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Abstract: Nanomedicine has generated significant interest as an alternative to conventional cancer
therapy due to the ability for nanoparticles to tune cargo release. However, while nanoparticle
technology has promised significant benefit, there are still limited examples of nanoparticles in clinical
practice. The low translational success of nanoparticle research is due to the series of biological
roadblocks that nanoparticles must migrate to be effective, including blood and plasma interactions,
clearance, extravasation, and tumor penetration, through to cellular targeting, internalization,
and endosomal escape. It is important to consider these roadblocks holistically in order to design
more effective delivery systems. This perspective will discuss how nanoparticles can be designed to
migrate each of these biological challenges and thus improve nanoparticle delivery systems in the
future. In this review, we have limited the literature discussed to studies investigating the impact of
polymer nanoparticle structure or composition on therapeutic delivery and associated advancements.
The focus of this review is to highlight the impact of nanoparticle characteristics on the interaction
with different biological barriers. More specific studies/reviews have been referenced where possible.

Keywords: nanomedicine; biodistribution; nanoparticle fate; cellular compartmentalization;
cellular trafficking

1. Introduction

Nanomedicine has emerged as an important strategy for improving cancer treatment due
to the ability of nanoparticles to encapsulate therapeutic cargo and deliver it more specifically
and more effectively to a treatment site. Significant research in this area has demonstrated that
nanoparticle formulations provide important benefits over systemically-delivered drugs alone,
including improving efficacy and safety profiles. Nanoparticle formulations also offer the potential to
increase the range of therapeutics to biologic drugs, such as oligonucleotides or proteins, or combine
multiple therapeutic cargo within the one carrier. These properties have been demonstrated in a
number of successful nanomedicines either in clinical trials or have been approved by the U.S. Food
and Drug Administration (FDA). A well-known example is Abraxane®, which was approved by the
FDA in 2005 [1]. This nanoparticle involves the conjugation of paclitaxel with albumin, demonstrating
improved pharmacokinetics, enhanced tumor inhibition, and reduced side effects when treating a
variety of refractory malignancies compared to the drug alone. The development of new nanomedicines
continue to increase and spans a wide range of different types of carriers from drug conjugates with
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stealth polymers such as poly(ethylene glycol) (PEG) through to inorganic, protein, or polymer
nanoparticles. Material scientists have developed a number of tools to tailor the interactions of
the nanocarriers with their biological surroundings, including tuning morphological characteristics,
such as size and shape, as well as modulating the chemical signature of such materials, in particular the
surface chemistry. There is evidence to suggest nanoparticles can reach the target site (e.g., a specific
tumor) using the enhanced permeability and retention (EPR) effect due to the leakiness of vasculature
in these regions. However, this can be specific to certain tumor types and thus targeting specific
proteins on tumors is also an important research area. Nanoparticles can also be designed to recognize
specific cancers and to release drugs via specific cellular triggers, such as variations in pH or particular
enzyme profiles. The characteristics of the nanoparticle delivery system needs to be tailored for specific
applications and delivery methods. In this perspective we will highlight the challenges associated
with designing nanocarriers for cancer therapy using intravenous (IV) administration.

While many nanoparticle formulations show promise in vitro (cell culture), or even using
preclinical mouse models in vivo, the number of nanomedicines translated into clinical use remains
low [2]. One rationale for the low rates of clinical translation is there is still limited understanding of
how nanoparticle structure governs the interaction with the different biological environments and
thus their ability to migrate biological roadblocks in order to successfully deliver a drug. These
roadblocks begin as soon as the particles are injected, as they must evade interactions with other
biologics within the blood and subsequent opsonization. They must then be capable of extravasation
from the blood stream into the tissue and penetration into the tumor environment. A number of
studies have demonstrated these processes have limited efficacy. Recently, Chan et al. [3] evaluated
nanoparticle delivery to tumors in a variety of murine models through meta-analysis of a broad
body of literature, showing the median delivery to the tumor was invariably low (0.7% of injected
dose). This highlights the significant challenges associated with navigating the many barriers that
prevent tumor accumulation following intravenous injection of nanomedicines. But the effectiveness of
nanomedicines is not limited to tumor tissue deposition; the tumor microenvironment is heterogeneous
and complex, therefore targeting a specific cell population within this environment offers an idealistic
strategy for improving therapeutic efficacy. This may then facilitate other stringent requirements often
necessary in drug therapies, including nanoparticle internalization into cells, disassembly to release
its cargo, and then delivery of the therapeutic to the site of action for a particular drug. This is a
particularly challenging part of the process, especially for biological drugs that have generated interest
in recent years. This is because nanoparticles are typically delivered into the endosomal/lysosomal
compartment, which is not the site of action for most drugs. Therefore, nanoparticles must undergo
“endosomal escape”. Recent literature has shown even effective nanoparticles facilitate only small
amounts of endosomal escape (1–2%) [4]. Therefore, while we have many clinical systems that show
efficacy, it is clear that we could improve the payload going to the correct region of a tumor in order
to create better therapies. In order to design more effective delivery systems, an important first step
is to understand how nanoparticle structure can be tuned to optimize their ability to migrate each
biological challenge. While there is a broad range of nanomedicines in the literature that show promise
for clinical application, in this article we will focus on polymeric nanoparticles in the order of 1 to
200 nm. Important reviews on inorganic nanoparticles or polymer conjugates can be found in the
following references [5,6]. Polymeric nanomedicines are attractive as they offer versatile syntheses,
where the size, shape, and composition of the particles can be tuned to offer control over biological
interactions. For example, it has been demonstrated that nanoparticle size and shape impacts clearance
rate. In this perspective, we will discuss the impact of biophysical properties of polymer nanoparticles
as they traverse the various biological barriers to enable efficient drug delivery. We focus on blood and
plasma interactions, clearance, extravasation, and tumor penetration, through to cellular targeting,
internalization, and endosomal escape, as shown schematically in Figure 1. The literature in each of
these areas (summarized in Table 1) shows that understanding the impact of nanoparticle structure
on biological interactions provides insight into how to better design polymeric nanoparticles for
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nanomedicine; the impact of this understanding will only be enhanced as we learn more about these
structure-roperty relationships.Polymers 2019, 11, x FOR PEER REVIEW 3 of 33 

 

 96 
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Figure 1. Schematic overview of key biological barriers encountered by polymeric nanomedicines.
(a) Interactions that occur immediately post-injection with components of blood and plasma;
(b) biodistribution of polymers and clearance mechanisms; (c) barriers that occur at the tumor site and
once a material has gained access to the tumor volume; (d) receptor accessibility and ability of associated
ligands to bind and activate the target surface protein; (e) internalization and subsequent intracellular
trafficking behaviors; and (f) requirement for therapeutic escape from vesicular compartments.
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Table 1. Tools to overcome the biological barriers of nanomedicine.

Biological Barrier Tools to Overcome Current Challenges Referred Section

Interactions in the
Blood Stream

Tuning Nanoparticle Physicochemical Properties

Pre-Incubation/First pass

Artificial Hard Corona

Protein corona has not been extensively
profiled for soft nanoparticles

The plasma protein content between
patients varies

Section 2.1.1

Section 2.1.2

Biodistribution

Nanoparticle Biophysical Properties

Incorporation of Targeting Ligands

Pre-Targeting Method

Hitchhike onto Red Blood Cell

Defined sized cutoff for soft nanoparticle
clearance remains challenging Sections 3.1 and 3.2

Stealth property will be voided Section 3.2

Section 2.2

Gathering at Tumor
Site

Nanoparticle Size

Nanoparticle Hardness

Vascular Normalization and Remodeling

Section 4.1.2

Potential to induce metastasis
Section 4.1.3

Tumor Tissue
Distribution

Nanoparticle Physicochemical Properties

Charge-Switching Nanoparticles

Size-Switching Nanoparticles

Sheddable PEG Corona

Macrophage Shuttling

Section 4.2.4

Few studies report on the intratumoral
distribution

Prevents use of
environmentally-responsive polymers

Receptor Affinity Influenced by degree of opsonization Section 4.2.3
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Table 1. Cont.

Biological Barrier Tools to Overcome Current Challenges Referred Section

Internalization

Nanoparticle Physicochemical Properties Factors influencing nanoparticle
internalization are not extensively

investigated

Section 5.1.1

Polymer Composition (e.g., Fluorous Substitution)

Detachable Particle Corona

Charge-Switching Particle

Nanoparticle–Cell Membrane Fusion

Endosomal Escape

pH-Responsive Materials that Membrane Interact or Swell

Modifying the Therapeutic with Cell-Penetrating Peptides

Modifying the Therapeutic Physicochemical Properties

Incorporation of a Photosensitizer

Internalization must be faster than
material activation at tumor

microenvironment pH

Section 5.2.1Requires encapsulation for selective
delivery

Limitations with depth of penetration of
light and toxicity

Subcellular Trafficking

(Nucleus)
<9 nm Diameter of Nanoparticle or Therapeutic

Conjugation of a Nuclear Localization Signal

(Mitochondria)
Incorporation of Mitochondrotropic Polymers

Conjugation of a Mitochondria Targeting Signal

Factors influencing nanoparticle
subcellular trafficking are not extensively

investigated

Section 5.3.1

Section 5.3.2
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2. Interactions in the Blood Stream

One of the key factors that drives enhanced accumulation of polymeric nanoparticles in tumor
tissue is their prolonged circulation time in blood. While it is well-recognized that longer circulating
particles provide greater opportunity for the therapeutic cargo to extravasate into tumor tissue, it also
has the effect of prolonging contact and exposure to blood components leading to immunological
effects [7]. In addition to the activation of platelets, intravenously-injected polymeric nanocarriers
can induce coagulation cascade events owing to activation of specific enzymes. Perhaps the most
detrimental event for nanocarriers is activation of the complement cascade, initializing rapid clearance
of “foreign” bodies by the mononuclear phagocytic system (MPS) following opsonization [8]. Evidence
suggests polymeric nanoparticles do not cause an antigen-specific T cell response (at least for the
most common polymeric systems utilized in nanomedicine). However, their presence likely has an
indirect effect on adaptive immune responses, most likely through production of inflammatory cyto-
and chemokines and promotion of dendritic cell maturation [9].

Within seconds of entering the blood stream, nanomaterials are bombarded with an array
of compounds endogenous to plasma [10] (Figure 2). Many of these plasma constituents then
non-covalently bind to the surface of the polymers to form the protein corona [11]. The formation and
dynamic exchange within this coating of adsorbed biological molecules remains ambiguous; however,
is believed to possess a specific two-layer morphology [12]. The resulting biomolecular-corona is
commonly divided into two layers, the hard and soft corona, referring to the inner and outer
proteinaceous shells, respectively [13,14]. The binding proteins and biomacromolecules, broadly
denoted as opsonins, modulate the behavior of the potential nanomedicine in vivo, as they are able
to signal to the immune system [15], dictate clearance pathways [12], and alter downstream events
required for efficacious therapeutic delivery [16]. This initial response to nanomedicine administration
is a major contributor for dictating effective distribution, cellular interaction, and ultimate efficacy of
nanoparticle delivery systems.
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Figure 2. Schematic depicting the interaction between opsonization, biodistribution, and clearance
pathways of injected polymer nanomedicines. (a) Polymeric materials enter the bloodstream (b) become
coated with opsonins and other biomolecules during (c) systemic transport; a combination of polymer
properties and biological interactions lead to (d) clearance from the system or accumulation within
organs or tumor tissue.
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2.1. Opsonization

2.1.1. The Protein Corona

Opsonization remains one of the most commonly discussed biological obstacles known to
impact the translation of nanoparticles from animal models to the clinical setting [17]. The dynamic
process of binding and exchange of plasma proteins associated with the nanomaterial surface has
been demonstrated to play a key role in the clinical translation of materials. It has been shown
that some protein modifications produce improved cellular uptake at the tumor site [18], whereas
others induce immune responses leading to clearance via the mononuclear phagocytic system
(MPS) [15]. Several opsonin components have been identified, including complement proteins [15],
apolipoproteins [10], and various metabolites [19], with the adsorption of specific constituents or ratios
being responsible for stealth effects (or lack thereof) in PEG-based materials [10]. The combination
of nanoparticle-protein [20] and protein-protein [21] interactions leads to a vast array of different
protein corona composition. Numerous physicochemical factors have been shown to contribute to the
accumulation and subsequent composition of the protein corona including chemical composition [22],
size [23], curvature [22], rigidity [24], hydrophobicity [22], presence of protein targeting ligands [25], and
surface characteristics [10,11,26]. These factors contribute to the unpredictable outcome of interactions
between nanoparticles and physiological phenomena, with enhanced variability also arising due to
flow rate encountered in different parts of the animal [27], enzymatic modifications [12], glycosylation
state [28], as well as localized plasma protein concentration [27] and content [12] within anatomical
regions. While the interaction with blood proteins has been profiled for certain kinds of materials (e.g.,
gold nanoparticles [29] and liposomes [30]), proteomic fingerprinting has not been done for polymeric
nanomedicines (at least under conditions that match those present within the blood stream of an
animal). This is due to difficulty in extracting intact complexes and the fragility of the soft corona [14].
A further confounding issue with studying the recruitment and influence of opsonins on materials is
the enormous degree of inter-patient variability in the protein content of the plasma [31]. The diverse
and flexible nature of the plasma proteome is among the primary difficulties in predicting the behavior
of materials in clinical trials [31]. Even minor details of the patient’s life history can produce a suite
of changes in their plasma proteome. It is highly likely that wide-ranging variations in the opsonins
present on polymer nanoparticles exist. With circulating plasma proteins known to vary between
individuals [32–35], translational modifications such as glycosylation [36] can provide even greater
diversity in participation of circulating proteins and alter their binding properties and affinities.

2.1.2. Measuring and Monitoring Opsonization

Due to the impact of opsonization on nanomaterials, a number of tools have been developed to
better characterize participating components of plasma and predict the outcome of the interaction.
The techniques and tools for characterizing this biological barrier have been reviewed elsewhere [37,38].
With new approaches rapidly being developed and our knowledge of these systems improving,
new strategies for avoiding specific components or controlling this process are regularly being reported.
Many nanomedicine adaptations have been generated through pre-incubation with serum [39] and
artificial creation of the hard corona [40], whereas others have used polymer design to modulate
protein corona [41]. The research into improving the interactions with this barrier also suggest some
of the most customizable approaches are attractive for further investigation. For instance, utilizing
first pass interactions with the plasma proteome to aid in tailoring polymer selection to specific
patient application [42]. It is through this innovative approach to “work with” rather than “overcome”
biological barriers for nanomedicines that we envisage significant advances will be achieved [43].

2.2. Hemolysis

Red blood cells (erythrocytes) are a major cellular component of the blood, and are vulnerable to
damage, particularly when exposed to foreign bodies [44]. The term “hemolysis” describes the process
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by which damage to red blood cells leads to leakage of the iron-containing protein hemoglobin into
the plasma. Some nanoparticles have been shown to be hemolytic [45], but also adsorb some of the
released hemoglobin and/or adhere to cell debris. This in turn increases the possibilities of clearance
by macrophages via scavenger receptors and phosphatidylserine-mediated phagocytosis [44,46–48].
Severe hemolysis may lead to life threating conditions, such as hemolytic anemia, jaundice and
renal failure. Thus, evaluation of hemolytic activity is a critical aspect of pre-clinical evaluation
of polymeric nanomedicines. Many studies have evaluated hemolytic behavior of nanomaterials,
such as hard nanoparticles [49,50], soft nanoparticles [51], lipid nanoparticles [52], dendrimers [53],
and hyperbranched polymers [54,55] through a standard approach based on spectrophotometric
detection of hemoglobin after incubating testing samples with blood [56–63]. However, there is no
consensus on a standard hemolysis assay, because of the variations in assay protocols: the blood source
(human or animal) and type (whole blood or purified erythrocyte), the incubation time and even the
absorbance wavelength measured. Even differences in centrifugation speeds and times can lead to
disparate results [64]. Therefore, clear guidelines should be established for evaluation of nanoparticle
hemolytic activity before they are approved for intravenous administration, similar to that suggested
for standardization of nanomaterial property characterization in bio-nano science [65].

While many nanomedicine systems employ strategies to prevent interaction with red blood cells,
recent investigations have looked at utilizing the innate biodistribution and bio-inert properties of these
cells. A very promising strategy has described the apparent ability for nanoparticles to “hitchhike”
onto red blood cells to improve organ distribution, where the blood cells offer a direct passage to organs
of interest [66]. Such an approach offers significantly improved delivery of high-yield therapeutics
(nanomedicines) into diseased tissues and is likely to become a hot area of interest into the future.

3. Biological Fate of Nanomedicines

While nanomedicines are typically developed to have an effect on, or interact with, specific
tissues in the body, they also have defined physical characteristics that dictate their biodistribution and
subsequent clearance from the body. Pharmacokinetic and biodistribution behavior is important for
tuning the overall therapeutic window of a nanomedicine, in addition to potential off-target effects
that might be prominent upon administration [23]. This property is typically tuned to achieve the
greatest effect from the added therapeutic cargo. The clearance of the nanomedicines might be related
to degradation, destabilization or removal of small polymer components as a result of metabolism.
It is important to recognize that this clearance provides insight into the physiological half-life of the
nanocarrier itself, rather than the cargo.

3.1. Biodistribution

Upon intravenous administration, nanomedicines distribute throughout the circulatory system
and subsequently proceed to compartmentalize in different tissues. The rate of compartmentalization
(due to both distribution and clearance) is dependent on the biophysical properties of the polymeric
materials and can be described by a number of pharmacokinetic models [67,68]. It is expected that the
plasma concentration of nanomedicines would decrease with time due to elimination and excretion via
the liver and kidneys, and partitioning and diffusion into tissue. Distribution into major organs such
as the liver, spleen, and kidneys are generally due to clearance mechanisms [69] and for a non-fouling
polymer such as PEG, is predominantly driven by size and size distribution [70,71].

Numerous research groups have attempted to delineate defined cut-off values for organ distribution
and this might be somewhat predictable for hard particles, where the radius of hydration (RH) is defined
and can be correlated to particular sized fenestrations or pores within clearance organs [72]. However,
soft particles offer significant challenges in delineating well-defined boundaries and limits for predicting
accumulation and clearance owing to their non-rigid size and conformation [73]. The effect of this
parameter is discussed in more detail below in the discussion on clearance mechanisms. The various
factors that dictate opsonization and interaction with blood components has direct bearing on the
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biodistribution that is observed. Size, surface chemistry, functionality, topology, and morphology of
particles can all play an important role. Likewise, the change in these properties following adsorption
of blood proteins will also dictate biodistribution and ultimate clearance routes.

3.2. Clearance Pathways

Another important factor to consider is the ultimate clearance of polymeric nanomaterials.
As described in previous section, the clearance pathways of particles are dictated by the biophysical
properties of the polymer nanoparticles. For example, in the hypothetical case of polymeric materials
that are non-fouling and charge-neutral (e.g., hydrated particles constructed from monomers such as
PEG), size will dictate the clearance route. Particles exhibiting a size range of < 10 nm will be excreted
renally, while hepatic and splenic clearance is typically important for particles < 500 nm through either
macrophage clearance or splenic fenestration. However, it has been well demonstrated that hard
particles exhibit much clearer size cut-off for a particular clearance route, compared to soft particles
where shape deformation can play a role in the clearance observed in filtering organs [74,75]. This is
due to potential conformational changes in the soft materials that allow better translocation across
membranes (e.g., glomerular filtration) due to chain reputation. This was elegantly demonstrated by
Szoka et al. for dendritic structures, where dendritic materials were able to be excreted via the kidneys
at a much higher molecular weight than that for PEG [76]. This was further demonstrated for branched
polymers [77] that underwent kidney clearance when exhibiting an RH much larger than that expected
for renal excretion [78].

For the majority of nanoparticle delivery systems, fouling of the surface with proteins invariably
occurs. This will ultimately dictate how the nanomedicine will be cleared and limit concentrations
of the material in the blood. Significant fouling of small particles can prevent their rapid renal
filtration and subsequently enhance circulation (or modulate the mode of clearance), discussed in
more detail by Alexis et al. [79]. For the majority of nanoparticle systems, liver accumulation is the
major function that occurs following intravenous injection and thus is the major barrier to tumor
accumulation of nanomedicines. By far the most prominent mechanism of liver accumulation of
foreign particles is phagocytosis by Kupffer cells [80]. These cells reside in the sinusoidal lumen
and account for the majority of macrophages in the body. Nanomedicines are also able to pass
through the fenestrae along the endothelial wall and become lodged within the perisinusoidal space or
interact with hepatocytes. Such processes are ultimately controlled by the biophysical properties of
the nanomedicines. Therefore, design parameters of the nanomaterials can significantly modulate the
clearance pathway of nanomedicines in a tunable manner.

Given the importance of surface chemistry on the biodistribution and clearance of nanomedicines,
recent interest has focused on developing multistep nanomedicine systems that can take advantage
of multiple mechanisms for tumor accumulation. It is well established that the EPR effect plays
some role (and in many cases the major role) in nanomedicine accumulation in tumor tissue [81].
This is often improved by incorporating targeting ligands towards tumor cell markers that allow for
enhanced association with the tumor tissue (these processes are described in greater detail below).
One issue with coating nanoparticles with proteins (e.g., antibodies, antibody fragments etc.) is that the
injected nanoparticle no longer retains the stealthy characteristics of the nanomedicine (e.g., PEGylated
structures), and recognition by the immune system following intravenous injection is exacerbated [82].
To overcome this, new approaches are being developed that utilize a “pre-targeting’ method that
is well established in antibody molecular imaging. Here, the targeted system (e.g., antibody) is
injected into the patient (or animal) and allowed to distribute and accumulate depending on the
biophysical characteristics of the molecule. Following a defined period of time depending on the
known pharmacokinetics of the molecule, a second molecule is injected that will have fast clearance,
unless it undergoes a chemical reaction with the initial probe molecule. By incorporating imaging
modalities on the second molecule, signal-to-noise ratios can be significantly enhanced owing to the
much lower background signal present [83–85]. By utilizing bio-orthogonal chemistry approaches,
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this technique can also be translated to therapeutic delivery and offers exciting new methods for
improving nanomedicine efficacy, while decreasing off-target effects [86,87]. It is expected that such
methodology and approaches will become more popular in nanomedicine therapeutics into the future.

4. Gathering at the Tumor Site

If a polymeric material evades the immune system [10], transits to the tumor site via convection [88],
and opsonization has not rendered it inert [16], the next series of barriers arises when the nanoparticles
are required to translocate the vascular endothelium and accumulate within tumor tissue. This is
compounded by a number of different biological parameters, including the degree of vascularization,
positioning of structures within the tumor volume, blood flow through vessel architectures, and integrity
of the endothelial barrier [16,89,90]. Extravasation is critical for polymer transfer from circulation
into the tumor tissue. This can occur through a number of mechanisms, including diffusional
mechanisms [91], passing through fenestrations [90], transcytosing through endothelial cells [92],
or other means [88,93]. A schematic showing some major components of the tumor environment is
shown in Figure 3.Polymers 2019, 11, x FOR PEER REVIEW 11 of 33 
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Figure 3. Obstacles associated with tumor accumulation: (a) Poor diffusion through tumor stroma;
(b) premature exposure to delivery stimulus in a hypoxic microenvironment; (c) uptake by tumor
associated cell populations (e.g., fibroblasts); and (d) nanoparticle uptake only within nearby target
cells rather than homogeneously throughout the malignant mass.

4.1. Extravasation

4.1.1. Impact of Vessel Architecture

An initial consideration governing whether a nanomaterial will reach the interior of a solid tumor
is the distribution and complexity of the vessel architectures endogenous to the cancerous tissue.
Processes associated with cancer biology such as neo-angiogenesis and vascular mimicry allow for
high variability and complexity of associated vascular [94–96]. The extent to which tumor tissue is
vascularized and the perfusion of those vessels directly correlates with nanoparticle extravasation [93,95].
Tied to the disease stage, volume of the mass and metabolic needs of the tumor, microvasculature
generated via neo-angiogenic processes often comprises a suite of abnormal features. This includes
factors such as variable vessel thickness, disorganized vascular branching, poor basement membrane
integrity, irregular endothelial cell phenotype, and functional shunting [88,89,97]. The permeability
of vessels produced through neo-angiogenesis are usually a key determinant as to whether vessel
architecture plays a significant role in the EPR effect. This impacts nanomedicine accumulation as
this phenomenon typically results in vasculature with the best access to the tumor interior [94,95,98].
Further, angiogenesis at the tumor site is in part responsible for the development of the complex tumor
microenvironments [88]. Comparisons of xenograft tumors arising from different cancer cell lines have
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found that specific examples possess a higher propensity for the development of vascularity when used
to establish tumor models than do others [93,94,96,99]. This indicates that in the preclinical space, tumor
model selection holds great sway over the behavior of nanomedicines relying on the EPR effect. This is
difficult to account for when considering clinical translation. The role of vascular endothelial growth
factor (VEGF) in these processes has resulted in it becoming an attractive target for accumulation at
the tumor site [88,100]. Co-delivery of vessel normalizing drugs, vasodilators, and remodeling of the
cancer-associated vasculature have also become prominent approaches to improving the accumulation
of nanomaterials at the tumor site, with varying levels of success reported [101–103].

The ability to control or predict extravasation in vessel architectures has become an important
point of study. This is because drug delivery at undesired locations can cause vascular collapse and
subsequent shunting, thus reducing the accessibility of the tumor interior to the remaining polymer in
circulation [88]. As with many of the biological barriers discussed, understanding the formation of
vascular architectures in tumors and the causal mechanisms that result in extravasation of polymeric
materials will improve the probability of nanomedicines translating into the clinical sphere.

4.1.2. Role of Endothelial Integrity

The structural features that govern permeability of vascular architectures and thus whether tumor
tissue may be imbued via the EPR effect, are static and dynamic openings in the endothelial barrier,
termed fenestrations [104]. In particular, neo-angiogenic vessels often possess variable permeability
due to their structurally unreliable production resulting in the distribution of fenestrations throughout
tumor vasculature being similarly chaotic [105]. Combined with flow rate within a particular vesicular
location, the size and frequency of fenestrations contribute to extravasation efficiency, particularly with
respect to nanomedicine size [106]. These vascular openings are under dynamic regulation and the
resulting venting behaviors represent an important means by which larger materials may translocate
the endothelial barrier [90]. The distribution and modulation of fenestrations are partially responsible
for uneven penetration of nanomedicines into the tumor tissue [107]. While the spatial regulation
and tumor phenotype of endothelial fenestrations and their venting behaviors remain elusive. It can
be inferred that if a region bearing a higher concentration of fenestrations or increased permeability
is associated with tumor parenchyma then drug delivery will be significantly improved over an
area associated with the stroma. Given their decisive role in dictating size-dependent escape from
vasculature, fenestrations consequently govern the concentration and distribution of nanomaterials
that may obtain access to the tumor volume and thus exert control over accumulation. An interesting
point to note is that hard particles have been found to improve their own tumor accumulation through
damaging the endothelial barrier at the expense of inducing metastasis [108]. However, the applicability
of this finding to soft materials such as polymeric systems remains dubious.

4.1.3. Emerging Tools for Imaging and Overcoming the Endothelial Barrier

Molecular imaging techniques offer unique insight into the various biological processes that a
nanomaterial may undergo following injection into animals. Importantly, the imaging can inform on
both spatial distribution of nanomedicines, as well as provide functional information on bio–nano
interactions [109,110]. Magnetic resonance imaging (MRI) is among the best-established techniques for
understanding the underlying biology of vascular architecture and endothelial integrity. This imaging
modality benefits from a suite of techniques and contrast agents that have been developed. Numerous
ligands for MRI have already been established, and are commercially available for incorporation
into nanomaterials through chemical handles [111], encapsulation [112], or conjugation of chelation
motifs [113]. Similarly, dynamic positron emission tomography (PET) imaging also provides a unique
insight into accumulation within the tumor mass through uniquely quantitative data. Strategies/agents
for incorporating radiometals with appropriate half-lives are also well established [114]. While useful
and clinically relevant, these techniques generally lack either the spatial or the temporal resolution
for examining the biological interactions of intravenously administered nanomedicines. Traditional
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fluorescence imaging also lacks the spatial resolution required to image extravasation processes at
work. However, the inclusion of fluorophores in the composition of polymeric constructs allows
for correlation of in vivo imaging with ex vivo microscopy of tumors and tissues, with high spatial
sensitivity. Analysis of biological samples ex vivo has become increasingly commonplace for a variety
of investigative purposes in terms of the distribution of materials with respect to blood vessels.
For instance, confocal microscopy of sectioned tumors [100,115] and light sheet microscopy of cleared
tumors [91] and organs [116], represent a means by which intra-tissue distribution of materials and their
relationship with vasculature can be studied at a tissue or cellular level. Unfortunately, this resolution
comes at the expense of the ability to capture dynamic behaviors with reliability. Microfluidics offer
one of the only means for mimicking vascular conditions and controlling specific factors such as flow
rate experimentally [117,118]. While excellent advances have been made [119], much like other in vitro
methods, this approach often suffers from bias and lack of translational relevance on account of its
heavily artificial nature.

Emerging imaging modalities may be better equipped to answer the foundational questions
regarding dynamic nanomaterial behaviors at the endothelial barrier in vivo; for instance, photoacoustic
imaging and intravital microscopy (IVM). As demonstrated by Matsumoto et al. (2016) [90], IVM is well
suited for capturing processes associated with the endothelial barrier, being able to visualize liposomes
engaging in extravasation processes sequestered into size-limited mechanisms. The use of IVM and
similar techniques has become more commonplace owing to its ability to image dynamic processes and
determine pharmacokinetics at a cellular level in model animals in real time. Photoacoustic imaging
offers a unique means of visualizing vessel architecture and monitoring the flow of blood through
the tumor mass, in addition to tracking exogenous probes. This technique can utilize the properties
of hemoglobin to provide label free imaging for the examination of oxygen levels and perfusion of
the tumor mass. While this modality is still very much in its infancy, efforts to develop photoacoustic
probes for monitoring in vivo behaviors of polymeric materials are well under way, with encapsulation
of select dyes [120,121] and attachment of quenching molecules [122] being prominent examples.

In terms of delivering nanomedicines across the endothelial barrier, a number of methods
have been developed to improve the rate of extravasation and thus accumulation within the tumor
mass. Recent efforts have demonstrated that the EPR effect may be improved through altering blood
vessel geometry [102], normalizing vasculature [101], remodeling [103], and vessel pruning [123].
Microbubble cavitation can also be used to disrupt endothelial barriers and increase flow of material
from vasculature into the tumor mass [124]. However, given the concerns raised by the recent findings
regarding hard particles inducing metastasis through damaging endothelial integrity [108], this solution
may not prove clinically viable for applications involving aggressive or metastatic tumors.

4.2. Tumor Tissue Distribution

4.2.1. Tumor Stroma and Microenvironments

An important consideration for determining the outcome of therapeutic delivery is the location
within the tumor mass where polymeric materials overcome the endothelial barrier. For instance,
if the material has greater access to the tumor stroma than parenchyma. Stroma is the site of dense
extracellular matrix and tumor associated cell populations, which represent significant obstacles
to tumor perfusion. Should a material find itself in this milieu, difficulties may arise in specific
accumulation at a site where therapeutic release will prove effective. Given that stroma formation and
hypoxia possess key roles in the initiation of neo-angiogenesis, there is an interplay between tumor
microenvironments, vessel architecture and endothelial integrity [125]. As with vascular architecture,
Sulheim et al. [93] identified that components of the stroma, such as collagen concentration, vary with
the cell line used to establish xenograft tumors. The differing levels of fibrous content also contribute
to the ability of materials to diffuse through the tumor environments. The density and positioning
of blood vessels relative to the parenchyma and microenvironments of the tumor mass are key
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elements contributing to whether a material will be able to obtain access to a location of therapeutic
benefit. Should a material be able to avoid or overcome the stromal barrier, it will then face the
microenvironments of the tumor bulk, which may vary drastically in terms of biological content
and chemical species present. These factors are particularly pertinent to environmentally responsive
polymers as such microenvironments may prematurely trigger release mechanisms such as degradable
linker motifs. Hypoxic regions are known to occur in the majority of solid tumors and should be taken
into consideration in the design of polymers for nanomedicine applications [126].

The interstitial pressure resulting from microenvironment development also produces a difficult
obstacle, with passive diffusion hindered relative to the size, stage, and specifics of each tumor.
Larger, poorly vascularized tumors have a tendency to produce pressure gradients that may thwart
polymer penetration. This forces the material to remain towards the tumor periphery and leaves
them open to discovery by tumor associated macrophages (TAMs). As reported by Lucas et al. [127],
endogenous macrophages may possess specific distributions in xenograft models and modulate the
pharmacokinetics of drug delivery, altering the behavior and efficacy of materials. The understanding
of this interaction is confounded by a complex array of interactions that exist amongst tumor cell
populations, which has been well reviewed elsewhere [128].

The combination of these factors with the aforementioned barriers, are likely the source of the
commonly cited < 10% of injected dose accumulating within the tumor mass [3,16]. This is dependent
on the stromal barriers and internal distribution of materials and thus may yield a lower effective dose
to the tumor tissue in certain cases. As noted prior, few studies report the intratumoral distribution
of the materials being studied. However, as numerous groups report successful accumulation at the
tumor site, improving the distribution, and more importantly the penetration, of nanomedicines has
become an important objective in ongoing developments in the field.

4.2.2. Spatial Regulation of Receptor Expression

A further limitation of tumor perfusion specific to accumulation at the tumor site is the expression
of target receptors and proteins. This is a specific factor relevant to targeted materials. Although
receptor targeted materials commonly outperform those that rely solely on the EPR effect, such designs
are not without their own set of hurdles. Even in xenograft tumors, receptor expression is not
ubiquitous throughout the mass. Biological stimuli modulating gene expression of the cells during
growth and the formation of microenvironments induce heterogeneity within the parenchyma and
stroma of the cancerous tissue. For targeted materials, not only do these materials need to be able to
penetrate the tumor parenchyma, but also find their target receptor or marker. Assuming that the
material encounters its target receptor, a number of the prior barriers (such as opsonization) may have
altered the biological identity of the material, potentially inhibiting the binding interactions required
to induce cellular internalization [16].

4.2.3. Downstream Influence of Opsonization on Receptor Affinity

Despite a targeted nanoparticle exhibiting the ability to migrate through the barriers outlined
above and reach the target receptor, the complex array of biological modifications to its surface as
a result of in situ opsonization may still yet inhibit its functionality (Figure 4). Prior interactions in
the bloodstream and the nature of the protein coat acquired throughout the journey may result in a
reduction in binding affinity, avidity and accessibility of the targeting motif. These factors can produce
non-specific cellular association or reduce the ability of the polymer to interact with the receptor
through steric hindrance or corruption of the targeting moiety. Even in the event that the targeting
motif is still available for binding, access to endocytic pathways may also be altered should a material
become too large for the receptor-mediated pathway of the target (e.g., in the case where opsonins etc.
modulate nanomedicine size). While the interactions between physiochemical properties and biological
identity are regularly discussed, few studies have explored the impact of these phenomena in detail.
As reviewed by Lazarovits et al. [16], these behaviors are dynamic and the outcome unpredictable,
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although with a wider array of systematic studies and improved reporting standards to facilitate
meta-analysis [43,65], our ability to ensure targeting fidelity will improve.Polymers 2019, 11, x FOR PEER REVIEW 12 of 33 
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Figure 4. Schematic demonstrating the impact of opsonization on targeting efficiency: (a) Desired
targeting, wherein binding is maintained; and (b) binding hindered by interactions with non-specifically
bound protein.

4.2.4. Current and Emerging Tools for Improving Penetration of the Tumor Mass

Several methods have been suggested to improve transit of materials through the tumor mass,
with numerous options available to alter the structures and conditions within the tissue. These include
examples such as remodeling stromal architecture through destruction of collagen [129], inhibiting or
modulating processes contingent to microenvironment formation [130], and implementing heat and
radiation to allow for limited control over fluid dynamics [131].

Although discussed as one of the barriers to penetrating the tumor mass, one means for improving
access to the tumor parenchyma is to target the endogenous macrophage populations. By targeting
the tumor associated immune cell population, macrophage shuttling across the tumor stroma may
be one of the effective means for transporting materials [132]. However, this may pose issues for
environmentally responsive polymers targeted to endosomal compartments, as it is highly likely they
will encounter this stimulus within the carrier cell.

A recent review by Sun et al. [133] showed particular sizes, shapes, surface charge, and end-group
functionalities have potential to improve intratumoral distribution. Surface architecture has also
been indicated as a means to alter tumor penetration of materials [134]. As our understanding of
the interplay between such factors and permeation of cancerous tissue has improved, a number
of innovations in polymeric design have been developed to help facilitate tumor penetration and
overcome the influence of microenvironments. Mechanisms that enhance drug release through
polymer disassembly are one such example [135], and offer improved opportunities to personalize
nanomedicines. Further, including motifs and architectures that allow for charge- and size-switching
of materials have been demonstrated to provide better penetration in xenograft models. For instance,
Li et al. [136] demonstrated that through pH-dependent disassembly, a particle designed for improved
circulation times could improve penetration into the tumor mass once it encounters acidic tumor
microenvironments. Similar observations have been reported for hyperbranched polymers bearing
hydrazone-linked chemotherapy drugs, whereby the released drug was able to transit further from
the vessel architecture than the associated polymer vehicle [137]. Materials that shed their PEGylated
surface have also become a popular design choice for improving the behavior of polymeric materials
at the tumor site [138,139].
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5. Cellular Level Interactions and Behaviors

All chemotherapeutics act on an intracellular target [140]. A patient undergoing a common
chemotherapy regime is administered with a combination of alkylating agents, anti-metabolites, mitotic
inhibitors, topoisomerase inhibitors, and cytotoxic antibiotics [141]. These therapies interfere with
microtubule biology, inhibit enzymes involved in deoxyribonucleic acid (DNA) synthesis, replication,
and repair, and generate breaks in DNA, all of which are located in specific cellular compartments
such as the cytosol and nucleus [142]. Emerging therapeutic strategies like protein, small interfering
ribonucleic acid (siRNA) and clustered regularly-interspaced short palindromic repeats/Cas9 gene
engineering (CRISPR/Cas9) also operate on targets in specific intracellular locations [143]. Therefore,
to generate their anticancer effect, the therapeutic must migrate to this site of action.

Once accumulation and penetration throughout the tumor tissue has occurred, the therapeutic
must surpass a series of cellular barriers to migrate to the necessary subcellular organelle [144]. These
intracellular processes required are determined by the properties of the specific therapeutic and its
mechanism of action [145]. Small molecule chemotherapeutics can partly accumulate in the necessary
subcellular location through passive diffusion, whereas membrane impermeable biological therapeutics
require active transport [144]. In general, nanomedicines are developed such that the physicochemical
properties of the encapsulated therapeutic would have no significant effect on the biodistribution and
tumor localization of the nanomedicine itself. In contrast, as the intracellular barriers required vary
between therapeutics, a therapeutic specific nanoparticle design is likely to be required to navigate
the intracellular processes hindering subcellular localization. These include strategies to enhance
internalization, generate escape from or bypass the endocytosis pathway, and facilitate intracellular
trafficking [144]. Regardless of the properties of the therapeutic, improving subcellular delivery
invariably leads to an improvement in efficacy [146–148]. It is also an important strategy to overcome
the downstream complications that are encountered when treating multidrug-resistant forms of
cancer [149].

5.1. Internalization

Nanoparticle internalization is the first step to subcellular localization. Although both
energy-dependent and energy-independent uptake are often observed, nanoparticle internalization
through the endocytosis pathway is the most prevalent [150]. There are a myriad of cellular endocytosis
mechanisms including caveolae-dependent, clathrin-dependent, clathrin/caveolae-independent,
phagocytosis, and pinocytosis, which broadly involve the budding and tethering of the cell membrane
into an endocytic vesicle [151]. As internalization varies greatly between both particles and cell-type,
understanding nanoparticle internalization pathways is important to optimizing the delivered
intracellular dose of the nanoparticle [152].

5.1.1. Nanoparticle Properties That Influence Cell Internalization

As highlighted in recent reviews, the physicochemical properties of a nanoparticle including size,
charge, and surface chemistry, as well as the addition of targeting ligands, impart great influence
on the cell association and internalization [150,153,154]. In particular, a positive charge enhances
cell association through the interaction with the negatively-charged phospholipid bilayer of the cell
membrane [150,155]. While an improved cell association can result in enhanced internalization,
these two processes are not always intertwined. As such, investigations into the effect of the
nanoparticle’s physicochemical properties on cell internalization are necessary [156]. An emerging study
by Caruso and coworkers [157] highlights the complex interplay between nanoparticle physicochemical
properties and cell internalization. In the study, alterations to the size and shape of poly(ethylene
glycol) capsules functionalized with bispecific antibodies influenced cell internalization, while a
negligible difference of cell association was maintained. Chen and coworkers [158] present another
interesting observation that the fluorous substitution of alkanes enhanced the internalization of
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branched polyethylenimine (grafted with hydrophobic substituents) and bovine serum albumin
nanoassemblies. This could present and exciting avenue to enhance particle internalization.

Modifying the nanoparticle design; however, must be made with careful consideration,
as enhancing association and internalization can also increase non-specific uptake and alter
biodistribution (as discussed in Section 3.2). For example, the addition of a stealthy PEG shell
reduces non-specific uptake by the immune system, but also reduces target cell association and
internalization [159–161]. While a balanced approach of enhanced target cell internalization with not
too much non-specific uptake could be taken, a strategy to tune the nanoparticle design to switch on
internalization at the target site is likely to be most effective. Current strategies include incorporating
a detachable corona and modulating particle charge inside the acidic tumor microenvironment (as
discussed in Section 4.2.4) [162–164].

A different strategy to avoid the endocytosis pathway and gain intracellular access is by fusion with,
or translocation through the plasma membrane [165]. While this strategy has not been demonstrated for
polymeric nanoparticles; inorganic nanoparticles [166], liposomes [167], cell penetrating peptides [168],
and hybrid particle nanoassemblies [169,170] have all been observed to enter cells by fusion or
translocation. An important demonstration of this strategy was reported recently using nanoassemblies
of arginine functionalized gold nanoparticles self-assembled with oligo(glutamate) tagged proteins
capable of rapid fusion with the plasma membrane [169]. In order for a particle capable of fusion
to be used for cancer nanomedicine, selective fusion with the cancer, and not host cells, is needed
for safe and targeted treatment. The acidity of the tumor microenvironment, around pH 6.8–6.4,
provides an opportunity to distinguish between host and cancer cells [171]. It is also possible to
control fusogenic capabilities with a stimuli-responsive particle corona, as discussed for control of
internalization above [172].

All of these nanoparticle modification strategies offer the opportunity to capitalize on chemists’
ability to design complex materials based on increased biological knowledge of the tumor
microenvironment. Much of the literature has focused on nanoparticle cell association; however,
this can be different to cell internalization. An additional focus on nanoparticle internalization and
the continued understanding of the complex tumor microenvironment will enable the rational design
nanomedicines with efficient and selective cellular internalization [152].

5.1.2. Tools to Understand Cellular Internalization and Limitations of In Vitro Models

When investigating internalization, it is important to distinguish between associated and
internalized material, since many techniques are used erroneously to study these phenomena
ubiquitously including fluorescent activated cell sorting (FACS) [152]. Investigating internalization can
be achieved through confocal microscopy and electron microscopy, but are generally low-throughput,
time-intensive, and sample-dependent [150]. Confocal microscopy, either in fixed and live cells, allows
the location of nanoparticles to be observed visually by co-staining the cell membrane and various
organelles [156]. While viable for inorganic nanoparticles, measuring internalization through electron
microscopy can be complicated for polymeric nanoparticles as they are difficult to distinguish from
their biological environment, due to possessing components with similar electron density [173,174].
Improved contrast can be achieved through the staining with heavy metal salts; however, not all
polymeric nanoparticles carry functions groups that respond to the staining [174]. Doping the particle
with electron dense components such as inorganic nanoparticles or quantum dots is also another
method explored to enhance contrast [4,175]. A more elegant strategy that could be applied to the
study of polymeric nanoparticles would be to enhance the electron density of the particles through
immunolabeling with antibody-gold conjugates or ascorbate peroxidase (APEX) [176–178].

High-throughput methods to quantify internalization are the most beneficial, as they logistically
enable the screening of large libraries of both modifications to the nanomedicine and biological variables.
As a result, methods have been developed to enable the high throughput flow cytometry measurements
to correspond to internalized nanoparticles [179–181]. Gottstein and coworkers [179] developed a
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method to correct flow cytometry data that involved the determination of the ratio of associated vs
internalized nanoparticles by confocal microscopy, then after correlating the nanoparticle fluorescence
in confocal microscopy to flow cytometry, the application of a correction factor to the flow cytometry
data. The implementation of an internalization mask to imaging flow cytometry, that only includes
fluorescence located within an area defined by the fluorescently-labeled cell membrane, has also been
used to measure internalization in a high throughput manner [157]. Another strategy involves the
use of sensors to probe the difference between internalized and associated nanoparticles. The specific
hybridization internalization probe (SHIP) and the fluorescent click internalization sensors quench
fluorescence from surface-bound material, this allows a correlation between the total fluorescence and
percentage of internalized nanoparticles to be determined [180,181]. Other methods of extracellular
quenching are trypan blue and acid washing; however, these methods are limited for applications that
require other surface-bound fluorescence such as phenotyping [181]. The inhibition of endocytosis
through incubation at low temperature can also be used to provide an indication of the particles
associated with the cell [180].

The in vitro assays typically used to investigate internalization are not sufficient to understand
the internalization of nanocarriers in the complex tumor environments. Internalization assays are
typically performed on cell culture dishes under static conditions and, as a consequence, are impacted
by nanoparticle sedimentation and a lack of ligand-binding competition [182–184]. The study
of nanoparticle cell association and internalization through an in vivo model would be the most
physiologically accurate, but currently no standardized assay is available owing to the complexity of
the system under study. A possible approach could be to sort through the complex array of cell types
present in a tumor using fluorescence-activated cell sorting, and then probe internalization using the
SHIP and fluorescent click internalization sensors mentioned above [150].

5.2. Endosomal Escape

Generating endosomal escape is critical for nanoparticles internalized via endocytosis.
After internalization into an endocytic vesicle, the nanoparticle will travel down the endocytosis
pathway to either mature into a late endosome and accumulate in a lysosome or be exocytosed out
the cell [165]. Remaining in the lysosome is highly detrimental for a nanomedicine, especially for
biological therapeutics, as the therapeutic remains segregated from the intracellular environment and
is degraded by the acidic and enzyme-rich environment of the lysosome [185]. Engineering materials
to overcome this bottleneck is a necessary step for efficient intracellular delivery. Detailed accounts of
the current strategies and materials to generate endosomal escape, as well as the methods to determine
escape, are covered in previous reviews [165,186].

5.2.1. Engineering Materials to Escape the Endosome

One strategy to enhance the endosomal escape of a membrane impermeable therapeutic is
to engineer the nanoparticle design to respond to stimuli endogenous to the endosomal pathway
to generate a response that disrupts the integrity of the endosome. The polymeric nanoparticles
investigated for this approach are typically pH-responsive materials, which respond to the pH
decrease during the maturation of the endosome, from a physiological pH of 7.4 down to pH
5.0 of the lysosome. The generation of endosomal escape is postulated to be through lysing of
the endosome through mechanical stress from particle swelling or by rendering the endosomes
leaky through membrane disruption and the formation of pores [186]. A prominent example is the
pH-responsive core shell particle, composed of a poly(2-(diethylamino)ethyl methacrylate) core and
poly(aminoethyl methacrylate) shell that was crosslinked with poly(ethylene glycol) dimethacrylate,
demonstrated to induce efficient endosomal escape of calcein compared to a pH-insensitive control
particle [187]. In another study Shen and coworkers observed that increasing the amount of a
poly(2-(dimethylamino)ethyl methacrylate-co-propylacrylic acid-co-butyl methacrylate in a blend
particle with poly(lactide-co-glycolide) enhanced the endosomal escape of calcein [188]. This was
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thought to be by pH-dependent membrane interaction. A major limitation of the current pH-responsive
nanoparticle strategies based on membrane interaction is the size of cargo that can escape the endosome,
as there are numerous reports of the escape of small cargo but limited examples of large cargo [189–191].
Further understanding on strategies to facilitate the endosomal escape of large material are needed to
enable the efficient intracellular delivery of biological therapeutics. While pH is an obvious choice of
stimuli, additional considerations are needed to use pH-responsive materials to generate endosomal
escape in cancer cells. If the response of the nanomaterial in the pH range ~6.8–6.4 is faster than the
rate of cell internalization, then activation will occur in the slightly acidic tumor microenvironment
rather than inside the endosome, leading to poor efficiency of the nanomedicine [192].

Nanoparticles that respond to stimuli exogenous to the endosomal pathway has also been
investigated as a method to generate endosomal escape [193]. Photochemical internalization (PCI)
investigates the use of light to generate endosome escape. In these systems, upon the excitation
by light, a photosensitizer molecule in the vicinity of the endosomal membrane generates reactive
oxygen species that disrupts the membrane to facilitate endosomal escape [194,195]. Using this
approach, photosensitizer molecules have been attached to nanoparticles and have been shown to
induce the transition from punctate to diffuse fluorescence of labeled dextran. This approach also
showed the enhancement of various endpoint assays after radiation [196]. For example, a tertiary
complex of a phthalocyanine-centered second-generation aryl ether dendrimer, a dimerized cationic
peptide, and plasmid DNA was observed to facilitate the endosomal escape of 10–15 kDa dextran upon
stimulation of 400–700 nm light [197]. The depth of light penetration and the potential for toxicity are
limitations of this approach. A recent study by Nogués and coworkers also indicates that there is a size
threshold for cargo that can escape the endosome using PCI [194].

Another method for endosomal escape of cargo is to modify the encapsulated therapeutic with
the ability to escape the endosome. This has been demonstrated through the covalent attachment of
cell-penetrating peptides (CPP) or the remodeling of a protein’s physicochemical properties that can
deliver the therapeutic to the cytosol by the formation of transient pores or through direct translocation.
The covalent attachment of the cyclic trans-activator of transcription (cTAT) cell-penetrating peptide
has been shown to facilitate the delivery of the attached green fluorescent protein (GFP). While this
is a great example of delivering a large protein, the high concentration of 150 µM of the GFP-cTAT
conjugate needed is likely to be too high to work as a nanoparticle cargo [198]. Endosomal escape
at lower concentrations were demonstrated by Dowdy and coworkers [199], who observed that GFP
fluorescence of the split-GFP assay increased by 14-fold when using 45 µM of GFP11-TAT-P6-GFWFG
(GFP fragment conjugated to trans-activator of transcription (TAT) modified by a polyethylene glycol
spacer of six repeat units and a GFWFG peptide). While covalent approaches are achieving some
success, there is the potential to disrupt the activity of the therapeutic delivered, and currently retention
of function has not been demonstrated. Incorporating a cleavable group that responds to pH, redox
potential, or enzymes could be a method to remove the covalent modification to regenerate the
functional protein. The modification of the surface properties of GFP with bio-reducible esters was
found to enhance the cytosolic delivery at 15 µM by enabling the translocation, and once inside the
cell the modification was removed through intracellular esterases [200]. However, demonstration that
activity was retained was not explored. Delivery of functional enzymes has been demonstrated by
Schepartz and Wagner [201,202]. Wagner, Lächelt and coworkers developed a three-arm cationic star
succinoyl tetraethylenepentamine conjugated with a tetraethylene glycol linker by a pH-responsive
aminated methyl maleic anhydride bond [201]. The protein star conjugate showed some diffuse
fluorescence of enhanced green fluorescent protein (eGFP) at a 1 µM of protein, and was demonstrated
to induce apoptosis through the similar delivery of RNase A star conjugate. Endosome escape at 1 µM
was indicated by Schepartz and coworkers using a zinc finger protein modified by arginine motif 5.3
(ZF5.3), as indicated by the fluorescence correlation spectroscopy (FCS), the glucocorticoid-induced
eGFP translocation (GIGT) assay, and increased cytosolic activity of the APEX conjugates (refer to
Section 5.2.2 for more details of FCS and GIGT assay) [202]. However, the confocal images suggest low
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levels of escape, as fluorescence is mostly punctate with some areas of diffuse fluorescence. Interestingly,
enzyme ZF5.3 conjugates were demonstrated to retain activity without cleaving the CPP. The covalent
modification of the therapeutic approach requires the encapsulation and release to be in the endosome
of the target cell or tumor microenvironment for targeted treatment (Section 4.2.4). Loading into a
polymeric nanocarrier could be used for this, but to our knowledge this has not been investigated yet
[Figure 5].
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Figure 5. Schematic representation of the current and emerging methods to determine endosomal
escape. (a) The calcein assay determines endosome escape via the transition from punctate to
diffuse fluorescence throughout the whole cell. (b) The split-green fluorescent protein (GFP) assay
generates a fluorescent signal after endosomal escape and reconstitution of the GFP-strand with the
cytosolically-localized GFP. The split-GFP assay allows the endosomal escape of large therapeutics to
be monitored, in contrast to the calcein assay, which can only represent the escape of small molecules.
Adapted with permission from [187,203]. Copyright 2007, American Chemical Society. Copyright 2010,
John Wiley and Sons.

Developing materials to facilitate the endosomal escape of nanomedicines is still a developing
field and a generalizable method to obtain escape for a wide array of therapeutics remains unanswered.
An increased focus on understanding endosome escape and the mechanisms by which escape occurs
will enable the rational design of future nanomedicines.

5.2.2. Tools to Understand Endosomal Escape

The development and implementation of robust and standardized assays are needed in order
to develop efficient endosomal escape materials. Endpoint assays, such as transfection efficiency,
are commonplace when investigating endosomal escape [186]. While a useful indirect measurement
of escape, they limit the formation of specific and generalizable knowledge on endosomal escape,
as generally a particle’s performance in an endpoint assay is not easily uncoupled from other variables
such as loading, uptake, and subcellular trafficking. The absence of colocalization with endosomal and
lysosomal markers is also another commonly reported method, but this does not necessarily indicate
endosomal escape, if the fluorescence remains punctate [165]. A more robust strategy to measure
endosomal escape is the calcein assay. The calcein assay visualizes calcein, a membrane-impermeable
dye as punctate fluorescence when entrapped, and as diffuse fluorescence throughout the whole cell
after endosomal escape [187]. However, the calcein assay is limited by techniques to quantify the
results and that it can only represent the escape of a small molecule [191]. When trying to deliver
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biological molecules, it is important for an endosomal escape assay to be able to report on the escape of
larger sized cargo, as larger size material has been observed to remain co-localized with lysosomal
markers while showing diffuse calcein [191]. The endosomal escape of large cargo can be probed via a
variety of emerging techniques that aim to better distinguish endosomal from cytosolic fluorescence by
measuring changes in fluorescence, or through the interactions of the cargo with a cytosolically-located
enzyme (for more detail the reader is referred to the following review: [204]). Fluorescence correlation
spectroscopy measures the enhanced diffusion of a dye-labeled material of interest upon liberation
from the confinement of the endosome [202,205]. Protein-fragment complementation assays such as
the split-GFP assay can also be used to measure endosomal escape [206]. In this assay, a split-GFP
fragment is conjugated to the cargo or nanoparticle, and upon endosomal escape, reconstitution with
the rest of cytosolically-localized GFP generates a fluorescent signal. Another assay that enables the
probing of the endosomal escape of biologically-relevant cargo is the glucocorticoid-induced eGFP
translocation assay (GIGT) [207]. When located in the cytoplasm, the glucocorticoid receptor (GR)
ligand dexamethasone (Dex) induces the translocation of the glucocorticoid receptor eGFP (GR-eGFP)
conjugate from the cytoplasm to the nucleus. The GIGT assay then measures the nuclear-vs-cytoplasmic
fluorescence that indicates the amount of glucocorticoid-induced eGFP translocation induced by the
endosomal escape of Dex tagged cargo. A potential limitation of the split-GFP and the GIGT assay is if
attaching the material of interest disrupts the ability to bind with the protein for the assay to report,
resulting in the underrepresentation of escape [208]. On the other hand, as the delivery of functional
materials to the cytosol is the aim then probing the endosomal escape of a functional material might be
more beneficial than probing total endosomal escape.

The emergence of standardized and quantified endosomal escape assays, which are capable
of representing the escape of a wide range of therapeutics, will enable further understanding into
how nanoparticle structure and biological variations influence endosomal escape. Optimizing this
process will enable higher nanoparticle doses to reach the target region of the cell and thus improve
therapeutic efficacy.

5.3. Trafficking to Subcellular Locations

After endosomal escape, the therapeutics that require organelle localization must be trafficked
from the cytosol to other subcellular compartments. In some cases, such as a doxorubicin delivery
to the nucleus, this occurs through passive diffusion. For numerous therapeutics, however, active
delivery to these subcellular organelles is required and is a requisite component when considering
design of a suitable nanocarrier. This importance is best demonstrated by Escande and coworkers
who observed that less than 1% of plasmid DNA injected directly into the cytoplasm was trafficked
to the nucleus [209]. This factor dictates in a large sense the efficacy of many therapeutic systems
(in particular gene therapies). A detailed review of strategies to improve subcellular localization are
covered in previous reviews [143,145].

5.3.1. Trafficking to the Nucleus

The ability to traffic a therapeutic from the cytosol to the nucleus is initially determined by the
size of the therapeutic being delivered. Transport through nucleus’ double phospholipid bilayer
is mediated through the nuclear pore complex, which allows passive diffusion of material of less
than 45 kDa or ~ 9 nm in size [210]. If the therapeutic delivered is ~ 9 nm in size or less, then upon
cytosolic delivery the passive accumulation into the nucleus will occur. Therapeutics above 9 nm in
size require an active delivery method. The conjugation of a nuclear localization signal (NLS) to the
therapeutic enables access to the cell’s nuclear import machinery. Through complexing with importin
α/β, just importin β, or by an importin α/β-independent pathway, the delivery of larger molecules
into the nucleus is achieved [211–213]. This was well demonstrated by Rotello and coworkers who
enhanced the nuclear localization of eGFP through the conjugation with an NLS [211]. Once delivered
to the cytosol by nanoparticle-stabilized nanocapsules, fluorescence was demonstrated to migrate



Polymers 2019, 11, 1441 21 of 33

from the cytosol to the nucleus. Five NLSs were tested, including sequences derived from the EGL-13
transcription factor, the simian virus 40 (SV40), the c-Myc protein, the nucleoplasmin protein (NLP)
and the tus protein (TUS), with c-Myc and NLP observed to enhance the transition from nuclear to
cytosolic fluorescence the most. Nuclear localization of eGFP was not observed without the NLS and
for eGFP-NLS under adenosine triphosphate (ATP) depleted conditions, indicating that the enhanced
localization was a result of accessing the nuclear import machinery. A similar approach has also been
used to deliver oligo(glutamate) tagged Cas9 protein to knock out a gene in RAW264.7 macrophage
cell line [214].

The addition of an NLS; however, is not always linked to enhanced nuclear transport [215]. As a
result, the addition of an NLS must be optimized on a case-by-case basis, as the type and number of
conjugated nuclear localization sequences all influence the efficiency of nuclear transport [216,217].
The size of the material imported must also be considered; however, the reported upper threshold size
has varied between studies [147,212,216] and highlights the lack of sufficient knowledge about this
important transport mechanism. Another method to facilitate nuclear import is via cationic polymers,
suggested to enhance localization through the permeabilization of the nuclear membrane. However,
nuclear permeabilization is linked to high cytotoxicity [218,219].

5.3.2. Trafficking to the Mitochondria

Mitochondrotropic molecules and mitochondria targeting signals allow trafficking through the
mitochondria’s phospholipid bilayer from the cytosol [220]. Attaching a mitochondrotropic molecule
to the nanoparticle or cargo facilitates mitochondria targeting via the attraction between the delocalized
positive charge of the amphiphilic mitochondrotropic and the negative potential of the mitochondrial
membrane [143]. Recently this approach was used by Kempe and coworkers, who observed that the
addition of cyanine 5 dye molecule to a carboxylated N-acylated poly(amino ester) based comb polymer
resulted in the passive diffusion through the plasma membrane and colocalization with the mitochondria
through confocal microscopy [221]. Interestingly, the mitochondria targeting was facilitated despite the
overall negative charge of the polymer. Further investigations into the structure–property relationship
of the comb polymer revealed that modifications to the cyanine 5 dye, the carboxylic acid pendent
groups, and the polymer size altered the polymer internalization and prevented the subsequent
localization to the mitochondria. Conjugation of mitochondria targeting signals also enables the
transport of material into the mitochondria via mitochondria import machinery [222,223]. While
mitochondria-targeting signals have been used for hard nanoparticles, this approach is yet to be applied
to soft nanomaterials [223–225].

5.3.3. Emerging Tools for Quantification of Sub-Cellular Localization

There are still limited strategies to achieve sub-cellular quantification. One common technique is
by measuring colocalization of fluorescently-labeled nanoparticles or cargo with organelle markers
using confocal microscopy and electron microscopy. These techniques, as seen with internalization
(Section 5.1.2), have limitations of being low-throughput, time-intensive, and sample-dependent, as well
as having a limited quantification capability in the case of confocal [144,148,226,227]. A standardized and
quantified assay is needed to improve understanding of nanoparticle subcellular trafficking [226,228].
Quantification of subcellular localization has been demonstrated using raman spectroscopy. In raman
spectroscopy, a determined fingerprint of the nanoparticle and associated organelle is determined and
then points thorughout a raman map of a cell are analysed to determine the presence of the particle in a
particular subcellular region. While this method works well for large organelles, the pixel size of a raman
map is ~1 µm, limiting the resolution of smaller organelles such as endosomes [229,230]. The added
advantage of raman spectroscopy, as well as the emergence of image correlation spectroscopy, is the
ability to probe the local environment. In an interesting study, Gooding, Gaus and coworkers were able
to moniter the delivery of nanoparticles into the nucleus and monitor the release of loaded doxorubicin
from the nuclear localized nanoparticles using the pair correlation function (pCF) to identify barriers
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to diffusion [205]. Importantly, mechanistic insight can also be through the implementation of negative
controls preventing subcellular trafficking and would also enhance the confidence of results [212].

Delivery to subcellular organelles is not extensively investigated, especially for polymeric
nanoparticles, as it remains quite challenging to achieve robustly [144]. In 2015, a meta-analysis by
Maity and Stepensky revealed that only 77 papers have investigated the active subcellular targeting of
therapeutics using nanoparticles, with polymeric particles occupying just a fraction of these studies [148].
Compounding this, the majority of studies investigating strategies to improve subcellular trafficking
involve the incubation of the nanoparticle with a cell. As a result, the ability to be internalized and
escape from the endosome will also influence subcellular trafficking. Further research into how the
nanoparticle structure can influence subcellular trafficking is an exciting opportunity for growth in the
field of nanomedicine.

6. Conclusions

Given the complex and interconnected makeup of biological barriers and their intrinsic nature to
exclude exogenous material, it is understandable that numerous literature reports give dire accounts
of the current state of nanomedicine. However, as highlighted by this review, there are numerous
innovations in both the study of these barriers and the development of the tools required to overcome
them. From novel imaging approaches through to exciting advances in material design, polymeric
materials in particular highlight the diverse and interdisciplinary nature of the field. Polymeric
constructs offer unique opportunities to understand mechanism and mode of action of therapeutics,
combining the various advantages of modular design as described in this review.

While not specifically addressed in this review, there is also increasing interest in developing
strategies that “work with” biology, or potentially utilize administration routes that totally bypass
one or more of the barriers discussed in this review. For example, in tumor immunotherapy it is
becoming increasingly common to see direct injection of therapeutics intra-tumorally, rather than
relying on systemic administration. This administration route could overcome some of the issues
surrounding poor accumulation of intravenously administered nanomedicines due to unfavorable
pharmacokinetics or biodistribution. Likewise, biology-modifying drugs can also be used to modulate
the various barriers described in this review to enhance a particular response; one example discussed
in this review was the use of vascular disrupting agents.

Irrespective of the strategies that are employed by nanotechnologists to develop novel polymeric
nanomedicines, it will be through building solid foundational underpinnings of biological barriers
and improving our knowledge of the interactions that occur at the bio-nano interface, where
true breakthroughs will lie. Ultimately, this will lead to a more biologically-informed design of
polymeric nanomedicines that is rationalized by clinical translation. As our ability to engineer
polymers to overcome unfavorable interactions within biological systems progresses, the future of
clinically-applicable personalized nanomedicines becomes increasingly optimistic.
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