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Diet is advocated as a key factor influencing gut microbiota. Several studies have focused

on the effect of different carbohydrates, mainly fiber, on gut microbiota. However, what

remains to be elucidated is the impact of a key component of diet that is widely debated

upon: dietary fats. This review highlights the importance of understanding the source,

quality, and type of fats that could differentially modify the intestinal microbiome. Fats from

plant-based sources such as nuts, or vegetable oils have shown positive alterations in

gut microbiota biodiversity both in in vivo and in vitro studies. Nuts and other plant-based

fat sources, dietary patterns (e.g., Mediterranean diet) rich in polyunsaturated and

monounsaturated fats and, in some cases, polyphenols, and other phytochemicals, have

been associated with increased bacterial diversity, as well beneficial butyrate-producing

bacteria imparting a positive metabolic influence. It is with this interest, this narrative

review brings together evidences on different plant-based fat sources, dietary patterns

rich in vegetable fats, and associated changes in gut microbiota.

Keywords: gut microbiota, plant-based fats, nuts, vegetable oils, Mediterranean diet

INTRODUCTION

The significance of gut microbiota has grown from being just a hitchhiker to an active metabolic
organ. The human gastrointestinal tract is composed of trillions of bacteria that play an important
role in the host metabolism (1). This data directly suggest that the global microbiome potential
is extremely high. Use of diet to alter gut microbiota as a potential therapeutic target is widely
researched (2).

Dietary fibers are an important source for the fermentation of intestinal bacteria (3). An
extensive amount of research has focused on understanding dietary fiber as a key part of plant-
based diets (4, 5). However, other than dietary fibers, fractions of unabsorbed protein and dietary
fat, reaches the large intestine and therefore can potentially be substrates that differentially influence
the microbial system (6, 7).

Even though there are many studies in the context of high-fat diets and gut microbiota,
studies differentiating them from plant and animal-based sources are relatively scarce. Irrespective
of the type of fat, high fat diets (HFD) have frequently shown to induce an increase in the
abundance of Firmicutes in comparison to the low fat diet (LFD) (8, 9). Linoleic acid, mainly
coming from plant sources, are utilized by different gut microbial species to produce conjugated
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linoleic acid (CLA) that has shown anti-inflammatory, anti-
adipogenic, anti-diabetogenic, and anti-carcinogenic properties
(10). Omega-3 fatty acids [ω-3 polyunsaturated fatty acids
(PUFAs)] have received higher attention from scientific
community due to its protective effects against inflammatory
status both in in vitro and in vivo studies, compared to other
types of fat (11), but its effects on microbiota regulation remain
unclear [reviewed in (12)]. Unlike ω-3 PUFAs, monounsaturated
fatty acids (MUFAs) have shown inconsistent results. In fact, a
recent systematic review has shown that diets high in MUFA
tend to decrease total bacterial numbers (13). Western diets rich
in saturated fats and low in antioxidants, phytosterols, and other
phytochemicals have shown to change gut microbiota favoring a
pro-inflammatory state (14). Based on long-term dietary habits,
gut microbial profile is divided broadly into two enterotypes:
(i) Prevotella enterotype, found predominantly in the people
consuming carbohydrate-based diets or the vegetarian diet; (ii)
Bacteroides enterotype, found in high protein and/or animal
products-derived diets (15).

With existing research, a diet with emphasis on plant-based
foods and low consumption of red meat has been endorsed as a
healthy dietary choice. Vegetarian or vegan diets (16–18) and the
Mediterranean Diet (MedDiet) emphasizing the consumption of
plant-based foods have shown to have beneficial impacts on gut
microbiota (19), overall metabolism and health (20). Amongst
these diets, MedDiet contains a high amount of plant-based fats
(35–45% of total energy), sourced from olive oil [mainly extra
virgin olive oil (EVOO)] and nuts. High-fat energy dense foods
such as nuts or olive oil could be seen as foods contributing
to weight gain that could lead to obesity or related morbidities.
However, nuts and olive oil have not been associated with weight
gain (21, 22), rather a direct association of these fat sources
with healthy metabolic profiles has been shown (23), mainly
ascribed to their specific fat composition and their bioactive
molecule content.

Animal vs. Plant Fat
Prior animal studies have shown that the composition, and
not the quantity of dietary fat, is important in modulating
endotoxemia (24). Circulating endotoxins, majorly from the
gram-negative bacteria, elicit inflammation. Serum endotoxins
from human and animal studies depict that after ω-3 PUFA
intake, the post-prandial serum endotoxin production is lower
than that of saturated fatty acids (SFAs) (24, 25). The majority
of these studies have considered the SFA source from vegetables
(butter or palm oil), and fish oil as the major ω-3 PUFA source.
As plant-based fats vary widely by composition, future studies
comparing different plant-based fat sources will be of profound
value. Interestingly, animal foods such as red meat and fish are
not only sources of fats, but also sources of protein. In a study
focusing on different protein sources, it was noted that soy-
based protein had the highest circulating endotoxins compared
to red or white meat sources (26). Even though plant protein in
this study showed higher endotoxin levels, evaluation of animal
sources should be considered skeptically due to the presence of
heme, N-nitroso compounds, polycyclic aromatic hydrocarbons

and heterocyclic amines in meat products that are involved in gut
health-related problems (27).

With the growing popularity of vegetarianism, many studies
have investigated the differences in gut microbiota with respect
to plant-based diets (vegan or vegetarian) (5, 28, 29). Considering
the wide range of fat sources available, only few studies have
explored their effects on gut microbiota. The complex nature
of food makes it difficult to determine the causal nature of
a particular dietary component on gut homeostasis. Hence,
when the synergistic effects of a food are considered, plant-
based fat sources also rich in antioxidants and fibers would be
a better substitute to animal-based fat sources carrying heme
and/or nitroso-compounds.

Even though this is a growing area of research, the collection
of literature in bringing together evidences keenly on the different
fat sources from plant-based diets and their effects on gut
microbiota is limited. Hence, the purpose of this narrative
review is to summarize the relevant evidence (after reviewing
in PubMed) linking the different plant-based fat sources and
dietary patterns rich in vegetable fat sources and their impact on
gut microbiota. We selected the articles by using a combination
of search terms in PubMed for each section. The following
keywords were included in each section: (i) nuts, pistachios,
hazelnuts, cashews, walnuts, macadamia nuts, peanuts, almonds,
brazil nuts, pine nuts, pecans, (ii) corn oil, castor oil, coconut oil,
cottonseed oil, sunflower oil, olive oil, rapeseed oil, peanut oil,
palm oil, rice bran oil, safflower oil, sesame oil, soybean oil, plant-
based fat, (iii) Mediterranean diet. All the above-mentioned
keywords were used in combination with an “AND” builder
with the following keywords: gut microbiome, gut microbiota,
intestinal microbiome. We included only human studies or those
conducted on mice or rats. In vitro studies were included only
in the appropriate places where there was not enough evidence
from human or mouse/rat studies. Despite that, we cannot
discard that some studies may not be included as this is not a
systematic review.

NUTS AND GUT MICROBIOTA

Consumption of nuts has been shown to have protective
effects against metabolic disorders such as type 2 diabetes
(T2D), dyslipidemia, and cardiovascular disease (CVD). A
recent prospective analysis conducted with 16,217 subjects with
T2D showed that participants consuming ≥5 servings of nuts
compared to ≤1 serving per month had a lower total CVD
incidence, coronary heart disease incidence, CVD mortality
and all-cause mortality (30). Previous meta-analysis reported
a reduced risk for T2D, neurodegenerative disease, infectious
diseases, with consumption of 28 g of nuts/day. Modulation of
lipid metabolism, antioxidant activity and gut microbiota are
some of the proposed mechanisms (31). Some of these benefits
are driven by modulation in lipid metabolism, antioxidant
activity, also via gut microbiota.

Nuts are a complex matrix of nutrients especially rich in
fiber, unsaturated fatty acids (UNFAs) and different bioactive
compounds such as tocopherols, phytosterols, phenolic

Frontiers in Nutrition | www.frontiersin.org 2 October 2019 | Volume 6 | Article 157

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Muralidharan et al. Plant-Based Fat and Gut Microbiota

compounds, and minerals such as magnesium (32). Some of
these nutrients can reach the colon intact, being able to change
the gastrointestinal microbiota composition and function.
Different nutrients and their metabolites, such as polyphenols
have shown to aid in gut microbiota balance and growth of
beneficial bacteria [reviewed in (33)]. The fermentation of fiber
from nuts or other sources to beneficial end-products (e.g.,
butyric acid) and the biotransformation of phytochemicals
have been reported to be associated with the transition to a
healthier microbiota (34). Thus, nuts could exhibit prebiotic
effects by enriching potentially beneficial microorganisms such
as Bifidobacteria or lactic acid bacteria (35).

Fat from nuts may have also a major impact on gut microbiota
because a considerable amount of fat present in nuts can arrive
intact to the colon. Incomplete mastication or inaccessible fats
inside cell structures remain unabsorbed during digestion and
this small degree of fat moves to the intestine, serving as a
prebiotic (36, 37). Atwater factors of almonds (38), pistachios
(39), walnuts (40), and cashews (41) have indeed showed an
overestimation of measured energy contents.

Among nuts, almonds, pistachios, and walnuts have showed
to have different protective properties modulating, for example,
insulin resistance, glucose metabolism, and lipid profile
[reviewed in (42), (43), and (44)]. However, their prebiotic
properties were not well-characterized until a few years ago.
Different in vitro and in vivo studies have analyzed the prebiotic
effect and fermentation properties of raw and roasted almonds,
as well as almond skins. These studies have shown the ability
of different components of almonds that could positively alter
the composition of gut bacteria (45–47). In fact, a stimulatory
effect on Lactobacillus spp., and Bifidobacterium spp., has
been observed from raw and roasted almond consumption
(47). Beyond almonds, several clinical feeding trials have
demonstrated a modulatory effect of other types of nuts on
gut microbiota. First in 2014, Ukhanova et al., performed two
separated randomized, controlled, cross-over feeding studies
with healthy subjects, giving them either almonds (n = 18) or
pistachios (n = 16), in three interventions (no nuts, 42 or 84
g/day) each for 18 days (48). They showed that both types of nuts
significantly affected microbiota. However, the prebiotic effect
of pistachio intake on gut microbiota composition was much
stronger than that of almond consumption. Moreover, pistachios
increased the number of butyrate-producing bacteria, identified
as potentially beneficial, whereas the numbers of Bifidobacterium
were not affected by the consumption of either type of nut (48).
Relevantly, a 4-month, crossover randomized clinical trial (RCT)
conducted in 49 pre-diabetic subjects found a shift toward a
healthier gut microbiota following pistachio consumption by
assessing gut-derived metabolites in 24 h-urine (49). Three
metabolites related with gut microbiota metabolism (i.e.,
hippurate, p-cresol sulfate and dimethylamine) decreased after
pistachio diet compared with the nut-free control intervention.

In 2014, Liu et al., reported a 6-week study with 48
volunteers that were randomly assigned to three different
intervention groups: (i) control group was supplied with 8 g/d
of fructooligosaccharides; (ii) intervention group supplemented
with 10 g/d of almond skins; and, (iii) intervention group with

56 g/d of roasted, unsalted, whole almonds (50). Bifidobacterium
spp., and Lactobacillus spp., increased significantly in the almond
and almond skin groups. The populations of Escherichia coli
mildly changed, and the growth of Clostridium perfringens was
significantly repressed in both almond intervention groups. The
difference in the results of these two studies could be attributed to
their duration, since Ukhanova et al. (48) administered nuts only
for 18 days in contrast with 6 weeks in the case of Liu et al. (50).
Another 3-week short-term nut crossover study was conducted
in 29 parents and their respective children (n = 29). The parent-
children duo consumed 42 and 14 g/d of almonds (including
almond butter), respectively. Researchers reported significant
changes at overall genus level after almond consumption vs.
control intervention, especially in children (51).

A controlled-feeding randomized crossover study conducted
in 18 healthy subjects assessed the beneficial effect of almond
consumption on gut microbiota composition for periods of 3
weeks (52). This study compared the effect of consuming 1.5
servings of raw or processed (roasted or chopped) almonds
or almond butter to a control almond-free intervention group.
They showed that almond consumption increased the relative
abundances of Lachnospira, Roseburia, andDialister. Particularly,
chopped almonds increased the abundance of Lachnospira,
Roseburia, and Oscillospira, while whole almonds increased
Dialister, compared to control. Overall, this study showed that
almond consumption and its degree of processing differentially
impact the relative abundances of bacteria genera in the
gastrointestinal tract.

Two different trials were recently performed to assess the shift
in the gut microbiota due to walnut consumption with a different
length of intervention (53, 54). Holscher et al., evaluated using a 3
weeks crossover study design (1 week washout) the effect of 42 g
of walnuts vs. no consumption, in 18 overweight but otherwise
healthy men and women (53). Forty-nine to sixty percent
higher relative abundance of Faecalibacterium, Clostridium,
Dialister, and Roseburia and 16–38% lower relative abundances
of Ruminococcus, Dorea, Oscillospira, and Bifidobacterium were
observed in walnut consumption compared to the control period.
Moreover, authors reported an improvement in the lipid profile
in case of walnut supplementation. These results are supported
by in vivo studies indicating that walnuts increased the relative
abundances of Firmicutes, including the genera Clostridium (55)
and Roseburia (56). In fact, walnuts showed mild protection to
the colon against a potent carcinogenic reaction partially due
to walnut-induced changes to the gut microbiome (55). Due
to the negative association of Faecalibacterium and Roseburia,
positive association of Oscillospira with age, it has been suggested
that consumption of walnuts may help in age related changes in
the gut microbiota (57, 58). Future studies assessing the aspects
of walnut consumption on gut microbiota and aging would be
of value.

In a similar—but of a longer duration—crossover
RCT, 135 normo-weight or overweight healthy subjects
consumed 43 g/d of walnuts or a nut-free diet for 8 weeks
(54). Generalized UniFrac distance showed that walnut
consumption significantly changed microbiome composition
and diversity. By using multidimensional scaling approach,
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authors reported dissimilarities of ∼5% between walnut and
control diet interventions. Specifically, the abundance of the
family Ruminococcaceae and genus Bifidobacterium increased
significantly, while the genus Blautia and Anaerostipes decreased
significantly during walnut consumption. A controlled feeding
intervention study with roasted hazelnuts was conducted in
hyperlipidemic (and age-matched normolipidemic) children and
adolescents (7–17 years) for 8-weeks assessing the changes in
gut microbiota. At baseline, the α- and β-diversity microbiota
were significantly different between hyperlipidimic and
normolipidemic participants. At baseline, subjects with
hyperlipidemia had significantly lower concentrations of acetate,
butyrate and propionate, whereas they had significantly higher
levels of lactate, pyruvate and isobutyrate. The authors reported
a non-significant difference in the microbial composition after
the hazelnut intervention between the hyperlipidimic and
control participants. In SCFAs’ (measured in feces), only a
significant increase in acetate concentrations was reported after
the intervention in the hyperlipidimic group (59).

Taken together, although daily consumption of nuts (1–
2 servings/d) have shown to impact gut microbiome by
enhancing beneficial bacterial species, further studies are needed
to determine whether: (i) these modulations are preserved during
longer nut consumption periods; (ii) these modulations may
also affect subjects with cardiometabolic diseases; and (iii) these
modulations are associated with improvements in other disease-
related parameters.

VEGETABLE OILS AND GUT MICROBIOTA

A common and popular plant-based fat source is vegetable oil.
Consumption of vegetable oils rich in unsaturated fats has been
associated with healthier metabolic conditions (low LDL (low
density lipoprotein) cholesterol levels, and lower risk of T2D and
CVD compared to other animal fat sources) (60, 61). This could
be partly attributed to the type of fat but also to their high content
in polyphenols and other phytochemicals in case of virgin olive
oil (62). Vegetable oils are formed by a mixture of SFAs, UNFAs,
MUFAs, or omega-6 polyunsaturated fatty acids (ω6 PUFAs),
which can vary between different types of oils. Even though
vegetable ω6 PUFAs have been considered pro-inflammatory in
contrast to ω3 fatty acids, the interaction of omega-3 and omega-
6 fatty acids in the context of inflammation is complex and still
not properly understood (63–65).

Avocados are an important plant-based fat source that are
also rich in dietary fibers. Only few studies have been conducted
to explore the effects of avocado on gut microbiota. A recent
RCT conducted amongst 160 adults (BMI ≥ 25 Kg/m2) with
parallel arms of treatment (iso-caloric meals, with or without
avocado), evaluated the effect of Hass avocado consumption for
12 weeks. Compared to control, avocado consumption increased
acetate (p < 0.01) and total SCFA’s (p = 0.02) and the relative
abundances of Faecalibacterium (p = 0.01) in feces (66). In a
similar RCT with 51 healthy overweight/obese participants, the
effect of avocado consumption on gut microbiota, biomarkers
of inflammation, weight loss and body composition was tested.

Participants either followed an avocado hypocaloric diet (1 Hass
avocado- AVO) or a hypocaloric diet avoiding the consumption
of avocados (CTRL) for 12 weeks. Relative proportions of
genus Bacteroides, Clostridium, Methanospaera, and Candidatus
Soleaferreawere altered significantly in the AVO group compared
to CTRL group. Also a trend to decrease serum inflammatory
markers IL-1β (P = 0.07) and C-reactive protein (P =

0.074) was observed in the AVO group compared with CTRL
group (67).

Health benefits of olive oil, which is rich in MUFAs and
polyphenols, has been largely related to a decrease in the
incidence of CVDs and hypertension as well as being considered
as a positive modulator in cognitive functions (68, 69). Olive
oil can be categorized into four types based on the processing
methods and its contents: extra-virgin olive oil, virgin olive oil,
refined olive oil (ROO), andOrujo oil (68). Even though themain
fatty acid composition remains the same, some polyphenolic
components change in these four types of olive oil. Virgin olive oil
has the highest polyphenol content (∼150–400 mg/kg), refined
olive oil with the lowest polyphenol content (∼0–5 mg/Kg),
and the common olive oil, pomace olive oil with intermediate
polyphenol content (∼10–100 and ∼10–30 mg/Kg, respectively)
(70). It is important to understand the difference in properties
exerted by polyphenols in comparison to the fat profile of olive
oils. With this regard, Hidalgo et al. (71) compared 12 week
feeding of EVOO, ROO butter, and the standard chow diet
in mice. Denaturing gradient gel electrophoresis (DGGE) and
culture-dependent methods were used to analyze the microbiota
in the feces. The family Lactobacillaceae appeared to increase
in the butter group from baseline to week 12. Most of the
species reported in all the diet groups were uncultured and no
quantitative statistical evaluation was performed comparing the
differences in microbiota composition. Hence, it is difficult to
state specific differences among diets and/or time points. It was
noted that most EVOO microbiota clustered with ROO, while
microbiota cluster from butter was different. Also, butter diet
induced changes closer to the gutmicrobiota of obese individuals,
whereas the EVOO in the opposite direction and ROO with an
intermediate behavior (71). Hence, it was observed that even
though polyphenol content of the olive oil contributes to an
extent to the changes in gut microbiota, the fat profiles also play
a determining role.

Prieto et al. (72) compared the effects of a diet enriched in
EVOO vs. butter (BT) in 26 Swiss Webster mice. They were fed
with a standard diet (SD, n = 8) (3% of total energy from fats)
or one of the two high fat isocaloric diets (35% of total energy
from fats) enriched in EVOO (n = 9) or butter (BT, n = 9).
Mice fed with BT diet, showed the highest systolic blood pressure
(SBP), and SBP was positively correlated with Desulfovibrio.
EVOO group had the lowest plasma insulin, which was correlated
inversely with Desulfovibrio. Several other correlations were
observed between the gut microbiota (at phylum, family, genus
and species levels) and the measured metabolic syndrome (MetS)
parameters. The authors concluded a positive metabolic impact
of EVOOmediated by the gut microbiota (72). Similar result with
reduction in SBP was reported in another mice study fed with
EVOO (73), in which the taxonomic cluster of Clostridia cluster
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XIVa was inversely correlated with SBP, and a significantly higher
abundance of Lactobacilli was also seen in the EVOO group (73).

The quality of fats in terms of health is usually indicated by
its levels of saturation or unsaturation. Recently a mice study
was conducted to evaluate the differences amongst SFA, UNFAs
on gut microbiota (8). Three different HFD (40% of total energy
from olive oil, corn oil or milk fat) and a LFD were given to the
mice for 12 weeks. This study not only evaluated the microbial
changes in the gut, but also the host response to these changes,
hence giving an overall picture on microbe-host homeostasis. All
the HFD increased the abundance of Firmicutes. The following
increased abundances were noted in each group: olive oil
group (Clostridiaceae, Peptostreptococcaceae, Ruminococcaceae,
and Dorea spp.); milk fat (Erysipelotrichales and several genera
from Ruminicoccus); corn oil (Turicibacteracea and Coprococcus
spp.). Acetic acid and propionic acid levels were decreased in the
olive oil, corn oil group compared to the low-fat chow group,
whereas milk fat had similar levels of SCFA to that of low fat chow
group. Corn oil rich in ω6 PUFAs showed increase in risk factors
for development of dysfunctional gut barrier, whereas themilk fat
rich in SFA promoted host inflammation, and olive oil resulted
in a less inflammatory environment compared to the other two
diets (8).

Few studies have focused on the phenolic components of
olive oil (74, 75) and their role in modulating gut microbiota.
Phenolic compounds of olive oil in combination with thyme
phenolic compounds have shown to increase in members of
Bifidobacterium and decrease the oxidation of LDL in blood in
hypercholesteremic participants (74). However, further research
is required in elucidating the role of different components of olive
oil on gut microbiota.

Flaxseed oil (FO), soybean oil, coconut oil, palm oil and
canola oil are other types of vegetable fat sources that are usually
consumed around the world. They vary from each other widely
by fatty acids and bioactive components.

Palm oil and coconut oil are SFA rich vegetable oils.
Comparing the vegetable fats based on their PUFA/SFA ratio,
by supplementing either a HFD rich in palm oil, safflower
oil or olive oil, had demonstrated that palm oil (having the
lowest PUFA/SFA ratio) reduced the microbial diversity and
increased the Firmicutes-to-Bacteroidetes ratio (9). Apart from
palm oil, another vegetable fat rich in SFA source is coconut
oil. Compared to palm oil, coconut oil is characterized by the
presence of both medium- and long- chain fatty acids, which
may have better implications for host energy balance than lipids
rich in long-chain fatty acids. Coconut oil, in its virgin form
(i.e., of higher quality) has shown to be associated with beneficial
effects on secondary parameters of T2D in mice, along with an
increased abundance of beneficial bacteria such as Lactobacillus,
Allobaculum, and Bifidobacterium species (76). Recent results
from animal studies comparing coconut oil vs. soybean oil based
diets showed that soybean oil resulted in a detrimental metabolic
health compared to coconut oil, however with no changes in cecal
microbiota (77).

An interesting study compared gut microbiota composition
after the consumption of either lard (rich in SFA), fish oil (rich in
ω6-PUFA, MUFA) or soybean oil (rich in ω3-PUFA) as different
source of fats in middle-aged rats (78). In vitro and in vivo

studies showed a different gut microbiota structure in the fish
oil group from soybean oil or lard groups. Fish oil group has the
highest relative abundance of phylum Proteobacteria and genus
Desulfiovibrio. Along with these observations, it was also noted
that mRNA levels of inflammatory markers (IL-1β, IL-6, IL-17,
IL-18, and TNF-α) were higher in the fish oil group. Both these
results indicate that fish oil could potentially increase the risk of
inflammation, contrary to the prior studies (79). In fact, a high
content of PUFA in diet, even if recommended by public health, is
considered to cause metabolic oxidative stress and inflammation
(80), also high MUFA diet has been suggested to have less
consistent effects on gut microbiota (13). Therefore, these results
suggest a new insight into the potentially negative effect of fish oil
on inflammation through changing themicrobiota population, in
contrast with a vegetable source of fats like soybean oil.

To better understand the role of different types of fats on
metabolic health, four HFD enriched with either palm oil, olive
oil, safflower oil, or a combination of both flaxseed oil and fish oil
were fed to wild-type C57BL/6J male mice. The groups with high
MUFA and PUFA contents (olive oil and flax plus fish oil) showed
a lower plasma triglyceride and less weight gain. Also, different
compositions in gut microbiota were found between groups.
Especially, olive oil group was characterized by an increase in
bacterial family of Bacteroidaceae, and flaxseed/fish oil group was
the only one in which there was an increase in Bifidobacteriacea
family. Both this bacterial family include commensal bacterial
with beneficial effects on gut health (81).

Other than the soybean oil, FO is a plant-derived oil rich in
ω3 PUFAs, mainly α-linolenic acid (ALA, 18:3 ω-3). Dietary FO
has shown protection against acute alcoholic hepatic steatosis via
ameliorating lipid homeostasis at adipose tissue-liver axis in mice
(82). However, the impact of dietary FO on inflammation and
gut microbiota in chronic alcoholic liver disease (ALD) remains
unknown. In order to investigate this topic Zhang et al., evaluated
the interplay among the diet, gut microbiota, inflammation and
ALD in mice models of ALD (83). Sixty mice were randomly
allocated into four groups: pair-fed (PF) with corn oil (CO) group
(PF/CO); alcohol-fed (AF) with CO group (AF/CO); PF with
FO group (PF/FO); AF with FO group (AF/FO). A reduction
of Porphyromonadaceae and Parasutterella, and an increase in
Firmicutes and Parabacteroides, were observed in AF group
compared to the PF control. Supplementation of FO in the
ethanol consumption group (AF/FO) reduced Proteobacteria and
Porphyromonadaceae significantly compared with AF/CO group.

Canola Multicenter Intervention Trial (COMIT) evaluated
the interactions between obesity status and dietary intake of
mono- and poly-unsaturated oils on human gut microbiome
with participants at MetS risk. The experimental diets used
were: (1) conventional canola oil (Canola); (2) DHA-enriched
high oleic canola oil (CanolaDHA); (3) high oleic canola oil
(CanolaOleic); (4) blend of two PUFA-rich of corn/saffower
oil (25:75, CornSaff); and (5) blend of flax/saffower oil (60:40,
FlaxSaff) supplemented diets designed to maintain body weight
during the treatment periods. Diets 1, 2, 3 were rich in MUFAs
and diets 4, 5 rich in PUFAs. Clear differences were observed
in the gut microbiota profiles of obese group vs. overweight
and the normal weight participants, with Firmicutes dominating
the obese group. The differences between MUFA and PUFA
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FIGURE 1 | Overview of the changes in the gut microbial profile with differences in animal and plant-based fat sources.

rich diets, continued to be segmented by the influence of
BMI. Abundance of Faecalibacterium [which has shown anti-
inflammatory properties (84)] differed across treatments, with
highest abundance in CanolaOleic and lowest in CanolaDHA,
indicating the potential of oleic acid with an anti-inflammatory
property (85).

Figure 1 shows an overview of the changes in the gut
microbial profile with differences in animal and plant-based fat
sources. Even though plant-based oils have been part of our
diet since many decades, the potential impacts of these oils
on gut microbiota still remain relatively unknown. The ratio
of different saturated or unsaturated fatty acids clearly impose
different effects on gut microbiota, however the debate remains
open on the levels that is most suitable for better gut health.

MEDITERRANEAN DIET AND GUT
MICROBIOTA

The traditional view of single nutrient health effects has been
shifting toward synergy of multiple food components and dietary
patterns. The traditionall view of single nutrient health effects
has been shifting toward synergy of multiple food components
and dietary patterns. Understanding the effects of nutrient
components and dietary patterns would be helpful to make
lifestyle recommendations (86). Plant-based diets have been

gaining acceptance and popularity due to the positive health
benefits. Modulation of gut microbiota is one of the plausible
mechanisms explaining these benefits. In terms of nutritional
content, most of the plant-based diets are low in total and
saturated fats compared to the omnivores diet (87, 88). However,
MedDiet is an exception to this, with a high content of MUFA
and PUFA from plant sources.

Several studies have emphasized the health effects of MedDiet
since the seven countries study (89). MedDiet has been evaluated
in terms of its effects on mortality, cardiovascular risks, mortality
in several systematic reviews and meta-analysis (90, 91). The
traditional MedDiet, is characterized by high consumption of
vegetables, legumes, grains, fruits, nuts, and olive oil (plant-
based foods), moderate consumption of fish and wine, and low
consumption of red and processed meat and sugar. This dietary
pattern rich in polyphenols, fiber and unsaturated fat, impart
the above mentioned health benefits by various mechanisms
including anti-oxidative potentials, anti-inflammatory properties
and gut microbiota modulation (92) among others.

High-level adherence to MedDiet has shown to be positively
associated with changes in beneficial gut microbiome and their
metabolites (93). Contrary, a lower adherence to MedDiet was
linked to higher urinary TMAO levels, a microbial metabolite
that has been reported to be a marker for cardiovascular risk
(94). Enhancement of fiber-degrading Prevotella, Firmicutes, and
higher level of fecal short-chain fatty acids has been associated
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with higher adherence to a MedDiet (19). Similarly, presence
of fiber degrading Prevotella was seen higher in preadolescent
Egyptian subjects (n= 28) following aMedDiet in comparison to
preadolescents in Dayton, USA (n = 14) consuming a Western
diet (95). An observational study conducted in Greece amongst
120 participants investigated the associations between adherence
to MedDiet and gut microbiota pattern. In this study, a higher
adherence to MedDiet was inversely associated with E. coli
counts, higher Bifidobacteria: E. coli ratio. Within the SCFA’s
measured, acetate was present in highest proportions (i.e., higher
molar ratio) in all the tertiles of MedDiet adherence score (low,
medium, and high). Also, greater molar ratio of acetate was
reported to be significantly associated with higher adherence to
MedDiet (96). MedDiet score measured in another study as an
indicator of adherence to diet showed similar results (97). It
was observed that the higher MedDiet score was associated with
abundance of phylum Bacteroidetes, family Prevotellaceae and
genus Prevotella. Fecal propionate and butyrate were higher in
participants with a higher MedDiet score. Also, the consumption
of olive oil, the main source of MUFA of this diet, was associated
with increasing proportions of taxa Tenericutes and Dorea (97).
In another study conducted in the Mediterranean population,
genus Dorea and Lactobacillus were over represented in those
participants consuming a high PUFA/SFA ratio (93). Haro
et al. (98) conducted an intervention study comparing MedDiet
(35% fat: 22% monounsaturated; 6% polyunsaturated and 7%
saturated) and a low fat high complex carbohydrates (LFHCC)
diet (28% fat: 12% monounsaturated; 8% polyunsaturated and
8% saturated) for a period of 1 year amongst 20 obese men.
Consumption of MedDiet showed an increase in beneficial
Roseburia genus whereas consumption of LFHCC showed an
increase in fiber degrading Prevotella and F. prausnitzii (98).
Another interesting study compared the MedDiet and a vegan
diet (Ma-Pi 2). TheMa-Pi 2 diet is rich in seaweeds, wholegrains,
legumes and fermented products. Both diets followed for 3 days
in 12 reactive hypoglycemic participants, induced no changes in
the gut microbial composition, however the SCFA’s in the Ma-Pi
2 diet group was increased significantly from baseline to the 4th
day (99).

Compromised gut bacterial profile is observed amongst
people with several metabolic disorders (100, 101) Exploring
MedDiet as a nutritional therapy could help in the
reestablishment of a beneficial gut ecosystem. In this regard, few
studies have evaluated the effect of MedDiet on gut microbiota
and health. A total of 239 participants (with and without MetS)
from the CORDIOPREV study were randomly allocated in two
groups: LFD (MetS, n = 139) and MedDiet group (MetS, n =

101). After 2 years of following the diets, participants in the
MedDiet group showed a restoration of some species of gut
microbiota (P. distasonis, B. thetaiotaomicron, F. prausnitzii,
B. adolescentis, and B. longum) in only those with MetS (102).
MedDiet has also been effective in betterment of gut microbial
ecology amongst Crohn’s disease patients by increasing the
Bacteroidetes phylum and Clostridium genus after 6 weeks of
MedDiet consumption (103).

Even though overall credits on the beneficial effects of
MedDiet cannot only be given to the healthy fat profile, it cannot

be discarded that other components of this dietary pattern (such
us dietary fiber, some vitamins and minerals, polyphenols and
other phytochemicals) may also exert effects on gut microbiota
profile and activity. Therefore, future larger human intervention
studies are required in order to understand the role of MedDiet
and its components on gut microbiota alterations.

DISCUSSIONS

Increasing number of studies are focusing on the importance
of plant-based diets, as well as on the components of this
type of diet. Nuts, olive oil and other plant fat sources
comes with a broad composition of fatty acids that has varied
biological impacts. Investigating the potential role of PUFAs
in inducing beneficial effects should be evaluated with care,
as the enzymatic peroxidation products of PUFAs has shown
carcinogenic potentials (104). Studies exploring the cumulative
effects of the fat source (containing other non-fat components
such fiber or antioxidants) could mask the isolated effects of
oxidation products of PUFAs (105, 106). These studies could
strengthen the importance in understanding the mechanism
involved in the synergy of different dietary components and fat
on gut microbiota.

Exploration of novel pathways such as for sterculic acid that
has shown effects on insulin resistance and obesity via gut
microbiota modulation could be of interest to develop nutritional
therapies (107). A comprehensive systematic review conducted
by Wolters et al., observed that a modulation of dietary fat—by
quantity or quality—did not impose any effects on gut microbiota
in interventional studies, whereas observational studies reported
gut microbiota shifts (13). A key reason discussed by the
authors of these studies was the low intervention follow-up
time. Moreover, gut microbiota studies are subjected to inter-
individual differences that complicates the analysis. Further
interventional studies with dietary fats, focusing on the aspect
of gut microbiota would aid in a better understanding and to
establish nutritional recommendations.

Dietary fat is an essential component of diet that needs to be
consumed in the right quantity and quality. Based on the studies
included in this review, nuts, and other plant-based fats seem
to exert a favorable effect on genus Bifidobacterium, Roseburia,
and Faecilibacterium, which has been associated with positive
health effects. High fat diets with SFA as the main fat component
have consistently been correlated with negative modulation
of gut microbiota such as decreasing relative diversity. Thus,
replacement of SFAs with plant sources of PUFAs and MUFAs,
especially those rich in polyphenol and other phytochemicals,
would help in positive modulation of gut microbiota and the
corresponding health implications.
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