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Abstract
Background: This study aimed to explore the predictability of topological signatures
linked to the locoregional relapse (LRR) and distant metastasis (DM) on pretreatment
planning computed tomography images of stage I non-small cell lung cancer
(NSCLC) patients before treatment with stereotactic ablative radiotherapy (SABR).
Methods: We divided 125 primary stage I NSCLC patients (LRR: 34, DM: 22) into
training (n = 60) and test datasets (n = 65), and the training dataset was augmented
to 260 cases using a synthetic minority oversampling technique. The relapse predict-
abilities of the conventional wavelet-based features (WF), topology-based features [BF,
Betti number (BN) map features; iBF, inverted BN map features], and their combined
features (BWF, iBWF) were compared. The patients were stratified into high-risk and
low-risk groups using the medians of the radiomics scores in the training dataset.
Results: For the LRR in the test, the iBF, iBWF, and WF showed statistically signifi-
cant differences (p < 0.05), and the highest nLPC was obtained for the iBF. For the
DM in the test, the iBWF showed a significant difference and the highest nLPC.
Conclusion: The iBF indicated the potential of improving the LRR and DM predic-
tion of stage I NSCLC patients prior to undergoing SABR.
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INTRODUCTION

Lung cancer is one of the most common type of cancers
worldwide, with almost 2.2 million new cases (11.4%) being
identified in 2020 and 1.8 million new deaths (18.0%) occur-
ring in the same year.1 The two main types of lung cancer
are small cell lung cancer and non-small cell lung cancer
(NSCLC), with NSCLC accounting for approximately 85%
of all lung cancer cases.2 At present, surgery is the first treat-
ment option for patients with stage I NSCLC, and stereotac-
tic ablative radiotherapy (SABR) is recommended for
inoperable patients.3 However, the outcomes of stage I
NSCLC patients, who received SABR, have been found to be

potentially comparable with those of surgery,4–8 whereas
there have been reports of patients with locoregional
relapses (LRRs) and distant metastases (DMs) after SABR.5,8

Effective adjuvant therapies are needed for SABR
patients at the highest risk of relapse to reduce the risk of
developing DM.9 Hence, the pretreatment prediction of
patient prognosis, especially cancer relapse, is crucial for the
choice more appropriate treatment options. The use of radi-
omics may predict cancer relapse and/or distant metastasis
in patients with early-stage NSCLC.10,11 In conventional
radiomics, intratumor intensity heterogeneity has been
quantified using histogram and texture analyses,10,11 since
recurrent lung tumors tend to exhibit ground-glass opacities
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(GGO) surrounding the consolidative changes.12 Addition-
ally, we focused on not only the intratumor intensity hetero-
geneity, but also on small blobs (connected components),
holes, or cavitations in the binary images with intratumoral
regions on the computed tomography (CT) images. In par-
ticular, the prognostic power of the presence of a cavitation
in lung cancer has been investigated in previous studies.13–15

Topology can quantify the intensity heterogeneity, holes,
and cavitations in lung cancer by calculating the radiomics
features that predict prognosis in lung cancer patients.16,17

Betti numbers (BNs) in topology represent topological
invariants that indicate the underlying property of the
objects under continuous deformation. The two types of
BNs in a two-dimensional image may be defined as zero-
and one-dimensional BNs, representing the number of con-
nected components (B0) and the number of holes (B1),
respectively.18,19 Ninomiya et al.17 newly developed a BN
map and demonstrated that the prognostic power of BN
map-based features to characterize intratumor heterogeneity
was superior to that of conventional features and deep learn-
ing techniques.

We hypothesized that signatures based on the
topology-based features obtained from pretreatment plan-
ning CT images could stratify stage I NSCLC patients
into high- and low-risk groups with respect to cancer
relapse after the use of SABR. This study aimed to
explore the predictability of topological signatures linked
with time to the LRR and DM in stage I NSCLC patients
treated with SABR to determine whether the use of SABR
is appropriate for each patient. Furthermore, this study
introduced two types of BN maps (original BN map and
inverted BN map), which were obtained from binary
images and inverted binary images, respectively, because
the original and inverted BN maps may take advantage
of topological connectivity within the tumor and back-
ground regions.

METHODS

Clinical cases

This retrospective study was approved by the Institutional
Review board of the Kyushu University Hospital. We
employed a pretreatment planning CT dataset of NSCLC
patients (n = 125; n: number of patients) treated with SABR
at our university hospital. Table 1 summarizes the clinical
information of the patients. The SABR-treated patients com-
prised 80 inoperable cases because of old age, impaired pul-
monary function, and comorbidities of the cancer,
38 surgery refusal cases, and seven unknown cases. The
treatment protocols were 40–54 Gy/4 Fr (n = 121) and 60–
70 Gy/10 Fr (n = 4). The entire dataset (n = 125) was
divided into training (n = 65) and test (n = 60) datasets to
balance the proportion of the number of events and

censored cases for LRR and DM in each dataset. There were
no statistically significant differences (p > 0.05; Mann–
Whitney U test) in the distributions of the times to the LRR
and DM in cases in the two datasets.

The planning CT images were axial slice images with a
matrix size of 512 � 512; a pixel size of 0.78, 0.84, 0.88, or
0.98 mm; and a slice thickness of 2 or 3.2 mm. The aniso-
tropic CT images and gross tumor volumes (GTVs) that
were used for the treatment were transformed into isotro-
pic voxel images (iso-voxel size: 0.98 mm) using cubic and
shape-based interpolation,20 respectively. Prior to the
main step (heterogeneity enhancements in Figure 1), two
preprocessing techniques, requantization and edge
enhancement, were applied to the isotropic voxel CT
images. Requantized 8 bits images were generated based
on a look-up table ranging from 0 to 255, which cor-
responded to a range window of Hounsfield units (HUs).
The range of the HUs was optimized in a parameter opti-
mization. A LoG filter was applied to the requantized
images to enhance the lung cancer patterns and reduce
the noise.

TAB L E 1 Summary of clinical information

NSCLC patients
(n = 125)

Age (year, min–max [median]) 60–91 (78)

Time to LRR (month, min–max [median]) 3–162 (29)

Time to DM (month, min–max [median]) 3–162 (32)

Effective diameter of tumor (mm, min–max
[median])

10–53 (27)

Sex

Male 90

Female 35

Stage

IA 77

IB 48

Prognosis

LRR 34

DM 22

Relapse free 81

Component

Solid 96

Part-solid 19

GGO 10

Histopathology

Adenocarcinoma 73

Squamous cell carcinoma 43

Large cell carcinoma 4

Unknown 5

Abbreviations: DM, distant metastasis; GGO, ground-glass opacity; LRR, locoregional
relapse.
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Overall workflow

Figure 1 shows the overall workflow of this study. Heteroge-
neity within tumors of CT images was enhanced using origi-
nal and inverted BN mappings based on topology and
conventional three-dimensional (3D) wavelet decomposi-
tion. Radiomics features were extracted from the original
CT and heterogeneity enhanced images analyzed using his-
togram and texture analysis. A wavelet-based feature (WF),
original BN map feature (BF), and inverted BN map feature
(iBF) were calculated as radiomics features. An augmented
training dataset (n = 260) was generated from the training
dataset using a synthetic minority oversampling technique
(SMOTE)-based method, which enabled the overfitting
problem to be avoided. The hyperparameters and a signa-
ture were optimized based on a robustness index (RI), and a

radiomics score was calculated from the signature. The sig-
nature was constructed from an optimal set of significant
features that were selected by a Cox-net algorithm. Patients
were divided into high- and low-risk groups with respect to
the medians of the radiomics scores, and the proposed
approach was assessed using the p-value obtained for the
Kaplan–Meier (KM) curves of the two groups, the c-index,
and the multiplication of the negative logarithm of the
p-value and the c-index (nLPC), which is considered to be a
comprehensive evaluation index. The calculations of the
preprocessing and the radiomics features were used in a
MATLAB 2019a environment with a MATLAB-based radi-
omics tool package21,22 and in-house programs. The calcula-
tions of the Cox-net algorithm and evaluations computing
p-values of the log-rank test, c-indices, and nLPCs were used
in the R-4.0.4 environment.23–25

F I G U R E 1 Overall workflow of radiomics prediction used in this study
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Heterogeneity enhancement and feature
calculation

Figure 2 showed a workflow of heterogeneity enhancement
using 3D wavelet decomposition and original BN and inverted
BN mapping. The BF, iBF, and WF were calculated from the
radiomics-enhanced images. The BF was calculated from the
BN maps which were analyzed using histogram and texture
analysis. The BN maps were created from images binalized
with 0–255 threshold values on an axial slice image with a
maximum GTV region of the preprocessed CT images, as
mentioned in the last subsection.

In this study, two types of BN maps were introduced.
These were obtained from binary images as well as inverted
binary images. The connected component of B0 was defined
as connected pixels based on eight neighbors, whereas the
hole of the B1 was defined based on four neighbors. The
BNs were calculated from binary images of the threshold CT
images, as mentioned previously. The B0 and B1 regions
represented one (e.g., tumor) region based on the eight-
neighbor connectivity and the zero (e.g., background) region
based on the four-neighbor connectivity. The inverted BN
maps were calculated from inverted binary images that were
generated as 0 for pixels with a value greater than the threshold
and one for pixels with a value smaller than the threshold. For
example, the B0 and B1 derived from the inverted binary

images may have represented the background regions based on
the eight-neighbor connectivity; however, the tumor regions
were based on the four-neighbor connection. Therefore, the
original and inverted BN maps could characterize the different
properties of the tumor and background regions.

The iBF was obtained by combining the BF and the fea-
tures calculated from the inverted BN maps. The inverted
BN maps were calculated from the inverted binary images.
The inverted BN calculation and mapping for the same as
that for the original BN. A total of 82 998 features were
computed for the iBF. The details of the feature calculation
are described in the supplement file (Data S1).

The conventional WF was calculated from the original
CT and 3D wavelet decomposed images. The preprocessed
CT images were decomposed into eight filtered images using
low-pass (L) or high-pass (H) wavelet filters (i.e., LLL, HLL,
LHL, LLH, HHL, HLH, LHH, and HHH filters) in the x-, y-,
and z-directions.26 The scaling filter was the Coiflet scaling
function (“coif1”). The WF was derived from nine images:
the original CT image and eight wavelet decomposition
images. Finally, a total of 486 features were calculated from
the nine types of images according to a histogram and tex-
ture analysis.

The radiomics features (BF, iBF, WF) were normalized
to a mean of zero and a standard deviation of one before the
data augmentation and signature construction.

F I G U R E 2 Heterogeneity enhancement using 3D wavelet decomposition and original Betti number (BN) and inversed BN mapping
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SMOTE-based data augmentation

The training dataset (n = 65) was augmented to
260 patients using the SMOTE-based method before the
parameters and signature optimization. The augmentation
method was used to quadruple the number of patients in
the augmented datasets compared to the original training
dataset. SMOTE is a data augmentation method based on
the k-nearest neighbors algorithm.27 The details of the
data augmentation are described in the supplement file
(Data S2).

Hyperparameters and signature optimization

Hyperparameters and signature optimization were per-
formed in the augmented dataset. The augmented training
dataset (n = 260) was divided randomly into a training
subdataset (n = 130) and a validation subdataset
(n = 130) for the optimization. The eight bits
requantization range R of HUs, kernel size K, shift pixel S
in the calculation of BNs, and elastic net blending parame-
ter α in the Cox-net regularization of the signature con-
struction were optimized, and an optimal signature was
constructed with the best significant features set decided
using the maximum RI. The RI was calculated from
nLPCs of the training and validation subdatasets, and it
could find the most robust parameters and signature set
between the training and validation. The details of RI
calculation were described in the supplement file
(Data S3). For the training subdataset, a signature was
constructed with a set of all possible combination of
seven significant features. The significant features were
decided in the order of the most frequently selected fea-
tures that corresponded to the Cox-net nonzero coeffi-
cients. Patients in both the training and validation
subdatasets were stratified into high- and low-risk
groups using the median radiomics score of the training
subdataset. The radiomics scores were calculated using the
sum of multiplication of the signature and the coefficients
based on the Cox proportional hazard model (CPHM) for
the training subdatasets. For the validation subdatasets, the
radiomics scores were calculated using the same coefficients
of the training subdatasets, in the same way. The details of
the parameter and signature optimization are described in
the supplement file (Figure S1).

Combined features

Two types of combined features for BF and WF (BWF) or
iBF and WF (iBWF) were investigated. These combined fea-
tures were generated from the features with optimal hetero-
geneity enhancement parameters (bR, bK ,bS). The blending
parameter α and the signature combination were optimized
as was done for the other features.

Evaluation of relapse predictability of the
optimal signature

The relapse predictabilities for the training and validation
subdatasets were assessed using the p-value in the KM anal-
ysis, c-index, and comprehensive evaluation index, which
was the multiplication of the negative logarithm of the p-
value and c-index (nLPC). The p-values were evaluated
using a log-rank test in the KM curves for times to the LRR
and DM between the high-risk and low-risk groups, and a
p < 0.05 was considered to indicate a statistically significant
difference between the two risk groups. Harrell’s c-index (0–
1) was calculated in the training and test datasets to evaluate
the predictive performance of the radiomics score for the
times to the LRR and DM.28,29 A c-index of 1 indicated per-
fect prediction and a c-index of 0.5 indicated a random
guess. The c-index was calculated from a response score that
was defined as a minus radiomics score. The nLPC was con-
sidered to be a comprehensive evaluation index. A larger
nLPC value indicated better prognostic predictability.

The relapse predictability of the optimal signature that was
derived from the radiomics features was verified through an
analysis with the test dataset. The patients in the test dataset
were stratified into high- and low-risk groups using the median
radiomics score in the training dataset, and the relapse predict-
ability of each feature was evaluated with p-values (log-rank
test) of KM curves, c-index, and nLPC.

RESULTS

Table 2 shows the optimal parameters and signature. The
optimal CT window width bR was set as �1350 to 150 (lung
range) for all the features for the LRR and DM. The optimal
kernel size and shift pixel were nine and three,
respectively, for the BF and iBF of the LRR and DM.

For the LRR for the test dataset (Table S2), the p-values
(log-rank test) of KM curves were 4.55 � 10�2 for the WF,
0.916 for the BF, 2.01 � 10�2 for the iBF, 0.547 for the
BWF, and 2.43 � 10�2 for the iBWF. For the DM for the
test dataset (Table S2), the p-values were 0.687 for the WF,
0.624 for the BF, 0.854 for the iBF, 0.946 for the BWF, and
3.06 � 10�2 for the iBWF. Figure 3 shows the KM curves
for the times to the LRR and DM for the high- and low-risk
patient groups of the test dataset.

The c-indices for the LRR for the test dataset were 0.701
for the WF, 0.532 for the BF, 0.665 for the iBF, 0.608 for the
BWF, and 0.680 for the iBWF (Table S2). The c-indices for
the DM for the test dataset were 0.594 for the WF, 0.522
for the BF, 0.488 for the iBF, 0.524 for the BWF, and 0.628
for the iBWF (Table S2).

The nLPCs for the WF, BF, iBF, BWF, and iBWF were
0.941, 2.03 � 10�2, 1.13, 0.159, and 1.10 for the LRR for the
test dataset, respectively, and 9.68 � 10�2, 0.107, 3.35 � 10�2,
1.26 � 10�2, and 0.952 for the DM for the test dataset, respec-
tively (Table S2).
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T A B L E 2 Optimal parameters (a) and signature (b)

(a)

Requantization range (HU) Kernel size Shift pixel Regularization term (α) No. of features in signature

LRR

WF �1350 to 150 – – 0.3 5

BF �1350 to 150 9 3 0.4 4

iBF �1350 to 150 9 3 0.5 3

BWF – – – 0.5 3

iBWF – – – 1.0 5

DM

WF �1350 to 150 – – 0.7 5

BF �1350 to 150 9 3 0.8 5

iBF �1350 to 150 9 3 0.9 5

BWF – – – 0.9 5

iBWF – – – 1.0 5

(b)

Signature features

LRR

WF GLCM_Correlation_HHL Histogram_Skewness_HLL Histogram_Minimum_LLH GLSZM_GLV_LLH Histogram_Median_LHH

BF GLRLM_SRLGE_B1_th237 GLSZM_SZHGE_B10_th74 GLSZM_ZP_B0_th165 GLCM_AutoCorrelation_B0_th240 –

iBF Histogram_Energy_iB0_th235 GLRLM_SRLGE_B1_th237 GLRLM_RLV_B1_th106 – –

BWF GLSZM_SZLGE_B1_th215 GLRLM_RLV_B1_th106 GLSZM_LZE_LLL – –

iBWF GLSZM_SZLGE_B1_th198 GLSZM_LZE_LLL GLRLM_SRLGE_B1_th237 GLSZM_SZHGE_B10_th74 GLRLM_RLV_iB10_th177

DM

WF Histogram_Skewness_HLL Histogram_Energy_HLH GLCM_Correlation_LHL GLSZM_GLN_HLL NGTDM_Contrast_Org

BF GLSZM_SZLGE_B10_th67 GLSZM_SZLGE_B10_th233 GLSZM_SZE_B1_th76 GLSZM_SZLGE_B0_th111 Histogram_Entropy_B10_th235

iBF GLSZM_SZLGE_iB10_th234 GLSZM_SZLGE_iB1_th136 GLSZM_SZE_iB0_th126 GLRLM_SRHGE_iB10_th153 GLSZM_ZSV_B0_th245

BWF Histogram_Skewness_HLL GLSZM_SZLGE_B10_th67 GLSZM_SZE_B1_th76 GLSZM_SZLGE_B10_th95 GLSZM_SZLGE_B1_th221

iBWF Histogram_MeanAbsolute

Deviation_iB0_th121

Histogram_Skewness_HLL GLSZM_SZLGE_iB1_th136 GLSZM_SZLGE_iB10_th113 GLSZM_LZE_iB10_th226

Abbreviations: WF, wavelet-based feature; BF, original BN map feature; BWF, BF and WF combined feature; iBF, inverted BN map feature; iBWF, iBF and WF combined feature; LRR,

locoregional relapse; DM, distant metastasis; th, threshold value.

F I G U R E 3 Kaplan–Meier curves of time to locoregional relapse (LRR) and distant metastasis (DM) for test dataset based on radiomics scores derived
from five signatures based on a wavelet-based feature (WF), original Betti number (BN) map feature (BF), inverted BN map feature (iBF), BF and WF
combined feature (BWF), and iBF and WF combined feature (iBWF). Patients were stratified into high- and low-risk groups by the median radiomics score
of the training dataset
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Figure 4 shows the comparison of the evaluation indi-
ces obtained from the radiomics features using bar plots
of the negative logarithm of the p-values (log-rank test)
with the base ten and c-indices for the LRR and DM in

the test dataset and a heat map of the nLPCs obtained
from the test. The iBF for the LRR and iBWF for the DM
showed the lowest p-values and the highest nLPCs in the
test dataset.

a c

b

F I G U R E 4 Bar plots of negative logarithm of p-values (log-rank test) to the base ten and c-indices for locoregional relapse (LRR) (a) and distant
metastasis (DM) (b) in the test dataset, and a heat map of nLPCs obtained from the test (c)

F I G U R E 5 Comparison of binary images and Betti maps for original Betti number (BN) map feature (BF) (upper) and inverted BN map feature (iBF)
(lower) in a patient
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Figure 5 shows comparison of the binary images and
their BN maps for the BF and the iBF. Both the inverted B0
map and original B1 map represented the BNs for the tumor
region, and the inverted B0 (iB0) map showed a higher dis-
tribution than the original B1 map. An inverted significant
feature (“Histogram_Energy_iB0 _th235”; Table 2) obtained
from the inverted B0 map was selected for the iBF for
the LRR.

Figure 6 shows the patients with the images linked to a
significant feature with the highest coefficient of the iBF for
the LRR and the iBWF for the DM.

DISCUSSION

Figure 5 shows a comparison of the original and inverted
BN maps in the computation of the significant BF and iBF
for the LRR in a patient with an original CT image and with
threshold CT images. The inverted B0 map generated from
the inverted binary image representing the cavity as pixel
value one may be comparable with the original B1 map. In
the figure, the inverted B0 map showed higher BN distribu-
tions than the original B1 map. A previous study17 indicated
that the size of a detectable cavity in the original B1 maps

depended on the size of the kernel, because the original B1
numbers were calculated in the kernel and the B1 holes had
to be included completely. The inverted B0 map may have
detected cavities larger than the kernel size because it coun-
ted B0 connected components even though they were
included partially in the kernel.

Figure 6 shows a comparison of the patients with relapse
and the relapse free patients for the LRR and DM using
images for the computation of significant features with the
largest coefficient. The LRR for Patients A and B showed
different patterns for the inverted B0 maps which represen-
ted distributions of the background regions. The feature
“Energy” was calculated using the summation of the squares
of pixel values in the inverted B0 map, and it represented a
distribution of pixels with large values. Therefore, a higher
inverted B0 number distribution (larger number of cavities
in the tumor) at a threshold of 235 (’1383HU) may be a
significant prognostic feature for the LRR. For the DM,
Patient D represented a heterogeneous pattern in the
inverted B0 map at a threshold of 121 (’715HU). The fea-
ture “MeanAbsoluteDeviation” refers to an absolute devia-
tion from a mean, and it represents a statistical variability of
the inverted B0 numbers. The tumor type of Patient D was
GGO, and the GGO was shown to indicates a better

F I G U R E 6 Images of patients with relapse and relapse free linked to significant features with the largest Cox-net coefficient of inverted Betti number
(BN) map feature (iBF) for locoregional relapse (LRR) and iBF and wavelet-based feature combined feature (iBWF) for distant metastasis (DM). AC:
Adenocarcinoma.
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prognosis for the DM.30 The inverted B0 map at a threshold
of 121 may extract significant prognostic features such
as GGO.

Some previous studies have demonstrated radiomics pre-
diction models for cancer relapse and metastasis in patients
with early-stage NSCLC.10,11 Kakino et al.10 predicted a local
relapse and DM using the radiomics features on breath-hold
CT images of early-stage NSCLC patients. They analyzed
wavelet-based radiomics features and the features combined
with clinical features using a random survival forest model,
and they demonstrated statistically significant differences of
cumulative incidence curves (p = 0.021; Gray’s test) of the
high- and low-risk groups of the DM for the features. Wu
et al.11 predicted the DM in patients with NSCLC using a
quantitative radiomics approach involving the extraction of
imaging features from pretreatment fluorodeoxyglucose (FDG)
positron emission tomography (PET) images. They showed p-
values (log-rank test) of 4.98 � 10�2 of the KM curves derived
from a PET quantitative imaging radiomics feature (PF)-based
model and 2.89 � 10�2 for a combined PF and histological
type feature (PH)-based model. The c-indices for PFs and PHs
were 0.71 and 0.80, respectively. The nLPC was calculated as
0.92 and 1.23 for PFs and PHs, respectively. The proposed
method obtained the significant differences for the KM curves
of the LRR of the two risk groups derived from a conventional
WF, and iBF and iBWF. The CPHM based radiomics score
may show better LRR predictability, and the inverted BN map
features may enhance the predictability. The iBWF also may
demonstrate the significant differences for the stratification of
the risk groups, comparable to the previous study.

For the LRR in the test, the iBF, iBWF, and WF showed
statistically significant differences (p < 0.05), and the highest
nLPC was obtained by the iBF. For the DM in the test, the
iBWF showed a significant difference and the highest nLPC.
The iBF indicated the potential for improving the LRR and
DM prediction of stage I NSCLC patients prior to the use of
SABR. The iBF-based signatures can predict the applicability
of the SABR in stage I NSCLC patients. Timmerman et al.31

mentioned that the use of SABR in operable patients may be
compared ideally in a phase 3 randomized clinical trial in
USA, and some clinical studies to perform such a trial are
ongoing. If clinical trials on the use of SABR for operable
patients are performed in Japan, the radiomic signatures for
prediction of the applicability of the use of SABR or surgery
may be explored.

There were three limitations to this study. First, we
enrolled a relatively small number of patients (n = 125) in
this study. A small dataset may lead to lower generalizability
and affect the robustness of the signature. The present
method used a SMOTE-based data augmentation to ensure
a larger dataset. In future studies, the number of patients
should be increased. Second, the impact of the CT imaging
protocols and the manufacturers on the predictability was
not investigated in this study. The vulnerability of radiomics
features extracted from CT images for the images acquisi-
tion and reconstruction algorithms was noted in previous
studies.32,33 The last limitation was that only one axial slice

image with a maximum tumor region for each patient was
used in the BN calculation. We used the maximum region
slice because it was too time-consuming to obtain the BN
maps from the whole slices of the tumor. Even though we
demonstrated the superior performance of 2D topological
features compared with 3D WFs, we recommend investigat-
ing whether 3D topological features can provide improved
prognostic predictability.

In conclusion, we investigated the relapse predictability
of the iBF derived from the pretreatment planning CT
images of early-stage NSCLC patients undergoing SABR.
The iBF has shown the potential to characterize new tumor
properties associated with the risk of LRR on the CT images
more accurately than the conventional radiomics features.
In addition, it was found that the iBF showed greater pre-
dictability for the DM when they were combined with
the WF.
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