARDEEP uses an adaptive least trimmed square model
to detect and remove outliers prior to cell fraction estimation and
thereby increase estimation robustness. All these partial deconvolution
methods rely on a linear model of gene expression that considers the
total bulk mRNA as the sum of the mRNAs of the composing cell po-
pulations. However, solving deconvolution equations on the linear scale
is not always efficient [63]. This is because RNA-seq data generally
have a skewed asymmetric distribution with a longer right tail of highly
expressed genes. To account for this skewedness in gene expression
data, dtangle [63] implements a multivariate logistic model that solves
the linearly-modelled deconvolution problem on the logarithmic scale.

Complete deconvolution approaches, also known as unsupervised
methods, estimate both cell fractions and their expression profiles [57].
Most of these methods are based on non-negative matrix factorisation
that factorises the bulk expression profiles as the product of non-ne-
gative cell fractions and cell-specific profiles. Examples of tools im-
plementing non-negative matrix factorisation include deconf [64] and a
semi-supervised algorithm that incorporates prior knowledge of cell

type-specific markers [65]. Other approaches that also use cell type-
specific markers are based on quadratic programming [66] or on
maximum likelihood estimation [67]. Recently, DeMixT [68] has been
developed to de-convolute bulk RNA-seq cancer data into tumour and
stromal components. DeMixT considers the input data as a linear ad-
ditive model of tumour and stroma. Then, their relative proportions and
corresponding expression profiles are estimated using the iterated
conditional modes algorithm and a gene-set-based component merging
approach [68].

3.4. Limitations of TME quantification from bulk transcriptomic data

Both gene set scoring- and deconvolution-based approaches present
several limitations when characterising the TME from bulk tumour
data.

First, as mentioned above, the scores derived from gene set scoring
approaches cannot be interpreted as cell type proportions within the
sample. One of the reasons for this is that the sizes of the marker gene
sets can be highly variable, biasing the scoring towards larger sets.
Thus, gene set scoring approaches do not allow intra-sample compar-
isons of different cell populations. This is partially solved in deconvo-
lution-based approaches as they provide cellular fractions that can be
related to cell population abundances both within and across samples.

Second, most cell type-specific signatures are derived from expres-
sion data of cell populations that were isolated from non-cancer tissues,
generally peripheral blood. This is likely to affect the abundance esti-
mation in bulk tumour samples for at least two reasons. First, the im-
mune cell composition varies across cancers [15]. Second, some marker
genes can be expressed also by tumour cells [43]. Some approaches
reduce these biases by incorporating tumour-specific expression profiles
when constructing cell type-specific signatures.

Third, most partial deconvolution approaches rely on static cell
type-specific signature matrices that assume constant expression pro-
files of the cell populations across samples. This assumption neglects
sample-specific variations in time and space [57]. Moreover, given the
variability and diversity of the TME, it is likely that not all cell popu-
lations are accounted for by the existing quantification approaches. In
addition, not all cell populations considered by these approaches are
necessarily present in the cancer samples (referred to as background
predictions [52]). As a result, partial deconvolution approaches may
produce under- or over-estimated cell fractions [57]. To address this,
some methods avoid restricting the cell fraction estimation to the po-
pulations under consideration [50,51,69]. Instead, they estimate the
fraction of uncharacterised cells within the tumour bulk to provide
more accurate estimations.

Fourth, mRNA abundances across cell types are often neglected by
partial deconvolution methods when estimating TME cell fractions.
Only EPIC [50] and quanTIseq [51] correct for this by normalising each
estimated cell type abundance by a corresponding scaling factor re-
presenting the mRNA content of that cell type. Therefore, these
methods allow a more reliable comparison of cell population abun-
dances as they can be interpreted as actual cell fractions. Both methods
were recommended for immuno-oncology applications as their frac-
tions are comparable both across and within samples [52]. An alter-
native approach, ABIS [70], used a reference profile matrix normalised
for cell type-specific mRNA abundance instead of correcting estimated
abundances by a scaling factor. However, ABIS was derived from and
applied to blood-derived expression data, and has not been applied to
cancer transcriptomic data yet.

Finally, often only a small set of cell populations is used to bench-
mark quantification approaches. This is because experimental techni-
ques to derive ground-truth quantifications (such as flow cytometry)
allow the simultaneous profiling of a limited number of cell types
[43,48]. Recently, five deconvolution-based and two scoring-based
approaches were systematically compared by assessing their perfor-
mance on estimating nine stromal populations [52]. Four metrics
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assessed each quantification approach: predictive performance,
minimal detection fraction, background predictions, and spillover effect
on both real and simulated bulk RNA-seq datasets. Spillover effect
measures the over-estimation of a cell population due to the inaccurate
estimation of others. Interestingly, the performance of the tested ap-
proaches varied across cell types, with poor performances on CD4+ T
cells and dendritic cells, overall. Deconvolution-based approaches were
found to be more likely to estimate minimal immune cell fractions even
when these were absent (i.e. background predictions).

4. Quantification of non-cancer cells from single-cell
transcriptomic data

The last five years have seen an increasing number of studies ap-
plying scRNA-seq to characterise the TME across different cancer types
[19]. scRNA-seq data can be used to identify the sequenced cells di-
rectly or to generate reference expression profile matrices to de-con-
volute bulk RNA-seq data (Fig. 3).

TME cell populations can be directly quantified from scRNA-seq
data by clustering and annotating the resulting clusters according to the
expression of cell type-specific marker genes (Fig. 3A). This allows to
assign the clusters to specific stromal cell populations (Fig. 3B). This
approach has been used to profile the tumour infiltrates in melanoma
[71], hepatocellular carcinoma [72], breast [73–75], colorectal [76]
and lung cancer [77].

Cell type-specific reference expression profile matrices can also be
derived from scRNA-seq data (Fig. 3C). Deconvolution-based quantifi-
cation methods can then use these matrices to estimate the abundance
of different cell populations from bulk tumour transcriptomic data. For
example, EPIC [50] used a reference matrix derived from expression
profiles of a melanoma scRNA-seq dataset [71]. This approach was later
extended to two other scRNA-seq datasets(normal blood [29] and
ovarian cancer [78]) to build five reference expression profile matrices
[78]. Each matrix was obtained using a different strategy to average
gene expression across and within single cell datasets and cell types.
Then, CIBERSORT was applied with each reference matrix [48] and
reference marker genes from independent sources [48,71,78]. The best

deconvolution results for ten stromal and two cancer cell types, on both
simulated and real bulk RNA-seq data were obtained by averaging ex-
pression within both cell types and datasets [78]. This highlights the
strong dependence of deconvolution methods on the quality of re-
ference profile matrices. The newest version of CIBERSORT, CIBERS-
ORTx [79], accounts for this dependency by allowing the use of re-
ference signatures obtained from single cells or from bulk expression
data. CIBERSORTx also uses nu support vector regression to estimate
cell type proportions. However, before deconvolution, it performs
normalisation and batch correction of platform-specific variations be-
tween the reference signatures and the bulk RNA-seq data [79].

5. Other approaches for the quantification of tumour infiltrating
cells

Alternative approaches that are not based on tumour gene expres-
sion profiles can also be used to characterise the TME. They are usually
based on the multidimensional analysis of proteins or RNAs from
thousands of cells detected either from solid tissue sections or dis-
aggregated tissues (Table 2). These methods can be categorised in four
main groups according to the detection technology, namely chromo-
genic or fluorescent labelling, mass-spectrometry, and DNA probes
coupled with bulk- or single-cell sequencing.

5.1. Chromogenic or fluorescent labelling methods

The latest development in IHC and IF allow multiplexed assays of
tens of markers through repeated rounds of staining. They also permit
the analysis of large regions of interest at high spatial resolution. For
instance, the IHC-based approach SIMPLE [88] was used to quantify the
association between mono-myelocytic and exhausted T-cell density and
the response to GVAX vaccination in pancreatic ductal adenocarci-
nomas [89]. Similarly, the MultiOmyx IF platform [90] was applied to
investigate resistance to rituximab–CHOP in diffuse large B-Cell lym-
phoma, pointing to high PD-1 expressing CD8+ T cells and PD-L1 ex-
pressing macrophages as mediators of resistance.

Flow cytometry employs a fluidic system and fluorescent labelling
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Fig. 3. Single-cell RNA-seq for the identification of TME cell
populations. (A) Clustered scRNA-seq profiles of cancer
samples are annotated according to the expression of known
marker genes. (B) Cell populations can be directly identified
from the annotated clusters, and visualised after dimension-
ality reduction. (C) Alternatively, the annotated clusters can
also be used to derive high-resolution reference profile ma-
trices. DC=dendritic cells, tSNE= t-distributed Stochastic
Neighbour Embedding.
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to isolate and characterise cells according to the expression of 5–15
markers. Since flow cytometry is not destructive, the cells can be used
for further analyses. Due to its intrinsic robustness, flow cytometry is
often used to validate computational methods that quantify TME po-
pulations [50]. Recently developed high dimensional flow-cytometry
techniques allow the quantification of up to 28 markers in single cells
[82]. Routine flow cytometry analyses cannot be applied to this tech-
nique as it requires specialised computational tools for the unbiased
identification of cell populations from this larger number of markers
[82].

5.2. Mass spectrometry

Mass cytometry, also known as cytometry by time-of-flight (cyTOF)
[83], similarly to flow cytometry, uses a fluidic system to isolate cells.
However, cyTOF marker detection is based on time-of-flight (TOF) mass
spectrometry instead of fluorescence. Cells are first labelled with heavy
metal-tagged antibodies, which are then distinguished according to the
atomic mass of the associated metal ions. Ion counts are acquired across
the mass spectra, and combined to form events as in flow-cytometry
experiments. These events are then thresholded according to signal
intensity across all channels to discard events caused by debris. After
this filtering the event data is exported in the standard FCS format used
also for flow cytometry [91]. cyTOF was recently used to characterise
the TME of breast cancer leading to the identification of TME features
that can be used for patient stratification [92]. Because cyTOF does not
rely on fluorophores, the detection specificity is not reduced by spectral
overlap and autofluorescence. This increases the number of markers
that can be quantified in a single experiment. However, the limiting
factor is the number of pure heavy metal isotopes available (Table 2).
Despite higher specificity, cyTOF has still lower throughput than flow-
cytometry (< 1000 cells/s compared to about 10,000 cells/s). Both
cyTOF and high-throughput flow cytometry data differ from scRNA-seq
data in two main aspects: the number of analysed cells is much higher
~107, and the possibility to quantify only up to about 40 markers
(Table 2). After gating to remove doublets and select only intact single
cells, a multidimensional analysis of the single cell data can be per-
formed. First unsupervised clustering is employed to group cells into
different subpopulations. Then, differential cell population abundance
and/or differential marker expression across different conditions can be
analysed. Finally, the different cell populations and the expression of
markers of interest can be visualised using dimensionality reduction
approaches [91].

Other approaches leverage mass spectrometry with heavy metal ion-
tagged antibodies for the imaging of FF or FFPE tissues. The best-known

examples are IMC [12] and MIBI [13], which differ mainly in the way
the heavy metal ions are separated from the tissue slide. IMC uses a UV
laser to ablate pre-selected areas of the tissue slide and the resulting gas
is then ionised with inductively coupled plasma before TOF mass
spectrometry is applied [12]. MIBI instead relies on a primary ion beam
to liberate the heavy metals chelated to the antibodies as secondary
ions. These ions are then analysed with sector field [13] or TOF mass
analysers. The ion counts obtained from rasterising the slide with the
laser or the ion beam are finally used to reconstruct a multidimensional
image composed of one layer per ion/marker. The tissue areas scanned
in both IMC and MIBI are much smaller than those acquired with
multiplex IHC and IF. However, they provide greater sensitivity, with at
least five orders of magnitude of linear dynamic range, and can use a
higher number of markers. MIBI can reach a resolution higher than IMC
(of< 500 nm as compared to about 1 μm). In contrast, IMC has faster
scan sampling times which makes it suitable for the ablation of larger
areas and has been further adapted to quantify mRNAs from FFPE tis-
sues [93]. After removing background noise, IMC and MIBI images can
be used to identify single cells with image segmentation techniques.
Then, for each of these cells, the expression values of each marker can
be extracted to obtain a matrix similar to those derived from cyTOF or
high dimensional flow cytometry. This matrix, generally containing a
much lower number of cells, generally in the order of 103 per image,
can be analysed with unsupervised clustering. Finally, the spatial in-
formation contained in the images can be leveraged to identify sig-
nificant cell-cell interactions through neighbourhood analysis, or by
investigating the localisation of specific cell population in the tissue.

Both IMC and MIBI have been applied to TME characterisation. For
example, MIBI revealed a positive correlation between the expression of
immunoregulatory proteins and the tumour-immune composition and
organisation in triple negative breast cancer [94]. IMC enabled the
analysis of the relationship between CD8+ T cell infiltration, the ex-
tracellular domain of HER2, and response to trastuzumab in breast
cancer [95].

5.3. DNA probes coupled with bulk sequencing

Two recently developed techniques, spatial transcriptomics [17]
and NanoString digital spatial profiling (DSP) [84], can quantify gene
expression in specific areas of tissue samples. Both methods rely on
DNA or DNA-RNA probes coupled with fluorescent labelling to retain
spatial information of gene expression.

In spatial transcriptomics, this is achieved through an array of
100 μm-large spots of spatially barcoded oligo-dT probes. After placing
the tissue on the array, mRNAs can be reverse-transcribed directly in

Table 2
Non-transcriptomic approaches for the quantification of tumour-infiltrating cells. For each method, we report its detection technology and compatibility with FFPE
samples, the type and the maximum number of measurable markers, and its throughput per run. For techniques providing spatial information, we also report their
spatial resolution. FFPE= formalin-fixed paraffin-embedded, IHC= immunohistochemistry, IF= immunofluorescence, cyTOF= cytometry by time-of-flight,
IMC= imaging mass cytometry, MIBI=multiplexed ion beam imaging, DSP= digital spatial profiling.

Method Technology FFPE Markers Throughput per run Spatial resolution

Multiplex IHC [80] Chromogenic-antibodies Y <12 proteins ~500mm2/run <1 μm
Multiplex IF [81] Fluorescent-antibodies Y <50 proteins ~500mm2 <1 μm
Flow Cytometry [82] Fluorescent-antibodies Y <28 proteins ~107 cells N
cyTOF [83] Mass spectrometry Y <40 proteins ~107 cells N
IMC [12] Mass spectrometry Y <40 proteins ~ 1mm2 1 μm
MIBI [13] Mass spectrometry Y <50 proteins ~ 1mm2 0.2 μm
Spatial transcriptomics [17] DNA probes Bulk DNA-seq N >1500 genes 1007 spots/slide 200 μm
NanoString DSP [84] DNA probes

Bulk DNA-seq
Y <40 proteins

<90 genes
600 μm2 10 μm

REAP-seq [85] DNA probes
scDNA-seq

N ~1500 genes
82 surface markers

~4000 cells N

Abseq [86] DNA probes
scDNA-seq

N >600 genes
30 surface markers

> 10,000 cells N

CITE-seq [87] DNA probes
scDNA-seq

N ~1500 genes
>20 surface markers

~10,000 cells N
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situ and then sequenced. The spatial barcode sequences from the array
probes are retained in the RNA-seq reads and this allows to trace them
back to the original spot in the tissue. Spatial transcriptomics requires
intact RNA (therefore it cannot currently be applied to FFPE samples)
and cannot reach single cell resolution. However, it has a higher
throughput than, for example, multiplexed sequential FISH techniques
(about 1000 spots per sample able to detect> 1500 genes per spot).
Spatial transcriptomics also provides greater flexibility than other in
situ sequencing approaches, as it does not require customised instru-
ments. Spatial transcriptomic data consists of an expression matrix
where each row corresponds to a gene and each column corresponds to
a spot coordinate. An integration of scRNA-seq and spatial tran-
scriptomics was recently applied to study the spatial composition of the
TME in pancreatic ductal adenocarcinoma [96].

NanoString DSP [84] relies on the NanoString nCounter platform
[14] to quantify antibody-bound proteins or hybridised transcripts
using specific photocleavable DNA probes. The probes are then hy-
bridised with complementary fluorescent-labelled RNA probes. To ob-
tain spatial information three consecutive slides are used, one for IHC
or in situ RNA hybridisation to visualise the tissue and select the area of
interest and the other two for protein and RNA quantification. After the
tissue area is selected, the photocleavable probes are released with UV
light and collected by microcapillary aspiration for quantification with
the NanoString nCounter platform. Area selection in NanoString DSP is
flexible ranging from simple to complex shapes associated with tissue
compartments or single cells. This approach can be used in both FF and
FFPE samples, but the number of markers is limited to about 40 pro-
teins and 90 transcripts [97]. NanoString DSP read counts are nor-
malised using spike-in probes to account for capture and amplification
efficiency. Moreover, since ROIs differ in size both within and across
samples, area normalisation is also applied. Additionally, ROI back-
ground is corrected through the addition of negative RNA probes and
isotype antibodies; while transcripts and antibodies against cellular
proteins address differences in cellularity across ROIs. The output data
consists of a matrix with the normalised intensities of the protein and
mRNA markers in each ROI [97]. NanoString DSP has been recently
applied to quantify 32 proteins and 82 transcripts in tumour and
stromal regions of non-small cell lung cancer [97].

The characterisation of tissue regions from marker expression is
achieved by processing the expression matrices with dimensionality
reduction followed by hierarchical clustering. The clustered features
can then be placed back on the tissue images to relate them with tissue
architecture [98].

5.4. DNA probes coupled with single-cell sequencing

In the past three years single-cell approaches that integrate tran-
scriptomics and cell-surface protein quantification have emerged [20].
These approaches quantify protein expression in single cells through
DNA-tagged antibodies. In parallel they allow RNA expression profiling
in the same cell using microdroplet- or microwell- based scRNA-seq
[99]. The most widely used technologies implementing this approach
are REAP-seq [85], Abseq [86] and CITE-seq [87]. REAP-seq is based on
the Chromium sequencing platform [29] and, while it has a relatively
low throughput (about 4000 cells per run), it allows the quantification
of up to 82 different proteins. Abseq relies on the BD Rhapsody se-
quencing platform [100] and can quantify of up to 600 genes and 30
proteins in> 10,000 cells [86]. Finally, CITE-seq [87] uses either Drop-
seq [30] or other microdroplet-based technologies to measure about
1500 genes and 20 proteins in> 10,000 cells [101]. These high
throughput scRNA-seq methods allow to perform multimodal RNA-
protein analyses on large single-cell datasets. For example, CITE-seq has
been used to characterise rare immune cell phenotypes by splitting
scRNA-seq derived clusters into subsets with high and low expression of
specific surface markers [87].

6. Conclusion

The success of cancer immunotherapy has led to an increased in-
terest in the fine characterisation of TME composition. This is indeed
the first step to understand how the TME influences response to therapy
[2]. In addition to a better knowledge of the interactions between
cancer and non-cancer cells, TME characterisation can also be exploited
as biomarker for patient stratification and prognosis. For example, the
quantification of tumour infiltrating CD3+ and CD8+ T cells using di-
gital pathology from IHC slides has a validated prognostic value for
predicting colorectal cancer recurrence [8]. This measure, called Im-
munoscore, represents the first step towards the adoption of standar-
dised immune-based assays for colorectal cancer classification. Other
similar efforts are extending this approach to a broader set of cancer
types [6].

Despite their undoubted utility, the incorporation of technically
sophisticated methods that allow a thorough analysis of the TME in the
clinical setting is still challenging. Indeed, these techniques are usually
expensive, highly sensitive to the quality of the input material and re-
quire specialised expertise for their analysis. This is particularly the
case for the more recent approaches such as high throughput scRNA-seq
and mass spectrometry-based imaging. Moreover, the turnaround time
is often not compatible with the decision-making process of the clinical
practice. Further efforts are needed to harmonise the depth and speci-
ficity of the TME analysis achieved in the research setting to the re-
quirements of time and cost-effective clinical assays.

Future developments in the characterisation of the TME should in-
corporate spatial information and integrate different types of omic data.
Emerging approaches have already started to link the expression of
marker genes to their localisation within the tissue enabling a deeper
understanding of the tumour-TME interactions. However, these ap-
proaches are currently limited to tiny regions of the tumour that may
not be representative of the whole tumour mass. Increasing the tissue
area that can be analysed will also increase the robustness of the results.
Similarly, new technologies enabling the simultaneous multi-omic
analyses of the TME are being developed, particularly in the single cell
setting. They combine scRNA-seq, scDNA-seq, single cell T and B cell
receptor sequencing, single cell epigenomics and small and non-coding
scRNA-seq [101]. In combination with functional studies, these tech-
niques will enable a further in-depth description of all the cell popu-
lations constituting the TME and their interactions [20].

We are at the beginning of an exciting era where technological in-
novations can effectively contribute to improve not only our under-
standing of cancer biology, but also the way we treat cancer patients.
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