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Background:Medulloblastoma is the most common pediatric malignant tumor

in central nervous system. Although its prognosis has been improved

enormously by the combination treatments with surgery, radiotherapy, and

chemotherapy, it still could progress via invasion and distant dissemination. We

aimed to investigatemolecular mechanisms ofmedulloblastoma invasion in the

current work.

Methods: The gene expression profile of medulloblastoma were analyzed

based on the data deposited in Gene Expression Omnibus (GEO) and filtered

according to brain specific proteins in the Uniprot. Delta-catenin was identified

and further analyzed about its expression and roles in the prognosis of

medulloblastoma patient. The function of delta-catenin on cell invasion and

migration were investigated by transwell and wound healing assay. Whether

delta-catenin participates in the epithelial-mesenchymal transition (EMT)

regulated invasion was also studied.

Results: Delta-catenin expression was highly upregulated in tumor tissues

compared to normal tissues from medulloblastoma patients in five

independent, nonoverlapping cohorts. Furthermore, delta-catenin expression

level was upregulated in WNT subgroup, and significantly correlated with better

prognosis, and associated with metastasis through GEO database analysis.

Functional assays indicated that delta-catenin inhibited medulloblastoma cell

invasion andmigration through regulating the key factors of EMT pathway, such

as E-cadherin and vimentin.

Conclusion: Delta-catenin might be a positive predictor for prognosis of

medulloblastoma patients, through attenuating medulloblastoma cell

invasion by inhibiting EMT pathway.
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Introduction

Medulloblastoma is the most common malignant pediatric

brain tumor. In recent decades, therapeutic strategy and

prognosis have been based on risk stratification of

medulloblastoma patients by age at presentation, extent of

tumor resection, and tumor metastases. Molecular profiling

has revealed four molecular subgroups of

medulloblastoma—wingless (WNT), sonic hedgehog (SHH),

Group 3, and Group 4—with distinct molecular and clinical

profiles (Northcott et al., 2011; Northcott et al., 2012; Coltin,

2021). The latest WHO classification of tumors of the central

nervous system simplified medulloblastoma into three

subgroups—WNT, SHH and non-WNT/non-SHH (Louis

et al., 2021). Although this has improved the guidance for

treatment, medulloblastoma invasion and dissemination

occurs in all subgroups, and is still the major cause of

medulloblastoma deaths (Fults et al., 2019). Leptomeningeal

dissemination of medulloblastoma has long been considered

to occur via cerebrospinal fluid, and hematogenous transfer

has recently been described (Garzia et al., 2018). Metastases

are found in 5%–45% of medulloblastoma cases at initial

diagnosis, least often in WNT subgroup (5–10%) and most

often in Group 3 (40–45%) (Juraschka and Taylor, 2019).

Although nearly all medulloblastoma cases ultimately progress

to metastasis via invasion and dissemination, this clinical

challenge remains the least understood aspect of

medulloblastoma pathogenesis and disease progression.

Delta-catenin, a catenin encoded by CTNND2, is a known

neuroprotein that interacts with presenilin-1 (Zhou et al., 1997).

Actually, abnormal function of delta-catenin is associated with

several neurodevelopmental disorders, such as cri-du-chat

syndrome, autism and schizophrenia (Medina et al., 2000;

Vrijenhoek et al., 2008; Turner et al., 2015). The important

role of delta-catenin in neurodevelopment may related with its

function on dendrite development (Martinez et al., 2003;

Arikkath et al., 2008). Recent work has revealed delta-catenin

is overexpressed in a series of peripheral tissue neoplasms such as

prostate and lung, suggesting its value as a cancer biomarker (Lu

et al., 2014). Delta-catenin was mainly studied as a oncoprotein

in several tumor types (Huang et al., 2018; Shen et al., 2021; Zeng

et al., 2009; Zhang et al., 2015). However, the anti-tumor property

of delta-catenin was also reported in a few studies (Westbrook

et al., 2005; Frattini et al., 2013). Delta-catenin is a member of the

p120-catenin family of catenin protein and it could bind to

E-cadherin in competition with p120ctn, which belongs to the

same family, indicating that it may participate in cell adhesion

and EMT (Reynolds and Roczniak-Ferguson, 2004; Zhang et al.,

2014). EMT, which involves changes in morphology and

increased cell motility, is currently considered to be a major

pathway in metastasis. Because medulloblastoma is a

neuroepithelial-derived tumor, its invasion and dissemination

are likely inseparable from EMT (Fults et al., 2019).

Although the role of delta-catenin has been examined in

glioma (Shimizu et al., 2019;Wang et al., 2011), there are no prior

reports of its role in medulloblastoma. We therefore aimed to

elucidate the molecular mechanisms of medulloblastoma

invasion, to improve the therapeutic response and prolong

survival in medulloblastoma patients. We examined delta-

catenin expression in medulloblastoma, and its effect on

invasion and dissemination, using bioinformatic analysis and

in vitro experiments. Delta-catenin expression was associated

with improved survival. Delta-catenin alleviated

medulloblastoma invasion in vitro by targeting EMT pathway.

Materials and methods

Bioinformatics analysis

The Differentially Expressed Genes (DEGs) were analyzed

using the GEO database (GSE74195, GSE66354, and

GSE86574) by “limma” R package. After

Benjamini–Hochberg (BH) multiple test adjustment, DEGs

with absolute log2 fold change (FC) > 1 and p < 0.05 were

considered to be included for subsequent analysis. Then the

DEGs were considered as delta-catenin related compared with

the brain specific protein list in the Uniprot.

We further compared delta-catenin expression use GEO

datasets between normal and medulloblastoma patient tissues.

Then we used the clinical information from GEO datasets and

the medulloblastoma patient cohort (74) from Sun Yat-sen

University Cancer Center (SYSUCC, Guangzhou, China)

(Table 1) to analyze the relevance between delta-catenin

expression and clinical characteristics such as prognosis,

molecular subgroup and metastasis. The patients data from

GSE85217 were divided into two independent nonoverlapping

cohorts (7:3 ratio) for mutual verification (Chen et al., 2021; Li

et al., 2020). All the GEO datasets used in the bioinformatics

analysis were listed in Supplementary Table S1.

The bioinformatics analysis was conducted mainly in R v.

38.0. The “combat” function of the “sav” R package was used for

batch-effect correction. The “Coxph” function, and the “survival”

R package, were used to estimate the relationship between delta-

catenin expression and survival. We used R package

“survivalROC” to plot the receiver operating characteristic

(ROC) curve of overall survival and calculate the area under

the curve (AUC). 0.5 generally indicates some predictive ability.

The higher the AUC is, the more accurate the prediction result is.

BioGRID7 (https://thebiogrid.org/) is a biomedical interaction

repository. The database can be used to retrieve publications on

protein and genetic interactions, chemical interactions and post-

translational modifications of important model organism species.

Gene set enrichment analysis (GSEA) was performed using the

GSEA software and its results were visualized using “Cluster

Profiler” and “ggplot2” in R.
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Cell culture and patient specimens

The medulloblastoma cell lines Daoy and ONS-76, and a tool

cell line HEK293T were obtained from the Cell Bank of State Key

Laboratory of Oncology in South China. The cells were cultured

in DMEM with 10% fetal bovine serum (Gibco, Waltham, MA,

United States) in a humidified incubator at 37°C with 5% CO2.

All the specimen from patients treated in our institute were

residuals after surgery. The patients were all informed and

provided signed consent regarding the use of their biological

specimens and clinical information for research purposes. This

study was approved by the ethics committee and institutional

review board of Sun Yat-sen University Cancer Center (SYSUCC,

Guangzhou, China), in accordance with the Helsinki

Declaration.

Immunohistochemistry and scoring

Paraffin-embedded tissue samples (n = 74) from

medulloblastoma patients who underwent surgery at Sun Yat-

sen University Cancer Center from 2011 to 2020 were used for

immunohistochemical staining (IHC). Medulloblastoma

diagnosis was based on the World Health Organization

Classification of Central Nervous System Tumors (2016).

Delta-catenin expression were detected by

immunohistochemistry following standard protocol as per our

previous paper (Wang et al., 2022). Briefly, the paraffin-

embedded tissue slides were first heated at 65°C for 2 h, then

sequentially deparaffinized in xylene, rehydrated via an ethanol

gradient, antigen-retrieved using citric acid buffer (pH 6.0), and

blocked with goat serum. Tissue samples were incubated

overnight at 4°C with the antibody against delta-catenin (Cat#

sc-81793; Santa Cruz Biotechnology, Inc.). HRP-labeled goat

anti-rabbit/mouse antibody was then added to the slides for

1 h at 26°C. Finally, the tissues were stained with

diaminobenzidine (DAB) and counterstained with

hematoxylin. The slides were visualized and photographed

using an automatic slide scanner (KF-PRO-020)

at ×40 magnification. Quantitative image analyses were

conducted using the HALO software (Indica labs, Corrales,

MN, United States) using the multiplex IHC modules (Sun

et al., 2019). The histochemistry score was used as the

grouping criterion.

Lentiviral infection

To establish stable knockdown and overexpression

(OE) lines of Daoy and ONS-76, the plasmids pSlenti-U6-

shRNA (CTNND2)-CMV-EGFP-F2A-Puro-WPRE (OBiO

Technology, Shanghai, China) and pEZ-Lv105-hCTNND2-

Puro (GeneCopoeia, Guangzhou, China) were used. The

plasmid was co-transfected with lentivirus packaging

plasmids (PLP1, PLP2, and VSVG; Invitrogen, United

States) into HEK293T with transfection reagent

Lipofectamine 3000 (L3000008, Thermo Fisher Scientific,

United States). The supernatant of HEK293T was collected

twice, at 48 and 72 h after transfection. Cells (Daoy and ONS-

76) were infected with the filtered supernatant containing

virus. Puromycin (2 μg/ml) was added for 48 h after the

infection and selected for 7 days. The target sequence for

TABLE 1 Summary of clinical information of medulloblastoma cohorts.

GSE85217 dataset 1 GSE85217 dataset 2 GSE30074 GSE21140 SYSUCC cohort

Case included (n) 534 229 30 103 74

Age (mean ± SD) 5.6 (±8.01) 8.6 (±7.39) NA 9.4 (±8.39) 11.3 (±8.62)

Overall survival N = 429 N = 183 N = 30 NA N = 74

Year (mean ± SD) 4.77 (±3.70) 5.41 (±3.92) 4.25 (±2.29) — 3.52 (±3.55)

Status (alive/dead) 309/120 144/39 18/12 — 44/30

Gender N = 411 N = 183 N = 30 N = 103 N = 74

Male 288 132 19 63 52

Female 123 51 11 40 22

Subgroup N = 763 NA NA N = 103 NA

WNT 70 — — 8 —

SHH 223 — — 33 —

Non-WNT/SHH 470 — — 62 —

Metastasis N = 400 N = 172 NA NA NA

M0 273 124 — — —

M1 127 48 — — —

Abbreviation: SHH, sonic hedgehog; WNT, wingless; M0, Non-Metastasis; M1, metastasis; SYSUCC, Sun Yat-sen University Cancer Center.
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delta-catenin was 5′-GCAACAACACTGCAAGCAA-3′ and

5′-GCTAAAGGCGAACACACTT-3′.

Real-time PCR

Total RNA from the cell lines was extracted following

the protocol of RNA-Quick Purification Kit (ES Science,

China). The reverse transcription were performed with

HisScript III All-in-one RT SuperMix (Vazyme Biotech

Co., Ltd.). Then real-time PCR was performed using

ChamQ SYBR qPCR Master Mix (Vazyme Biotech Co.,

Ltd. China), and triplicate samples were run on a Bio-Rad

CFX96 qPCR system according to the manufacturer’s

protocol. The Ct values for delta-catenin was normalized

to β-actin, and the 2−ΔΔCt method was used for quantitative

analysis. The primer sequences for delta-catenin were: 5′-
AGGTCCCCGTCCATTGATAG-3′ and 5′-ACTGGTGCT
GCAACATCTGAA-3′. The sequences for β-actin were:

5′- CTCCATCCTGGCCTCGCTGT-3′ and 5′- GCTGTC

ACCTTCACCGTTCC-3′.

Western blotting

Cells were collected and washed twice in PBS, lysed in RIPA

buffer (Biotime Biotechnology, Shanghai, China) with PMSF on

ice for 30 min, then centrifuged at 12,000 × g for 15 min at 4°C.

Protein concentration was determined with the BCA kit (Cat#

23227; Thermo Fisher Scientific). And the lysates were then

subjected to SDS-PAGE (10% gel). The separated protein bands

were transferred onto PVDF membrane (IPVH00010, Millipore,

United States). After been blocking in milk (5% in TBST) for 1 h

at 26°C, the membrane was probed with primary antibodies, such

as for delta-catenin (ab184917; Abcam), E-cadherin (Cat# 3195;

cell signaling technology), and vimentin (Cat# 10366-1-AP;

Proteintech), beta-tubulin (Cat# 2128S, CST) and GAPDH

(Cat# 2118S, CST) at 4°C for 12–16 h. After been washed in

TBST for three times (15 min each time), the membranes were

incubated with corresponding HRP-conjugated secondary

antibodies (Cat# 7074S and Cat# 7076S, CST) for 1 h at 26°C.

The bands were visualized using Ncm-ECL Ultra (New Cell &

Molecular Biotech Co., Ltd., China), captured using an

ChemiDoc Touch Imaging System (Bio-Rad, United States),

and quantified using ImageJ (v1.8.0).

Immunofluorescence staining

Daoy (shNC and sh delta-catenin) cells were seeded in

confocal dishs 24 h in advance. Then the dishs were fixed

with 4% formaldehyde for 15 min at 26°C, rinsed three times

in PBS (5 min each time), and blocked in blocking buffer (PBS

with 5% v/v normal goat serum, 0.3% v/v Triton X-100) at 26°C

for 60 min. The cells were then incubated overnight at 4°C in

diluted primary E-cadherin antibody (1:100, Cat# 3195; CST).

Then the slides were rinsed three times in PBS for 5 min each and

incubated with fluorochrome-conjugated secondary antibody

(diluted in blocking buffer at 1:500, Cat# 8889S, CST) for 1 h

at 26°C in dark. The slides were rinsed three times again in 1×

PBS for 5 min each, and DAPI was added to counter-stain the

nucleus. Images were obtained using a Zeiss LSM 880 with fast

Airyscan.

Cell migration and invasion assay

Cells were suspended in serum-free DMEM (2.5 × 105 cells/ml),

200 µl was inoculated into the upper chamber and 700 µl of

complete medium was simultaneously added to the lower

chamber. When placing the chamber, avoid air bubbles attached

to the bottom of the chamber. After culturing for 15 h in incubator,

the upper chamber was fixed in 4% paraformaldehyde for 30 min,

then stained with 0.5% crystal violet for 7 min. The images were

captured by the microscope (Nikon ECLIPSE Ni) when the

chambers were dried and then counted the number of cells by

ImageJ software (v1.8.0). For the invasion assay, 0.2%matrigel (Cat#

356234, Corning, NY, United States) was added into upper chamber

before cells were seeded. For delta-catenin-overexpression (OE)

cells, more cells (1 × 106 cells/ml) were suspended and culturing

time extended to 24 h.

Wound healing assay

Cells were inoculated in 6-well plate (5 × 105 cells/well) and

then the plates were placed in the incubator for pre-culture (at

37°C, 5% CO2) overnight. Scratching on the cell surface with tip

vertically next day and washing three times with PBS, then

adding serum-free medium and placing in the incubator.

Capturing images at the same point for each group in 0, 12,

24, and 48 h. The healing area between scratches were measured

by ImageJ software (v1.8.0).

Statistical analysis

All the cell culture experiments were performed three

independent replicates. Statistical analyses were performed

using SPSS version 23.0 (IBM Corp, Armonk, NY) and

GraphPad Prism version 8.0 (La Jolla, CA, United States).

Survival analyses were performed using the Kaplan-Meier

survival curves. All the data are shown as mean and

standard deviation (mean ± SD). p < 0.05 was considered

statistically significant for Student’s t-tests or one-way

ANOVA.
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Results

Delta-catenin is identified by a filtering
strategy

Several thousand differentially expressed genes were pulled

out in the following datasets, 2123 in GSE74195, 3182 in

GSE66354 and 5960 in GSE86574 (Figure 1A). The overlap of

the three datasets contains 1150 DEGs (Figure 1B). Given that

the cell origin of medulloblastoma is cerebellum and different

subtypes arise within the distinct cell origins (Gibson et al., 2010),

those brain specific proteins were more relevant to the

development of medulloblastoma. Eighteen candidates were

selected based on 139 brain specific proteins from Uniprot

(Supplementary Table S2) and 1150 DEGs (Supplementary

Table S3). Considering that medulloblastoma mainly occurs in

children and the expression of delta-catenin is high in fetal brain

(Turner et al., 2015), we then determined to further study the role

of delta-catenin (Figure 1C).

Delta-catenin is verified highly expressed
in medulloblastoma tissues and cells

Gene Expression Profiling Interactive Analysis (GEPIA) is an

interactive web application for gene expression analysis based on

9736 tumors and 8587 normal samples from the TCGA and the

GTEx databases using the output of a standard processing

FIGURE 1
Delta-catenin is identified by a filtering strategy. (A) DEGs for medulloblastoma in three independent, nonoverlapping datasets were identified.
(B) The overlap of the three datasets contains 1150 DEGs. (C) Flow diagram for screening out delta-catenin. (D) Delta-catenin expression is
particularly high in medulloblastoma tissue compared to normal tissue controls (p < 0.0001) in five independent nonoverlapping cohorts. (E) Delta-
catenin expression in various brain tumor cell lines (e.g., U87 and U251 for GBM, SF767 and SW1088 for LGG, Daoy and D283 for MB).
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pipeline for RNA sequencing data (Tang et al., 2017; Tang et al.,

2019). Using online GEPIA, we analyzed expression of delta-

catenin between tumor and normal tissue in various cancer types

(Supplementary Figure S1). Delta-catenin expression was

significantly higher in normal brain tissues and glioma patient

tissues (both low-grade glioma and glioblastoma), than in other

tumor types, supporting that delta-catenin may be a neural-

specific protein. However, there are no medulloblastoma data in

the GEPIA database which is based on TCGA and GTEx datasets.

We then turned to GEO database, and examined the clinical

significance of delta-catenin in medulloblastoma, 56 normal and

211 medulloblastoma samples (non-paired) were included. Its

expression was significantly upregulated in medulloblastoma

compared to the normal controls (p < 0.0001). Delta-catenin

expression in medulloblastoma cell was comparable with that in

glioblastoma and low-grade glioma cells (Figures 1D,E).

FIGURE 2
Delta-catenin expression and relevance for medulloblastoma prognosis. (A-C) Kaplan-Meier curves for medulloblastoma patients, based on
delta-catenin expression. Data obtained from two nonoverlapping cohorts. (D) Immunohistochemistry reveals weak to strong delta-catenin
expression inmedulloblastoma tissues. (E) Kaplan-Meier curve for 74medulloblastoma cases at the Sun Yat-sen University Cancer Center (SYSUCC),
according to delta-catenin expression. (F) ROC curves of delta-catenin expression on the overall survival rate in four cohorts and AUC
corresponding to each curve. The red, blue, and green lines represent the ROC curve of 1-year, 3-year, and 5-year overall survival rates.
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High delta-catenin expression is a
favorable prognostic factor in
medulloblastoma

Using data from two independent and nonoverlapping

medulloblastoma patient cohorts, we examined the association

between delta-catenin expression level and medulloblastoma

prognosis. We divided the Cavalli cohort dataset (GSE85217)

(Cavalli et al., 2017) into two groups (7:3 ratio) for analysis.

Overall survival analysis of medulloblastoma patients revealed

that higher delta-catenin expression was directly associated with

favorable overall survival (Figures 2A–C). To further confirm the

finding, we detected delta-catenin expression in 74medulloblastoma

patients recruited in our institute, the typical staining pattern were

FIGURE 3
Delta-catenin expression in the medulloblastoma molecular subgroups, and its effects on metastasis. (A) Delta-catenin expression by
medulloblastoma subgroup: delta-catenin was enriched in WNT subgroup. Data obtained from three nonoverlapping cohorts. SHH: sonic
hedgehog; WNT: wingless. (B) Delta-catenin mRNA expression in tumor samples from non-metastatic and metastatic tumors. Delta-catenin
expression is significantly higher in non-metastatic than in metastatic samples (Student’s t-test). (C) GSEA of genes whose expression is
downregulated by delta-catenin reveals the over-representation of EMT-signaling-related genes. (D) GSEA analysis showed that the metastasis-
related signaling pathways such as PI3K/AKT, TGF-beta and so on were highly enriched in the low delta-catenin expression group.
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shown in Figure 2D. Similarly, high delta-catenin expression was

associated with better prognosis (Figure 2E). These findings suggest

that delta-catenin is a favorable predictor for medulloblastoma

patients. ROC curve and AUC values reflect diagnostic values of

markers. We drew 1-, 3-, and 5-year ROC curves of delta-catenin

expression on the overall survival rate in four cohorts and calculated

the AUC corresponding to each curve. The AUCs of the 1-, 3-, and

5-year GSE85217 dataset1 cohorts were 0.56, 0.55, and 0.55,

respectively. The AUCs of the 1-, 3-, and 5-year

GSE85217 dataset2 cohorts were 0.60, 0.53, and 0.54,

respectively. The AUC values of the 3-, and 5- year

GSE30074 cohorts were 0.60 and 0.53, respectively. The AUC

values of the 1-, 3-, and 5-year SYSUCC cohorts were 0.63, 0.50,

and 0.53 (Figure 2F).

Delta-catenin is enriched in WNT
subgroup and is associated with
dissemination

In our study, delta-catenin expression was significantly higher in

WNT group of medulloblastoma than in non-WNT groups (SHH,

Group 3, and Group 4) (Figure 3A) based on two datasets

GSE85217 and GSE21140. Metastasis frequency was, in fact,

lowest in WNT subgroup in medulloblastoma patients (Fults

et al., 2019). Based on these two findings, we speculate that

delta-catenin participates in regulating medulloblastoma invasion

and dissemination. Interestingly, data of the cohorts from Cavalli

(Cavalli et al., 2017), confirmed that high delta-catenin expression

was associated with low tumor dissemination (Figure 3B). Based on

GSEA analysis, the EMTmolecules were highly enriched in the low-

delta-catenin expression group (Figure 3C). In addition, we also

enriched some signaling pathways that have been widely reported to

affect the metastasis of medulloblastoma, such as PI3K/AKT, TGF-

beta, MYC, Notch, KRAS signaling pathway (Li et al., 2021). The

metastasis-related signaling pathways were also enriched in the low

delta-catenin expression group (Figure 3D). These findings supports

our hypothesis that delta-catenin suppresses both invasion and

migration in medulloblastoma. In addition, the BioGRID

database showed interactions between delta-catenin and a large

number of proteins. The most significant correlations were EGFR,

CLK1, ATN1, LNX1, TRIM47, NUDT12, TTR, ESR1, KAT28,

MCM2, PTGER4, THUMPD3, PDZD2, LRRC7, ZMYND19,

NR3C1 and ZBTB33 (Supplementary Figure S2).

Delta-catenin attenuates
medulloblastoma cell invasion and
migration

To evaluate the role of delta-catenin expression in

medulloblastoma dissemination, we established stable

knockdown and OE cells of Daoy and ONS-76. RT-qPCR and

western blotting were used to confirm infection efficiency

(Figures 4A,B). Transwell assay was applied to test the effect

of delta-catenin on medulloblastoma invasion and migration. In

both medulloblastoma cell lines, delta-catenin-knockdown

significantly promoted medulloblastoma invasion and

migration, whereas delta-catenin overexpression attenuated

them (Figures 4C,D). Wound healing assay also showed that

delta-catenin-knockdown accelerated medulloblastoma

migration (Figure 4E). Actually, we also found that delta-

catenin could inhibit the proliferation of medulloblastoma

cells (Supplementary Figure S3). These are consistent with our

bioinformatics findings, and supports that delta-catenin affects

medulloblastoma invasion and dissemination in vitro.

Delta-catenin attenuates
medulloblastoma cell invasion and
migration by targeting epithelial-
mesenchymal transition

Next, we examined how delta-catenin inhibits

medulloblastoma invasion and migration, and hence

metastasis, by observing how it affects EMT pathway, a major

pathway of metastasis. We detected the expression of EMT

markers (E-cadherin and vimentin) in delta-catenin-

knockdown medulloblastoma cells and control cells. Delta-

catenin knockdown significantly reduced the expression of

E-cadherin and increased that of vimentin (Figure 5A).

Moreover, Via immunofluorescence, we found that

knockdown of delta-catenin broke down the continuous

arrangement of E-cadherin in the adjacent areas of cell to

discrete and disorganized form (Figure 5B). These data

indicated that delta-catenin regulated both the quantity and

structure of E-cadherin, and therefore attenuate

medulloblastoma cell invasion and migration via EMT pathway.

Discussion

We aimed to elucidate the molecular mechanisms of

medulloblastoma invasion, to improve the therapeutic

response and prolong survival in medulloblastoma patients.

Our bioinformatics analysis revealed that delta-catenin

expression was positively associated with survival of

medulloblastoma patients. It was enriched in WNT subgroup,

which had the lowest metastasis rate among the four subgroups.

Delta-catenin inhibited medulloblastoma cell invasion in vitro,

and EMT pathway may be the underlying mechanism.

These findings are consistent with various studies showing

that delta-catenin inhibits tumors. For example, CTNND2 loss-

of-function mutation was found to be common in glioblastoma.

Based on analysis of TCGA data, reduced CTNND2 expression

was associated with poor prognosis of glioblastoma, especially for
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FIGURE 4
Effects of delta-catenin knockdown and overexpression in Daoy and ONS-76 cells migration and invasion. (A) Real-time quantitative PCR
analysis of delta-catenin mRNA following lentiviral transfection. β-actin was used as a control. (B)Western blot analysis of delta-catenin expression
following lentiviral transfection. GAPDH and Tubulin were used as controls. (C) Representative images (×10magnification) of invasion andmigration
by delta-catenin-knockdown and overexpressingONS-76 cells. (D) Representative images (×10magnification) showing invasion andmigration
by delta-catenin-knockdown and overexpressing Daoy cells. (E)Cellular migration in both the sh#1 and sh#2 groups ofONS-76 andDaoy cells were
promoted, as determined via a wound-healing assay. Scale bars, 100 μm.
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the mesenchymal type (Frattini et al., 2013). Delta-catenin

inhibited glioma cell proliferation and self-renewal, followed

by phenotypic transformation from the aggressive

mesenchymal cell type to the neuronal cell type (Frattini

et al., 2013). Among 25 identified genes that potentially

suppress EMT, CTNND2 was the most likely to suppress

EMT (Westbrook et al., 2005).

However, delta-catenin was also reported to serve as an

oncoprotein (Huang et al., 2018; Shen et al., 2021; Zeng et al.,

2009; Zhang et al., 2015). It could not only promote macrophage

migration (Wu et al., 2020), but also promote cancer cell invasion,

dissemination, and metastasis in various tumors and causes

polygonal cells to develop irregular or elongated fibroblastic

morphology (Lu et al., 1999; Dai et al., 2011; Huang et al., 2018).

In brain tumors, it is associated with the malignant progression of

astrocytoma and promotes astrocytoma cell invasion (Wang et al.,

2011). Furthermore, delta-catenin might promote bevacizumab-

induced glioma invasion (Shimizu et al., 2019).

Prior to now, there has been a poor understanding of the

context-dependent roles of delta-catenin in cancer. Two

explanations for this have been proposed. First, it may be

primarily due to variation in CTNND2. In prostate cancer,

wild-type and mutant delta-catenin both exhibited pro-

oncogenic and tumor-suppressive functions; that study found

a protein truncation, caused by a nonsense mutation of delta-

catenin, mainly occurring in the cytoplasm, promoted carcinoma

progression via various pathways (Li et al., 2020). CTNND2 has a

vast number of known mutations; the Sanger COSMIC database

has recorded 541 unique mutations of delta-catenin, in

38 different tissues, and some of these mutations alter delta-

catenin structure and function in tumors (Lu et al., 2016). This

may therefore explain the contrasting reported effects of delta-

catenin.

The second possible reason might be related to epigenetic

modification. Post-translational phosphorylation of delta-catenin,

which alters its function substantially, has been increasingly

described. Phosphorylation of delta-catenin plays an important

role in determining delta-catenin’s role in neuronal development

and oncogenesis (Oh et al., 2009; Poore et al., 2010; Chen et al.,

2021). And a classic dual-function model has been identified,

involving a phospho-switch in delta-catenin that can trigger two

opposite effects on dendrite development (Baumert et al., 2020).

Thus, its phosphorylation status may cause these contrasting effects.

Medulloblastoma, which is differ from the other pediatric

brain tumor such as ependymoma and brainstem glioma (Duc,

2020; Duc et al., 2020), is the most common malignant brain

tumor in children. The challenge in medulloblastoma therapy is

to address tumor cell invasion and dissemination, which cannot

completely be prevented by treatment currently. Radiotherapy of

the total central nervous system and chemotherapy are typically

used to avoid tumor cell infiltration and metastasis, but they can

cause intellectual and neurological disabilities in survivors

(Mabbott et al., 2008). The fact that metastasis is rare in

WNT subgroup suggests that unexamined molecular

mechanisms in this group may help to prevent

medulloblastoma invasion and dissemination. Delta-catenin is

enriched in WNT subgroup and associated with lower tumor

dissemination in our study. Delta-catenin has been reported

promoting β-catenin nuclear localization and activating WNT

pathway, and therefore accelerate tumor progression (Nopparat

et al., 2015; Huang et al., 2018; Ju et al., 2020). However, WNT

activation was found an unexpected tumor suppressor in

medulloblastoma in several studies (Pöschl et al., 2014; Zinke

et al., 2015; Manoranjan et al., 2020). The role of delta-catenin in

WNT activation might be the reason that it is related with better

prognosis in medulloblastoma patients according to this

unexpected finding.

This study has some certain limitations. The cell line in our

study are all belong to SHH subgroup (Ivanov et al., 2016).

Given that delta-catenin is enriched in WNT Subgroup, the

exploring of delta-catenin function in WNT subgroup cell

model would reflect its role in cell invasion precisely.

FIGURE 5
Delta-catenin attenuates medulloblastoma cell migration and invasion by targeting EMT pathway. (A) Western blot analysis of EMT pathway
markers (E-cadherin and vimentin) following lentiviral transfection of ONS-76 and Daoy cells. GAPDH was used as a control. (B) Representative
images (×100 magnification) of E-cadherin in Daoy sh delta-catenin and control cell lines, via immunofluorescence staining. Scale bars, 5 μm.
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However, there is noWNT cell line available except for primary

cells derived from medulloblastoma tissue (Ivanov et al., 2016;

Manoranjan et al., 2020), which we would establish and use in

further research. Exploring the underlying molecular

mechanisms which delta-catenin works in WNT subgroup

would also be our future direction. In addition, the

validation of delta-catenin’s role in invasion is also lacking

in other subgroup cell lines (Group3/4) in our study, which

need further validation in the future.

Conclusion

In conclusion, we found that high expression of delta-

catenin, which is enriched in WNT subgroup, is a favorable

prognostic factor in medulloblastoma. The EMT pathway may

participate in this reduced invasion and metastasis.
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