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Genomic analysis of Acinetobacter
baumannii prophages reveals
remarkable diversity and suggests
e o profound impact on bacterial
et virulence and fitness

Ana Rita Costa, Rodrigo Monteiro® & Joana Azeredo

. The recent nomination by the World Health Organization of Acinetobacter baumannii as the number one
priority pathogen for the development of new antibiotics is a direct consequence of its fast evolution
of pathogenicity, and in particular of multidrug resistance. While the development of new antibiotics
is critical, understanding the mechanisms behind the crescent bacterial antibiotic resistance is equally
relevant. Often, resistance and other bacterial virulence elements are contained on highly mobile pieces
. of DNA that can easily spread to other bacteria. Prophages are one of the mediators of this form of gene
. transfer, and have been frequently found in bacterial genomes, often offering advantageous features to
. the host. Here we assess the contribution of prophages for the evolution of A. baumannii pathogenicity.
. We found prophages to be notably diverse and widely disseminated in A. baumannii genomes. Also
remarkably, A. baumannii prophages encode for multiple putative virulence factors that may be
implicated in the bacterium’s capacity to colonize host niches, evade the host immune system, subsist
in unfavorable environments, and tolerate antibiotics. Overall our results point towards a significant
contribution of prophages for the dissemination and evolution of pathogenicity in A. baumannii, and
highlight their clinical relevance.

. Acinetobacter baumannii was recently indicated by the World Health Organization (WHO) as the number one

© priority pathogen for research and development of new antibiotics (http://www.who.int/medicines/publications/
global-priority-list-antibiotic-resistant-bacteria/en/). This human opportunistic pathogen has been gradually
evolving towards clinical success since the 1970s, due to an increasing overall pathogenicity mostly related to a
growing multidrug resistance.

Genomically, A. baumannii is characterized by a relatively small core genome and a large and diversified
accessory genome'. This indicates gene acquisition and loss as important contributors to A. baumannii evolution
and adaptation towards pathogenicity. For example, genes associated with antibiotic resistance have been found
in both core and accessory genomes of A. baumannii'. In the accessory genome, these genes were found often

. flanked by integrases, transposases, or insertion sequences, suggesting a possible acquisition by horizontal gene
. transfer (HGT) from other strains or bacterial species. HGT may thus be a major force in the evolution of A.
© baumannii pathogenicity.

Among mediators of HGT we find bacteriophages (phages), viruses of bacteria thought to be the most abun-

. dant biological entities on Earth?. When infecting a bacterial host, phages may follow distinct life cycles: virulent
: phages follow a lytic path in which they replicate inside the bacteria and cause cell lysis for progeny release; tem-
: perate phages may also follow the Iytic cycle or opt for a lysogenic cycle where they integrate into the host genome
* and replicate passively with the bacterial genome. When integrated in the bacterial genome, temperate phages are
. known as prophages.
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Figure 1. Prevalence of prophages in Acinetobacter baumannii genomes. (a) Whiskers plot of prophage
frequency per bacterial genome. The horizontal line at the center of the whiskers plot represents the median.
The bottom and top of the plot represent the first and third quartiles. The external edges of the whiskers
represent the minimum and maximum number of prophages per genome. Significant differences (Tukey’s test)
of P <0.05 are represented by*. (b) Prevalence of total prophages, “intact prophages”, defective prophages, more
than one “intact prophage”, and more than one defective prophage. Prevalence was determined considering a
dataset of 795 A. baumannii genomes.

Prophages and their bacterial hosts have partly aligned evolutionary interests, since proliferation of the host
results in increased prophage population®. This is possibly the reason why some prophages provide the host bac-
terium beneficial traits such as protection from infection by other phages (superinfection exclusion)*®, increased
host fitness®, and encoding of virulence factors (VF) exploited for bacterial pathogenesis (e.g. antibiotic tolerance’
or toxins®).

Under certain stimuli, prophages can excise from the host genome, entering the lytic cycle with the release
of phage progeny. During excision, a process of specialized transduction may occur, where parts of the bacterial
genome adjacent to the prophage may be erroneously excised with the prophage genome and introduced with
the virion into a new host’. Temperate phages thus contribute to host evolution by a constant transfer of genes
between host genomes*'. Still, prophage genes are under selection for rapid deletion from bacterial genomes,
with studies suggesting that most prophages in bacterial genomes are to some extent defective!'%. Even so, defec-
tive prophages can lead to bacterial evolution, with a few bacterial molecular systems thought to derive from
the process of prophage inactivation, e.g. gene transfer agents'?, bacteriocins, and type VI secretion systems
(T6SS)*1°.

The number of prophages in bacterial genomes and their contribution to bacterial evolution differ among
species. Here we aimed at evaluating the prevalence of prophages in A. baumannii genomes, and at understanding
the contribution of these elements to the rapid evolution of pathogenicity in this bacterial pathogen.

Results

Prevalence of “intact” and defective prophages in A. baumannii strains. We analyzed 795
genomes of A. baumannii of a total of 1,614 genomes deposited on GenBank at the date of March 2016. Selection
of genomes was random, but restricted to bacteria sequenced by Illumina with a coverage above 45x. Prophages
were identified using PHAST and manually curated. A total of 4,122 prophages were found, of which 943 were
“intact” and 3,179 were defective. The significantly higher prevalence of defective prophages (Fig. 1a) was
expected since “intact prophages” are usually under strong selection by bacteria for mutations causing prophage
inactivation’. Still, 74.1% of the A. baumannii strains contained “intact prophages” (Fig. 1b), suggesting a recent
integration in the bacterial genome. To note that the analysis here performed included a large number of draft
genomes (97.9%), which implies that PHAST may under-estimate the number of intact prophages (these may
be split into different contigs) and over-estimate the number of defective prophages (intact prophages split into
different contigs may be identified as several defective prophages). We compared the numbers of both intact
and defective prophages obtained for draft (778) and complete (17) genomes, which indicate averages of both
intact and defective prophages significantly higher in draft genomes (5.2 £ 2.4 total prophages, 1.2 4 1.0 “intact
prophages”, 4.0 £ 2.3 defective prophages) than in complete genomes (2.9 £ 1.0 total prophages, 0.6 £0.7 “intact
prophages’, 2.4 & 1.1 defective prophages). The differences however may be just a consequence of the small rep-
resentation of complete genomes in our analysis, and not a problem related to PHAST analysis of draft genomes;
if that were the case, a low number of “intact prophages” was expected in draft genomes.

Distribution of prophages by bacterial genome size. Like Touchon et al.!® and Bobay et al.'” did for
other bacterial species'®!”, we question if A. baumannii with larger genomes will allow for the integration of more
prophages. The existence of more neutral targets for phage integration in larger bacterial genomes may facilitate
prophage accumulation without interference with the vital functions of the bacteria'’. To evaluate this hypothesis,
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Figure 2. Distribution of prophages among Acinetobacter baumannii strains considering the size of the
bacterial genome. (a) Average number of prophages (“intact” and defective) per bacterial genome size. (b)
Average number of “intact prophages” per bacterial genome size. (c) Average number of defective prophages per
bacterial genome size.
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Figure 3. Distribution of genome size of the 109 “intact prophages” integrating Acinetobacter baumannii genomes.
(a) Prevalence of prophages in A. baumannii genomes by family; (b) Whiskers plot of average genome size of
prophages according to family. Horizontal line at the center represents the median, bottom and top of the plot
represent the first and third quartiles, and external edges of the whiskers represent the minimum and maximum
genome size of prophages per family. Significant differences (Tukey’s test) of P < 0.05 are represented by*.

we determined the distribution of prophages considering the size of the A. baumannii genomes (Fig. 2). A ten-
dency of larger bacteria to harbor increased numbers of prophages can be observed, although the number of
prophages appears to stabilize for larger (>4.2 Mbp) genomes (for statistical analysis refer to Supplementary
Table S1).

Distribution of prophages by family and genome size.  We have classed the 109 “intact prophages” in
family taxa based on homology to known classed phages. Classification relied on genes considered the most indic-
ative of family: major capsid protein, large terminase subunit, tail tape measure protein and tail sheath protein.
Approximately 67% of the prophages could be assigned a family, with the majority identified as Siphoviridae, fol-
lowed by Myoviridae and Podoviridae (Fig. 3a). This is in accordance with the estimated distribution in nature!'.
On the contrary, the average genome size per prophage family goes against the trends described in the literature
(http://viralzone.expasy.org/) (Fig. 3b). Myoviridae are typically the largest phages, sizing between 33 to 244 kb.
However, here Myoviridae have the smallest genomes (34kb, P < 0.001) of the prophages with predicted family.
Moreover, Siphoviridae in A. baumannii have the widest size range (24-101kb) and the largest genomes, when
they usually size around 50kb. Still, in general, the average size of all prophages was 44.7 kb, agreeing with values
previously reported for other bacterial species®%%°.
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Prophages found integrated in A. baumannii mobile genetic elements. We analyzed a set of
plasmids associated with the A. baumannii strains for the presence of prophages. One (pAB386, Accession
no. CP010780) of 26 plasmids were found to possibly harbor an “intact prophage” (Supplementary Table S2).
Intactness of the prophage is suggested by the presence of proteins related to phage morphogenesis (capsid and tail
elements), packaging (terminase), and host lysis (lysozyme), as well as a potential protein involved in phage-host
interaction (putative host specificity protein J) (Supplementary Table S3 and Supplementary Fig. S1). Curiously,
plasmid pAB386 and its prophage are highly similar (>55% genome homology) to a few other plasmids deposited
in GenBank (Supplementary Table S3). Some of the A. baumannii strains harboring these prophage-containing
plasmids have distinct geographical origins (Supplementary Table S3), indicating a possible global dissemination
of these elements. In fact, since plasmids are much less specific than phages, prophages integrated in these mobile
genetic elements may reach a higher diversity of bacteria, and perhaps cross bacterial species.

Whole genome and proteome comparison of “intact prophages” reveals remarkable diver-
sity. To determine the relationship and diversity of A. baumannii prophages we performed whole genome and
proteome dot plot analysis of their sequences. Whole genome analysis revealed 19 small clusters of prophages
with genome identity above 50%, indicating strong evolutionary relationships (Fig. 4a). Still, the majority of
prophages (about 89% of the comparisons) have genome identities below 20%, suggesting an enormous genomic
diversity. Interestingly, whole proteome analysis revealed an even higher diversity in the amino acid sequences,
with about 97% of the comparisons giving an identity below 10%, and only 8 very small clusters of highly similar
prophages (50% identity, Fig. 4b).

To understand if the clusters formed were related to prophage family, we constructed genomic and proteomic
phylogenetic trees and inserted family information, as shown in Figs 5 and 6. Genomic clusters 1, 7,9, 11-13, 15-17,
and 19 (identified in Fig. 4a) are comprised of sub-clusters containing highly related phages (more than 90% iden-
tity). These sub-clusters are identified in Fig. 5 and are composed of prophages of the same family (when deter-
mined). Even for areas of lower identities prophages tend to cluster according to family, although a few singletons
are observed. Nevertheless, clusters of the same family are scattered in the tree demonstrating that prophages of the
same family can have significantly divergent genomes. A similar analysis is made when observing the proteomics
tree (Fig. 6) where sub-clusters of highly related prophages (>90% identity, clusters 2, 4, 5, and 6) tend to group
prophages of the same family. All nine clusters of high proteome identity are also clusters with high (>50%) genomic
identity. Moreover, only two of the 10 highly (>90%) similar genome sub-clusters are not identified as clusters in the
proteomic analysis. Overall, this demonstrates a strong agreement between both analyses.

Prophages encode a multitude of potential virulence factors. The establishment of stable and long
relationships between prophages and the bacterial host has profound implications on both bacterial fitness and
virulence!'®?. Here we hypothesize the rapid spread of pathogenicity in A. baumannii to be linked with prophages.
We have searched for putative virulence genes encoded by the 109 “intact prophages” in study. For this purpose,
we considered virulence genes as those that might influence bacterial capacity to colonize a niche in the host,
evade or inhibit the host immune defense, resist antibiotics, obtain nutrition from the host, and survive and pro-
liferate in different environmental conditions. We found that 78% of the A. baumannii “intact prophages” encode
putative virulence genes, with an average of 1.75 VF in their genomes (Fig. 7a). By grouping the virulence genes
in classes we were able to analyze those most prevalent, as shown in Fig. 7b. A complete list of VF (and fitness
factors) identified per prophage can be found at Supplementary Table S4. To note that some of the putative VF
found may also simply be genes involved in the prophage life cycle, or have a dual function in the phage life cycle
and providing the bacterial host with a beneficial trait. We attempt to indicate this fact where relevant.

The most prevalent putative VF found were membrane-associated factors (18.4%), e.g. outer membrane pro-
teins/adhesins, lipoproteins, and fimbrial usher protein. These may interfere with bacterial motility, interaction
with host cells and phages, and evasion of host immune defenses?'~%.

Importantly, antibiotic resistance genes were identified in the prophages and can be separated into efflux pumps
(4.6%) and enzymes (9.2%). Bacterial efflux systems able to export antibiotics found in the prophages include the
major facilitator superfamily, the ATP-binding cassette family, and the resistance-nodulation-division family.

Resistance to antibiotics also occurs as a result of drug inactivation, drug modification, or target alteration
by enzymes**?*. Here, the following enzymes were found: beta-lactamase OXA-23 which confers resistance to
carbapenems?®®; pmr and MCR phosphoethanolamine transferases which provide resistance to cationic antimi-
crobial peptides (e.g. colistin)?’; chloramphenicol phosphotransferase which prevents chloramphenicol binding
to ribosomes?; and acetyltransferases conferring resistance to streptogramines.

Several other factors were found that may confer advantages to the bacteria harboring the prophage.
Transcriptional regulators were the most prevalent (11.9%), such as TraR/DksA family transcription regulators,
proposed to regulate a diverse set of genes including those involved in virulence, activation of stress response, and
motility?**; and IcIR family transcriptional regulators that control genes involved in e.g. multidrug resistance
and inactivation of QS signals®'. Some of these transcriptional regulators may also play a role in the regulation of
prophage propagation by interfering with the bacterial mechanisms of regulation.

Transporters (7.3%) were found with several putative functions, including tolerance/resistance to toxic com-
pounds (e.g. chromate transporter), siderophore export for iron acquisition (TonB-dependent receptor), and
interaction with host cells (glutamine transport system permease).

A few molecular chaperones (5.5%) were also identified. These have important functions in the assembly and
replication of phage particles, but may also be involved in fimbriae biosynthesis and thus bacterial motility and
adhesion to the host (e.g. fimbrial chaperone protein), or response to stress conditions by protecting newly syn-
thesized or stress-denatured polypeptides from misfolding and aggregation (e.g. GroES, GroEL, DnaJ**).
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Figure 4. Dot plot matrices of whole sequences of 109 prophages from Acinetobacter baumannii. (a) Whole
genome analysis; and (b) Whole proteome analysis. Darker zones indicate higher identity. Clusters of prophages
with identities higher than 50% are indicated and numbered. Graphics summarize the frequency of genome
identity levels found in the analysis. For dot plot matrices with values of identity see Supplementary Tables S5
and S6. Matrices were adapted from the identity matrices retrieved from the phylogenetic trees constructed
using Geneious Tree Builder.

A variety of other putative VF were also found, among which proteins involved in red blood cell degradation
(e.g. hemolysin activator protein), manipulation of host functions (e.g. Ankyrin repeat protein), promotion of
bacterial survival and persistence under stress conditions (e.g. protein umuD), and targeting of host cells (e.g.
RTX toxin).
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Figure 5. Phylogenetic tree of prophage genomic sequences. Tree was constructed using the Tamura-Nei
genetic distance model and the neighbor-joining tree building method in Geneious Tree Builder (Geneious
version 9.1.8), with boostrapping set to 100 and tree rooted using Acinetobacter baumannii plasmid
pNaval18-231 as the outgroup. Tree branches are proportional to branch length, and branch labels represent
bootstrap percentages. Clusters of prophages with genome identities above 90% are indicated in the tree. Red:
Siphoviridae; Green: Myoviridae; Blue: Podoviridae; Grey: family unknown.

Additionally, several metabolic enzymes were identified in A. baumannii prophages (90.8% prevalence),
which may improve survival or proliferation of the host and phage. Among these we highlight: enzymes involved
in iron acquisition (e.g. porphyrin biosynthetic protein), which provide an advantage to bacteria in the battle for
iron with eukaryotic hosts, especially in nutrient-limited niches**; enzymes involved in the regulation of bacterial
survival under conditions of nutritional (e.g. nucleotide pyrophosphohydrolases®) or oxidative stress (e.g. pho-
tolyase®); enzymes sensing and responding to environmental signals as those resulting from entering the host
(e.g. serine/threonine phosphatase); enzymes indirectly involved in antibiotic and xenobiotic resistance (e.g.
acetyltransferase family protein®), or in rhamnolipid production, i.e. glycolipids with biosurfactant properties
involved in bacterial virulence (anthranilate phosphoribosyltransferase)®.

Discussion

As vehicles for HGT, prophages have been linked to bacterial diversification*’ and evolution?’, and may have
strong repercussions on bacterial fitness and virulence®!°. Only a few studies have characterized the prevalence
of prophages in bacterial species and evaluated their role in virulence. Herein we report the analysis of prophage
prevalence in A. baumannii, and discuss their possible contribute to the evolution of pathogenicity of this human
nosocomial pathogen.

We found A. baumannii to harbor prophages in most 795 genomes analyzed. While the majority were
defective, a high amount of “intact prophages” were still detected indicating their recent integration. Previous
reports'®!1%41-43 have estimated lysogen (including “intact” and defective prophages) prevalence lower than
that reported here for A. baumannii (99.5%). Still, species as Streptococcus pyogens have been reported to have
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Figure 6. Phylogenetic tree of prophage proteomic sequences. Tree was constructed using the Jukes-

Cantor genetic distance model and the neighbor-joining tree building method in Geneious Tree Builder
(Geneious version 9.1.8), with boostrapping set to 100 and tree rooted using Acinetobacter baumannii plasmid
pNaval18-231 as the outgroup. Tree branches are proportional to branch length, and branch labels represent
bootstrap percentages. Clusters of prophages with proteome identities above 90% are indicated in the tree. Red:
Siphoviridae; Green: Myoviridae; Blue: Podoviridae; Grey: family unknown.
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Figure 7. Putative virulence genes identified in the genomic sequences of 109 “intact” prophages of
Acinetobacter baumannii. (a) Distribution of putative virulence genes per prophage; (b) Prevalence of potential

virulence factors grouped by class.
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similar high levels of lysogens (90%)"°. It appears that some species are more prone to be lysogenized than oth-
ers, although the variables associated to the process remain largely unknown. Touchon et al.' found minimal
doubling time and genome size to be the variables most correlated with lysogeny'®. Fast growing bacteria (with
minimal doubling times <2.5h) were shown to be more lysogenized than slow growing bacteria. Doubling times
of A. baumannii have been reported to be around 0.5h*; as a fast grower a higher percentage of lysogens is there-
fore expected. An explanation for this phenomenon has been suggested; fast growing bacteria grow weakly under
poor environmental conditions*. In such circumstances phages tend to assume a lysogenic life cycle to preserve
their genome while waiting for more propitious conditions for lytic propagation. The prevalence of A. bauman-
nii in hospital environments, where growth conditions are not ideal, may play a fundamental role in the high
prevalence of prophages in A. baumannii genomes. Our analysis also suggests that A. baumannii strains of larger
genomes harbor more prophages, but only for genomes up to 4.2 Mbp. Touchon ef al.!® had similar observations
in a set of prophages of mixed species, but stabilization of the number of prophages occurred only above 6 Mbp'®.
They have suggested two hypothesis that may also apply here. First, larger genomes may result from selection for
functional diversification by HGT, thus facilitating prophage integration. After a certain moment, it is possible
that further integration of prophages will not result in the acquisition of novel functions and thus bacteria may
become less prone for accepting this type of HGT. Second, superinfection exclusion may be more effective in bac-
teria with multiple prophages, leading to saturation of prophages in larger genomes. Still, future work is needed to
understand the correlation of bacterial genome size and number of integrated prophages.

Among a subset of 109 “intact prophages” we found Siphoviridae to be the most prevalent family, followed by
Myoviridae and Podoviridae, in agreement with the assumed distribution of tailed phages in nature's. However,
the average genome sizes of each prophage family diverged from common descriptions. More strikingly, different
trends were observed for each family. Siphoviridae had sizes above average and we hypothesize these differences
to result from the acquisition of bacterial genes adjacent to the prophage during repeated excision and integration
cycles. Conversely, prophages of the Myoviridae family have a genome much smaller than the average Myoviridae
deposited on GenBank. In fact, this family had the smallest average genome size, when it is commonly characterized
by the largest phages. A similar observation was made by Bobay et al.?, although for prophages of different taxa’. As
they have done, we also suggest these phages might have endured some form of genetic degradation that caused a
significant reduction of genome size. The reasons why distinct prophage families seem to have evolved differently in
the bacterial genomes are unknown. We hypothesized that the analysis of draft genomes using PHAST could errone-
ously delimit prophages (e.g. if these are distributed through different contigs) and thus give rise to unexpected sizes.
However, family analysis considered only phages identified as “intact” and whose ends were manually curated, so we
expect bias caused by PHAST to be majorly reduced. We also discarded the hypothesis of inaccurate classifications
given by our prophage classification method for two reasons. First, we only attributed prophages with a taxa when
comparative analysis of three genes gave concordant classifications. Second, the phylogenetic tree constructed clearly
indicates the clustering of phages from the same taxa, supporting our classification. Finally, although we attempted
to eliminate method-related bias from our analysis by choosing only genomes sequenced by Illumina and with
coverage higher than 50%, we cannot discard assembly problems as a possible reason for some size discrepancies.
Further studies are necessary to reveal if this is a common trend among prophages of all bacterial species, if it is
specific of A. baumannii, or if it is simply a methodology-related bias.

On an interesting note, we found that for a (not so) few prophages, different proteins (e.g. capsid and large
terminase proteins) indicated a distinct family, e.g. the prophage of strain NIPH 2061 (1272028-1318975 bp)
identified as Siphoviridae or Podoviridae. We believe this to reflect the mosaic nature of phages, and to suggest the
exchange of genetic information by homologous recombination between prophages and infecting phage genomes
or other prophages in the same cell. Among other genetic trades, structural genes may be exchanged leading to a
difficult interpretation of phage family when exclusively based on genomic information. For example, we found
that many prophages having a tail tape measure protein, perceived as characteristic of long tailed phages**® were
classified as Podoviridae, e.g. prophages of strains NIPH 146 (3227804-3269564 bp) and NIPH 527 (1517738-
1585337 bp). The presence of this gene is therefore non synonymous with long tailed phages, as recently suggested
by Ma et al.®).

Also interestingly, we found some “intact prophages” integrated in A. baumannii plasmids. It is possible that
plasmids have acquired the prophages via homologous recombination with the bacterial chromosome, or per-
haps by direct integration of the phage into the plasmid. Prophage integration in plasmids may have important
implications for the genetic trades occurring within and among bacterial species, resulting in an extremely rich,
available gene bank.

Prophages of A. baumannii were found to be greatly diversified. Our comparison of 109 “intact prophages”
revealed less than 20% of genome identity and less than 10% proteome identity among the majority of prophages.
This may indicate one or more of the following: a diversification of prophages into different lineages in ancient
times; the constant and intensive diversification of prophage genomes by genetic trades; or a distinct origin of A.
baumannii prophages (e.g. derived from different bacterial species). Still we could identify a few small clusters of
prophages with genomic and proteomic identities suggesting stronger evolutionary relationships. These may be
related to phage taxa, since clusters of high identity tended to group prophages of the same family.

Some of the genes expressed from prophages can alter the properties of the host, ranging from increased
protection against further phage infection, to increased virulence®. Many cases have been reported linking path-
ogen virulence to the acquisition of prophages, among which are the well-known E. coli O157:H7 whose viru-
lence is correlated with two Shiga-toxin-encoding prophages®*®!, or Vibrio cholerae, producer of the cholera toxin
encoded by phage CTX (2. Here we found prophages to frequently encode genes of putative function related to
bacterial virulence and fitness. The prophage-encoded genes may be contributing to the high levels of multid-
rug resistance found in A. baumannii. We identified both drug-specific and multidrug efflux pumps, as well as
enzymes able to inactivate/modify the antibiotic or its bacterial target. Among these we highlight the presence
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of enzymes conferring resistance to colistin, one of the very few last resource antibiotics. Spread of resistance
is therefore fostered by prophages, especially under stress conditions that induce prophage excision, as those
encountered by bacteria when entering the host environment.

Several other putative VF were found, such as membrane-associated factors, transcriptional regulators, trans-
porters, chaperones, and other proteins, with functions in protection from nutritional and oxidative stress, bac-
terial motility, interaction with host cells, evasion of host immune defenses, iron acquisition, and regulation of
virulence gene expression.

Overall, our results suggest a significant contribution of prophages for the evolution and spread of A. bauman-
nii pathogenicity and highlight the clinical relevance of these virions. This study centered the analysis on viru-
lence genes of “intact prophages” only. However, defective prophages, which are the vast majority, most probably
also codify for genes of relevance to A. baumannii pathogenicity.

Methods

Data collection. A data set of 795 complete genomes of A. baumannii were retrieved from GenBank (last
accessed March 2016). All the genomes selected were sequenced by Illumina and had a genome coverage above
45x. Other than these two features, strain selection was random. The vast majority of the genomes deposited were
at scaffold assembly level, and were used in the analysis as unassembled contigs (Supplementary Table S2).

Detection of prophages in A. baumannii strains. Prophages were detected using the PHAge Search
Tool (PHAST) webserver??, using the GenBank accession number for complete genomes, and the nucleotide
sequence file in FASTA format for draft genomes, selecting the option of contigs file for concatenation of all
sequences together prior to analysis. PHAST separates the identified prophages into intact, questionable and
incomplete according to criteria that consider the number of coding DNA sequences (CDSs) of a region attrib-
utable to prophage CDSs, and the presence of phage-related genes. For the purposes of our analysis, ques-
tionable and incomplete prophages were grouped as defective prophages (Supplementary Table S2). Still, an
analysis of prophage prevalence considering questionable and incomplete prophages individually can be seen
in Supplementary Fig. S2. Prophages identified by PHAST were manually curated for increased stringency; only
prophages with identified integrase and/or at least one structural gene (e.g. capsid, tail, tail fiber) were considered.
“Intact prophages” were identified as such when all elements required for phage infection were present. Prophages
smaller than 10kb were excluded because these may be difficult to distinguish from other integrative elements'”'.
The number of “intact” and defective (questionable and incomplete) prophages identified for each strain are
detailed in Supplementary Table S2.

Classification of prophages. The prophages of a set of 99 strains were selected for further assessment.
Strains were chosen based on the GenBank dendrogram at the date of April 11, 2016 (see Supplementary Fig. S3).
At least one strain from each branch of the dendrogram was chosen. Branch size was considered, i.e. more strains
were selected from larger branches. Strains selected harbor a total of 109 “intact prophages’, whose limits were
manually curated using gene annotation and PFAM 30.0 protein functions. Prophages were classed by compar-
ison of the major capsid protein and large terminal subunit®-> to those of previously deposited classed phages,
using BLASTp version 2.8.0+ with default parameters. The presence of elements characteristic of specific families,
as the tail sheath of Myoviridae or the tail tape measure protein of long tailed phages’, was also considered for
prophage classification. Prophages were attributed a family only when the results of all comparisons gave iden-
tical classifications, with E-values lower than 1 x 1077, identity higher than 35% and coverage higher than 50%.
Prophage classification can be seen in Supplementary Table S4.

Whole genome and proteome comparisons. Prophage genomic and proteomic sequences were aligned
using MAFFT version 7.304°’, using the Phylip output format, sorted, strategy “—auto”. The genome phyloge-
netic tree was constructed using the Tamura-Nei genetic distance model and the neighbor-joining tree building
method in Geneious Tree Builder (Geneious version 9.1.8°%). The proteome phylogenetic tree was constructed
using the Jukes-Cantor genetic distance model. Boostrapping was set to 100 and the trees were rooted using A.
baumannii plasmid pNaval18-131 as the outgroup. The identity matrix generated during construction of the
phylogenetic trees was used to infer on whole genome and whole proteome identity.

Identification of potential virulence factors encoded by prophages. The subset of 109 “intact
prophages” was analyzed for the encoding of putative VE. For this, prophage proteins with assigned function
(by myRAST and sequence comparison using PFAM 30.0 and HMMER webserver version 2.25.0, with default
parameters) were correlated to putative VF using PubMed search. Protein sequences identified as related to anti-
biotic resistance were further analyzed using the Resistance Gene Identifier (RGI) of CARD, selecting criteria of
perfect, strict and loose hits. A full list of the identified putative VF can be found at Supplementary Table S4, and
the results of RGI analysis can be seen in Supplementary Table S7.

Statistical analysis. Statistical analysis of the data was performed using the independent samples t-test
for comparisons of two samples, or one-way analysis of variance (ANOVA) with post-hoc Tukey HSD test for
comparing multiple variables, using the software GraphPad Prism 5 version 5.03, and considering a significance
level of 95%.

Data Availability
All data generated or analyzed during this study are included in this published article and its Supplementary
Information files.
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