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The cerebellum has long been known to play an important role in motor and balance

control, and accumulating evidence has revealed that it is also involved in multiple

cognitive functions. However, the evidence from neuroimaging studies and clinical

observations is not well-integrated at the anatomical or molecular level. The goal of

this review is to summarize and link different aspects of the cerebellum, including

molecular patterning, functional topography images, and clinical cerebellar disorders.

More specifically, we explored the potential relationships between the cerebrocerebellar

connections and the expression of particular molecules and, in particular, zebrin stripe (a

Purkinje cell-specific antibody molecular marker, which is a glycolytic enzyme expressed

in cerebellar Purkinje cells). We hypothesized that the zebrin patterns contribute to

cerebellar functional maps—especially when cerebrocerebellar circuit changes exist in

cerebellar-related diseases. The zebrin stripe receives input from climbing fibers and

project to different parts of the cerebral cortex through its cerebrocerebellar connection.

Since zebrin-positive cerebellar Purkinje cells are resistant to excitotoxicity and cell

injury while zebrin-negative zones are more prone to damage, we suggest that motor

control dysfunction symptoms such as ataxia and dysmetria present earlier and are

easier to observe than non-ataxia symptoms due to zebrin-negative cell damage by

cerebrocerebellar connections. In summary, we emphasize that the molecular zebrin

patterns provide the basis for a new viewpoint from which to investigate cerebellar

functions and clinico-neuroanatomic correlations.

Keywords: zebrin, cerebrocerebellar circuits, neuroimaging, cerebellar disorders, functional topography

INTRODUCTION

The cerebellum was historically regarded as a pure motor control system. However, in the past
several decades studies from functional imaging (1–3) and clinical (4) studies have revealed
that it is also involved in cognitive function. It remains unclear how the cerebellum relates to
cognitive functions. Our interest is to integrate different cerebellar studies based on molecular
strip patterns, especially the zebrin patterns (5), and we explored what was known about its
connection to neuroanatomy, functional neuroimaging studies, and clinical cerebellar disorders.
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FIGURE 1 | The anatomy of the cerebellum. This is an unfolded view of the

cerebellar cortex showing fissures and lobules from I to X. Adapted from Manni

and Petrosini (7).

We would like to raise awareness of recent cerebellar studies
and attempts to establish clinico-neuroanatomical correlations.
Here, we reconsider the importance of molecular characteristics
in cerebellar functions.

Gross Anatomy of Cerebellum
The cerebellum is located in the small posterior cranial fossa,
a small space in which pons and medulla oblongata are also
located. The cerebellum accounts for 10% of the total mass
of the brain. However, this tiny structure contains a much
greater number of neurons than the much larger cerebrum
(6). The gross anatomy of the cerebellum is divided into two
hemispheres and one vermis. Based on surface anatomic fissures,
the cerebellum consists of the anterior lobe, the posterior lobe,
and the flocculonodular lobe. The anterior lobe and posterior
lobe are separated by the primary fissure. Several anatomical
fissures divide the cerebellar lobes into 10 smaller cerebellar
lobules, from lobule I to X [Figure 1; (7)].

Functional Subdivisions
The cerebellum can also be divided into 3 different parts based
on its inputs from other brain regions: the vestibulocerebellum,
the spinocerebellum, and the cerebrocerebellum. The
vestibulocerebellum is phylogenetically the oldest part in
the evolution of primates. The vestibulocerebellum (or
flocculonodular lobe anatomically) mainly receives input
from the vestibular nuclei, which are located in the medulla
and pons, and projects back to the vestibular nuclei, controlling
balance and ocular movements. The spinocerebellum, including
the vermis, and paravermis of the hemispheres, receives sensory
input mainly from the spinal cord (the spinocerebellar tract)
and visual and auditory systems and projects back to deep
cerebellar nuclei; based on interactions with the cerebral cortex
(via the midbrain and thalamus) and the brain stem, it controls
trunk and body movements. The cerebrocerebellum is the
phylogenetically youngest part of the cerebellum and includes

most parts of the cerebellar hemispheres. It receives input
exclusively from the cerebral cortex based on cortico-ponto-
cerebellar circuits and the olivocerebellar tract (via the climbing
fibers). These climbing fibers project to the deep dentate nucleus
and then the cerebral cortex (via the red nucleus and thalamus).
The cerebrocerebellum modulates smooth and precise limb
movements (7, 8).

Cellular Anatomy
At the microscopic level, the cytoarchitecture of the cerebellum
is mainly divided into three layers: the molecular, Purkinje,
and granular layers. The molecular layer contains GABAergic
inhibitory interneurons that form synapses onto Purkinje cell
dendrites. The Purkinje layer consists of Purkinje cells, the
primary integrative neurons (inhibitory GABAergic neurons)
and the only source of efferent fibers from the cerebellar cortex
to the deep cerebellar nuclei (9). The granule cell layer, which
includes granule cells, brush cells, and Golgi cells, contains most
of the neurons in the cerebellum. The granule cells are the only
excitatory (glutamatergic) cells in the cerebellar cortex and send
parallel fibers into the superficial molecular layer.

The afferent inputs to the cerebellar cortex consist of mossy
and climbing fibers. Mossy fibers carry sensorimotor information
from the ipsilateral vestibular nuclei, ipsilateral spinal cord,
and contralateral pontine nuclei from cortico-pontocerebellar
tracts and enter the granular layers. The climbing fibers carry
sensorimotor inputs from the contralateral inferior olivary
nucleus and project to and modulate the cell-firing activities
of Purkinje cells. The Purkinje cell fiber projects to the deep
nuclei, which is the only output from the cerebellum and controls
the ultimate effect of cerebellar function. Each Purkinje cell
receives input from one to seven climbing fibers, in contrast to
the multiple inputs from parallel fibers and mossy fibers. The
climbing fiber is a specific projection to a few Purkinje cells
compared to mossy fiber, which has non-specific connections
with multiple Purkinje cells (10, 11).

Zebrin Patterns
Interestingly, a striped pattern is formed by the Purkinje
cell-specific antibody molecular marker zebrin (also called
aldolase C) (12), which is a glycolytic enzyme expressed in
cerebellar Purkinje cells (13, 14). This aldolase C enzyme
expresses specifically in the hippocampus and Purkinje cells
and plays an important role in ATP biosynthesis (15). Hawkes
et al. demonstrated parasagittal stripe, a stereotyped array
of transverse zones with zebrin immunostaining reactive
and non-reactive patterns. The zebrin stripe constitute seven
longitudinal bands identified by Professor Voogd, who used an
acetylcholinesterase stain in the cerebellar cortex (16, 17). The
zebrin-negative zones (C1, C3, and Y zones) are motor regions of
the cerebellum that receive somatosensory input, and the zebrin-
negative Purkinje cells fire at higher frequencies. On the other
hand, the zebrin-positive zones (C2, D1, and D2 zones) are non-
motor regions of the cerebellum, and the zebrin-positive Purkinje
cells fire at lower frequencies (18). Each zone innervates different
and specific olivo-cortico-nuclear pathways [Figure 2; (19)].
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FIGURE 2 | Longitudinal zebrin stripes and its cerebrocerebellar pathway. (A) This is a flattened cerebellar cortex showing zebrin stripes. Zebrin is a glycolytic enzyme

expressed in cerebellar Purkinje cells. This figure shows the parasagittal stripes, a stereotyped array of transverse zones with an immunostaining reactive and

non-reactive pattern. (B) The zebrin-positive zones (C2, D1, and D2 zones) are non-motor regions of the cerebellum. (C) The zebrin-negative zones (C1, C3, and Y

zones) are motor regions of the cerebellum that receive somatosensory input. Each of the zones innervate different and specific olivo–cortico–nuclear pathways.

Adapted from Voogd (17). A, A zone; B, B zone;C1–3, zones C1–3; D, dorsomedial cell column; D1,2, zones D1,2; IP, posterior interposed nucleus; MAO, medial

accessory olive; PO, principal olive; VII–X, lobules VII–X of Larsell; X, X zone.

Larson et al. showed that electrical stimulation of nerves from
different limbs have distinct climbing fiber responses in different
longitudinal zones (20). In other words, the climbing fibers and
those corticonuclear projections define these zebrin patterns,
which may be the basic functional units of the cerebellum (21,
22). In addition, Richard et al.’s “one-map” hypothesis describes
that climbing fibers have a closed-loop projection to specific
zebrin patterns and unify the cerebellar map from the perspective
of anatomy, embryology, and physiology (23). In sum, the
zebrin-positive/-negative longitudinal patterns have different and
specific connections and are related to distinct functions.

The functions of these zebrin patterns are potentially related
to long-term potentiation (LTP) and long-term depression (LTD)
(24). LTP produces a long-lasting increase in neuron activity
based on the recent activation history of the cell, which is
a well-characterized form of synaptic plasticity, especially in
memory. In contrast, LTD produces a long-lasting decrease in
synaptic strength, which is important for motor learning (25).
LTD in zebrin-negative Purkinje cells is easier to induce than
in zebrin-positive Purkinje cells (5, 25). This may represent
the predominant form of plasticity in zebrin-positive zones
(26), which is correlated with the non-motor function of the
cerebellum. In summary, not only zebrin-positive/-negative

cells and their specific connections, but also the physiological
capacities of the zebrin cells may be a fundamental contributor to
the cerebellar system. We consider that the zebrin patterns may
be the cornerstone of the cerebellar functions and related to the
clinical presentation of cerebellar disorders.

CEREBELLAR FUNCTIONAL MAPPING
FROM NEUROIMAGING STUDIES

It is difficult to trace the projection from the cerebral cortex
to the cerebellum in the cortico–ponto–cerebellar pathway
because the cerebrocerebellar connections are indirect and
polysynaptic. Currently, the sole in vivo method to delineate
neuronal pathways is tractography, based on diffusion-weighted
imaging (27). However, the polysynaptic cerebrocerebellar
pathways, which have contralateral connections, pass through
the cerebellar deep nucleus and penetrate into the heavily
folded cerebellar cortex; these factors make cerebrocerebellar
circuits difficult to trace in vivo (28–31). Even so, ex vivo
studies using retrograde transsynaptic tracers (rabies virus or
herpes simplex virus) have identified a few cerebrocerebellar
connections, including cerebello–thalamo–cortical and cortico–
ponto–cerebellar pathways, and have shown that the primary
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motor cortex (M1) is linked with cerebellar lobules III–VI and
VIII whereas dorsolateral prefrontal cortex area 46 is linked
to crus II and lobule X (32, 33). This evidence suggests that
cerebrocerebellar circuits are involved in sensorimotor control
and higher cognitive functions such as attention, executive
control, language, workingmemory, learning, pain, emotion, and
addiction (34, 35).

Because the cerebellum was initially considered to be
responsible for only motor control and its complicated
polysynaptic nature, only a few studies made connections
between cognition and the cerebellum. For example, a notable
exception was Petersen et al., who used positron emission
tomography (PET) in 1988 to demonstrate that crus I and
crus II in the right cerebellum are involved in the linguistic
single-word processing of verbs when hearing some objects, such
as “drink” water (36). More imaging studies about the latest
neuroimaging techniques and findings related to the cerebellum
are discussed next.

Resting-State fMRI Studies of Cerebellum
Resting-state functional magnetic resonance imaging (fMRI) is
commonly used to study functional topography. In particular,
resting-state functional connectivity (FC) fMRI has revealed a
relationship between the cerebellum and several non-motor brain
networks, including the somatomotor, frontoparietal, dorsal
attention, ventral attention, limbic, salience, executive control,
and default-mode networks (2). A unique cerebellar functional
topography was demonstrated, with different regions being
correlated with different non-motor networks [Figure 3A; (2,
39)]. The sensorimotor cerebellum involves in the anterior lobe,
in lobule VIII and part of lobule VI, whereas the cognitive
cerebellum involves in the posterior lobe (especially crus I and
crus II) and vermis (40). In connectivity studies, the intrinsic
connectivity networks (ICNs), the functional coupling between
the distant brain cortex and the cerebellum, showed network
mapping, including motor networks in the anterior lobe and
lobule VIII and cognitive networks (dorsal attention, ventral
attention, frontoparietal, default-mode, and salience networks) in
the posterior lobe (2, 3, 39).

However, both cognitive and sensorimotor clusters are present
within lobule VI. The sensorimotor network clusters are located
more centrally and closer to the paramedian part of the
cerebellum. The cognitive network clusters are located more
laterally and closer to the post-erosuperior fissure (39, 40).
More recent studies have demonstrated that lobule VI is a
hub controlling sensorimotor and motivations. Lobule VI is
an integrative interface between motor and cognitive/emotional
circuits during amotor task with verbal encouragement. This hub
controlling function may explain the overlap of both cognitive
and sensorimotor clusters in lobule VI in fMRI studies.

Task-Evoked fMRI Studies of Cerebellum
Task-evoked fMRI detected blood-oxygen-level dependent
(BOLD) signals changes in cerebellum when different tasks
performed, such as sensorimotor tasks, language tasks, verbal
working memory tasks, spatial tasks, executive function tasks,
and emotional processing tasks. Task-evoked fMRI studies

have shown that lobule V is activated during sensorimotor
tasks; VIIIA/B during motor tasks; VIIIB during somatosensory
tasks; lobule VI and crus I during language and verbal working
memory tasks; lobule VI during spatial tasks; lobule VI, crus I,
and VIIB during executive function tasks; and lobule VI, crus I,
and medial VII during emotional processing (1). The functional
lateralization of the cerebellum was noted in task-evoked fMRI
studies (for example, the language task was linked to the right
side of cerebellar lobule VI and crus I, and the spatial task was
linked to the left side of cerebellar lobule VI), indicating that the
information processing pathways crossed hemispheres between
the cerebral cortex and cerebellum (1). However, the motor
control system of the cerebellum is “double-crossed” (which
is different from the single-crossed non-motor system in the
cerebellum): The first crossing occurs in the decussation of the
superior cerebellar peduncle while the second crossing occurs in
the corticospinal or rubrospinal tracts descending into the spinal
cord. Therefore, the cerebellar hemisphere modulates ipsilateral
limb movements.

Moreover, social cognition tasks, including theory of mind
(mirroring, event mentalizing, person mentalizing, abstraction)
(41) and emotional affective processing (a painful experience
of our own or from others), have also been examined in
fMRI studies (40, 42). In these studies, a theory of mind task
activated crus I in the bilateral cerebellum; an emotional affective
processing task showed that the posterior cerebellar vermis was
related to painful first-person experiences whereas the posterior
cerebellar hemisphere (lobule VI) was related to empathetic
pain on behalf of others (Figure 3A). In summary, cerebellar
functional topography was revealed by multiple task-evoked
MRIs with both cerebrum and cerebellum activation. This result
emphasizes the role of the cerebellum in both motor and non-
motor functions as well as its cerebrocerebellar connections. All
these cerebrocerebellar connections project to different Purkinje
cells. Further studies should focus on these cerebrocerebellar
pathways and their relationships to zebrin patterns.

Functional Gradient Neuroimaging Studies
of Cerebellum
Functional and anatomical structure matches are crucial
for the definition of cerebellar functional neuroanatomy,
which means that anatomy reflects a functional hierarchy
from primary to transmodal processing (43). Recently, Guell
et al. demonstrated a novel functional imaging technique.
This new method applies diffusion maps embedded into
the brain’s resting-state imaging results followed by two
principal gradients of resting-state FC in the cerebral cortex.
Axis I extends from the primary motor to transmodal
regions with the primary–unimodal–transmodal hierarchical
principle (43). Axis II isolates working memory/frontoparietal
network areas and extends from task-unfocused to task-focused
processing. The results follow a gradual organization of the
well-established cerebellar distributions by using the functional
gradient method [Figures 3B,C; (37)]. The gradients were
interpreted by analyzing their relationship to resting-state and
task-evoked fMRI cerebellar maps (37). When each cerebellar
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FIGURE 3 | The functional maps and functional gradient of the cerebellum. (A) Resting-state functional fMRI shows cerebellar functional topography and is correlated

with different non-motor networks, such as somatomotor, fronto-parietal, dorsal attention, ventral attention, limbic networks, salience network, executive control

circuitry, and the default-mode network. Task-evoked fMRI research has shown that lobule V is activated for sensorimotor tasks; VIIIA/B for motor tasks; VIIIB for

somatosensory activation; lobule VI and crus I for language and verbal working memory; lobule VI for spatial tasks; lobules VI, crus I, and VIIB for executive functions;

and lobules VI, crus I, and medial VII for emotional processing. (B,C) Axis I extends from the primary motor to transmodal regions with the

primary–unimodal–transmodal hierarchical principle. Axis II isolates the working memory/frontoparietal network areas and extends from task-unfocused to

task-focused processing. The results follow a gradual organization of the well-established cerebellar distributions by using the functional gradient method. Adapted

from Buckner et al. (2), Guell et al. (37), and Schmahmann et al. (38).

anatomical voxel was arranged along the two functional axes, a
gradual pattern of organization emerged.

Even so, the functional maps (including resting fMRI and
task-evoked fMRI) do not necessarily align with the anatomical
lobules. Recently, King et al. compared the similarity of
paired voxels within a region across a anatomical boundary
using a multidomain task battery in fMRI and revealed
that, although functional boundaries existed, they were not
aligned with either anatomic lobules or zebrin stripe (44).
Bernard et al. also demonstrated that the lobular boundaries
were not necessarily indicative of functional boundaries by
comparing the anatomical and self-organizing map approaches

in the resting-state cortico-cerebellar FC networks (3). These
neuroimaging studies also support the “one-map” hypothesis
by unifying the cerebellar map not only anatomically but also
functionally (23).

THE ROLE OF CEREBELLUM IN
NEUROLOGICAL DISEASES

Next, we review studies of diseases related to cerebellar
dysfunction, with a particular focus on clinical ataxiology and
its contributing clinical expression of cerebellar pathology:
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cerebellar motor syndrome, vestibular cerebellar syndrome, and
cerebellar cognitive affective syndrome (CCAS) (45). CCAS, also
called Schmahmann’s syndrome, was first described in 1998; it
presents with neuropsychiatric symptoms, such as the blunting of
affect, lack of initiation, apathy, depression, and loss of empathy
or disinhibited, irritable, and inappropriate behavior (4, 46).
These studies provide evidence that underlies the complexity
of cerebellar symptoms despite the undergoing disease and our
understanding of cerebellar function, through the various forms
of pathophysiology they encompass.

Cerebellar Lesions
Cerebellar stroke patients typically present with dizziness,
ataxia, dysmetria, and postural imbalance. However, atypical
cerebellar stroke patients may present with only dizziness
or CCAS and without obvious cerebellar symptoms or signs
by neurological examinations, which are difficult to diagnose.
Moreover, these cerebellar strokes lead to notably poor outcomes
(47). Following cerebellar stroke, cerebellar motor syndrome
was shown to be associated with the anterior lobe, while
CCAS was associated with the posterior lobe in a voxel-based
lesion symptom mapping study analyzing relationships between
behavioral deficits in neurological populations and lesion sites
associated with those deficits (48). Cerebellar mutism syndrome
(CMS) was also noted in children after surgery for tumors in the
posterior fossa, which presented as mutism, emotional lability,
hypotonia, and ataxia (49, 50). Patients with tumor compression
to the cerebellum, such as posterior fossa arachnoid cyst or
Chiari malformation, also presented with neurodevelopmental
and psychiatric symptoms (developmental delay, intellectual
disability, autistic, and obsessive-compulsive symptoms) (51).

In summary, cerebellar lesions located in the anterior lobe
and parts of lobule VI interrupted cerebellar communication
with cerebral and spinal motor systems and caused cerebellar
motor syndrome. Cerebellar lesions located in the posterior
lobe (lobules VI and VII) interrupted the cerebellar modulation
of cerebrocerebellar cognitive loops and caused cognitive
impairments. Finally, cerebellar lesions located in the
vermis interrupted cerebrocerebellar limbic loops and caused
neuropsychiatric symptoms (40).

Spinocerebellar Ataxias
Spinocerebellar ataxias (SCAs) are rare inherited
neurodegenerative cerebellar disorders with clinical and
genetic heterogeneities. The most clinically significant symptoms
of SCAs are ataxia, dysmetria, dysarthria, and oculomotor
signs (52, 53). The prevalence of SCA subtypes varies across
populations (54–56). SCA1, SCA2, and SCA3 are the most
common subtypes in Caucasians, while SCA2, SCA3, and SCA6
are more frequently encountered in Japanese and Chinese
people (57, 58). Nonataxia symptoms, including cognitive
impairment, neuropsychiatric symptoms, and social cognition
deficits, have been found in SCA patients (59–62). Cerebellar
volume decreases have been noted in SCA patients. SCA1, SCA2,
and SCA3 patients presented with atrophy in the cerebellar
hemispheres and vermis as well as the brainstem. Atrophy in
the cerebellar hemispheres was less severe in SCA3 patients than

in SCA1 and SCA6 patients. However, atrophy in those with
SCA6 was restricted to the pure cerebellar cortex without vermis
and brainstem (63, 64). Functional MRI connectivity studies
in SCA2 and SCA3 patients showed decreased connectivity
between the sensorimotor area in the cerebral cortex and the
cerebellum (65, 66). In SCA6 patients, cerebellar lobules V
and VI and the dentate nuclei were more active compared to
controls when performing a hand-movement task (67). DTI
studies in SCA6 patients also showed increased connectivity
between the cerebral cortex (especially the occipital cortex)
and cerebellum in moderate cases and decreased connectivity
in severe cases (68). This result may indicate a compensatory
phenomenon in the cerebrocerebellum circuit in response to
spinocerebellum dysfunction in SCA6 patients (69). Indeed,
patients with SCA6 progress slower than those with SCA1,
SCA2, SCA3, and SCA17 and have longer disease durations (70).
The chronic nature of SCA6 may be related to compensatory
phenomena involving increased cerebrocerebellar connections
during cerebellar degeneration.

Recently, Hashimoto and Honda et al. demonstrated
different internal model disruptions in aging people and
spinocerebellar ataxia patients (SCA6 and SCA31) by
using prism adaptation tasks (71, 72). These studies also
established links between the internal models and the clinical
presentation of cerebellar disorders. More studies are needed to
investigate the relationship between clinical presentation and
internal models.

Neurodegenerative Disease and the
Cerebellum
Alzheimer’s disease (AD) is the most common form of dementia.
The deposits of amyloid plaques and ubiquitin-immunoreactive
dystrophic neurites are found in not only the cerebral cortex,
but also the cerebellum (73, 74). Decreased volumes of cerebellar
gray matter have been found in patients with early-onset AD
(75). However, whether there are changes in the FC of the
cerebrocerebellar connections in patients with AD and mild
cognitive impairment (MCI) remains a controversial question.
Some resting-state fMRI studies have shown decreased FC of the
cerebrocerebellar connections in MCI and AD patients (76, 77).
However, in another study, decreased FC of the cerebrocerebellar
connections in resting-state networks was found in the AD group
whereas a significant increase in FC was noted in the MCI group
(78). This connectivity difference indicated a compensatory
phenomenon in the cerebrocerebellum connection in the early
stages of AD; in other words, these controversial results may
have been due to connectivity changes during the clinical
progression of AD. Future studies could focus on subgroup
analyses based on the clinical cognitive impairment severity
to investigate the cerebrocerebellum connectivity differences
at each of the different stages of disease progression (69,
78). In addition, a syndrome with cognitive impairment and
dynapenia, called physio-cognitive decline syndrome (PCDS), is
considered to be correlated with the cerebellum (79, 80). Chen
et al. demonstrated reduced gray matter volume (GMV) in the
cerebellum, hippocampi, middle frontal gyri, and several other
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cerebral regions in the prefrail and frail groups compared to the
robust group (81).

Parkinson’s disease (PD) is also a common neurodegenerative
disorder associated with motor and cognitive impairments.
The main pathophysiology of PD is the degeneration of
dopaminergic neurons in the striato–thalamo–cortical pathways.
The anatomical connections between the basal ganglia and
cerebellum have been elucidated (82). Cerebellar atrophy has
been noted in PD and Parkinson plus syndromes [including
multiple system atrophy (MSA) and progressive supranuclear
palsy (PSP)] (83–86). Connectivity DTI studies have shown
decreased FA in the cerebellar hemispheres in PD patients (87).
However, increased connectivity in the cerebellum, primary
sensorimotor cortex, and premotor area was found when using
a regional homogeneity (ReHo) method in fMRI (88). In
addition, enhanced connectivity between the dentate nucleus and
cerebellum in PD patients was noted in resting-state fMRI (89).
The reasons for the increased connectivity observed in these
studies are still unknown, but the findings suggest that cerebellar
involvement in PD is compensatory (90).

Multiple Sclerosis and the Cerebellum
Multiple sclerosis (MS) is an inflammatory disease with clinical
mono- or polysymptomatic presentations depending on the
location of the demyelinating lesion. In some cases, there are
asymptomatic lesions as well-symptoms without corresponding
lesions. The most common presentations are optic neuritis,
cerebellum, brainstem, and spinal cord syndromes (91). The
cerebellum is one of the most commonly involved brain
regions in MS patients, with cerebellar lesions being described
in approximately half of all cases in clinically defined MS
(92). Cerebellar structural atrophy in MRI studies has been
noted in MS patients (93). D’Ambrosio et al. demonstrated
that cerebellar volumetric abnormalities were correlated with
the clinical symptoms and motor and cognitive performance
impairments in MS patients. Lower anterior cerebellar volume
and brain T2 lesion volume predicted worse motor performance,
whereas lower posterior cerebellar volume and brain T2 lesion
volume predicted poor cognitive performance (94), which maps
into the previously described functional cerebellar topography
(40). In addition, resting-state fMRI in progressive MS showed
reduced FC between crus II and the right frontal pole and
increased FC between lobule VIIb and the right precentral gyrus
after controlling for structural damage (95). Sbardella et al. also
showed enhanced dentate FC to frontal and parietal cortical areas
in MS patients compared to healthy controls, and the increased
connectivity was related to better cognitive performance (96).
These studies indicate the plasticity of cerebrocerebellar circuits
and functional compensation when damage occurs (69, 97).

In summary, the clinical presentation of ataxia is typically
taken as the first sign of cerebellar disease, but neuropsychiatric
impairments are often not diagnosed at that stage—perhaps
in part because the cerebellum is still perceived by some
physicians as being responsible purely for motor control,
meaning the relevance of non-motor symptoms to the cerebellum
might be overlooked. A second reason for the lack of early
diagnosis may be the lack of neuropsychiatric assessment

tools for CCAS. Recently, Schmahmann developed a scale for
evaluating the clinical neuropsychiatric symptoms in patients
with cerebellar disorders, including patients with Mini-Mental
State Examination (MMSE) scores >28 (i.e., normal cognitive
function). The Schmahmann’s syndrome scale includes tests
of executive function, language, visual spatial function, and
affect regulation with sensitivity and selectivity for detecting
patients with CCAS of 85%/74% in exploratory cohorts and
95%/78% in validation cohort studies (98). By using this CCAS
scale, we can clinically identify patients with cerebellar non-
motor symptoms. The third reason could be that ataxia and
dysmetria symptoms present earlier than non-ataxia symptoms.
Interestingly, neuroimaging studies in AD, PD, MS, and SCA
patients showed compensatory phenomena (69, 88, 89, 97). We
hypothesized that these compensatory phenomena are related
to zebrin patterning based on the evidence from molecular,
functional imaging, and clinical studies (see next).

Combination of Multiple Neuroimaging
Studies of the Cerebellum and Zebrin
Compensatory Phenomena and Zebrin
We hypothesized that zebrin-positive cells contribute to
the compensatory phenomena observed in cerebellar-related
chronic neurodegenerative diseases. In particular, zebrin-positive
cerebellar Purkinje cells are resistant to excitotoxicity, cell
injury, and degenerate slowly (99), the brain has time to
compensate for disrupted cerebral function by increasing the
cerebrocerebellar connectivity. Indeed, several neuroimaging
studies have shown enhanced cerebrocerebellar connectivity in
chronic neurodegenerative diseases (such as SCAs, AD, PD, and
MS) (69, 88, 89, 97). The compensatory phenomena in the
cerebrocerebellar circuit indicate the potential role of plasticity
in the cerebellum.

This hypothesis can also explain why the ataxia and dysmetria
symptoms present earlier than non-ataxia symptoms and the
neuropsychiatric impairment symptoms of CCAS are less severe
than the ataxic symptoms. Because zebrin-positive cells have
been associated with the non-motor cortical regions and zebrin-
negative cells have been associated with motor cortical regions
(17). We suggest that motor control dysfunction symptoms
such as ataxia and dysmetria present earlier and are easier to
observe than non-ataxia symptoms due to zebrin-negative cell
damage. Cerebellar zebrin-positive cells are resistant to cell injury
(99) while zebrin-negative zones are more prone to damage
(12, 18), suggesting that zebrin-positive Purkinje cells and its
cerebrocerebellar connection are preserved with normal non-
motor functions when brain damage occurs. We believe that the
clinical presentations of these diseases and neuroimaging studies
might be connected with cerebellar anatomical zebrin patterns,
suggesting a new way to investigate these cerebellar disorders.

Triple Functional Representation of the
Cerebellum
Triple functional representation topography of the cerebellum
was demonstrated by Guell et al.—namely, primary, secondary,
and tertiary representation (Figure 4). The primary and
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FIGURE 4 | The triple presentation of cerebellar functional topography. (A,B) This figure shows the triple functional representation topography in the cerebellum:

primary, secondary, and tertiary representation. The primary and secondary representations show a mirror-symmetry order of the functional topographic maps of

language, working memory, and social and emotional processing by task-evoked and seed-based resting-state fMRI. (C) The symmetrical pattern of primary and

secondary representation is similar to up-and-down symmetrical molecular zebrin patterns. Adapted from Voogd (17), Buckner et al. (2), and Diedrichsen et al. (100).

secondary representations showed a mirror-symmetry order
of the functional topographic maps of language, working
memory, and social and emotion processing by task-evoked
and seed-based resting-state fMRI (37, 101). The symmetrical
patterns of primary and secondary representation are similar
to up-and-down symmetrical molecular zebrin patterns, which
may indicate that those cerebellar areas with the same functions
(with the same color in Figure 4) have similar zebrin cell
properties. Furthermore, these symmetrical cerebellar areas
carry identical inputs from cerebrocerebellar pathways with
specific correspondence. For example, the symmetrical motor
function representations carry inputs from the motor cortex.
Interestingly, the tertiary representation was located in the
vermis and para-vermis region, which are not symmetrical
to primary and secondary representation. We hypothesized
that three representations of the cerebellum maybe corelated
to its cerebrocerebellar pathways. The functional synaptic
organization of cerebrocerebellar fibers in vermis were conserved
in a study with mice compared to 85% synaptic silence in the
cerebellar hemisphere (102, 103). Therefore, the triple functional
representation topography may be explained by an up-and-
down symmetrical molecular zebrin pattern with specific
cerebrocerebellar pathways as well as one vermis/paravermis
region that preserves multiple functional pathways. The
function of the vermis also supports its multiple pathways,
which is responsible for not only body posture, locomotion,
and eye movement (the so-called spinocerebellum), but also
emotional behavioral changes and autonomic functions (the
so-called limbic-connected cerebellum) (8, 42). This symmetrical
observation implies the importance of the zebrin patterns and
their correlation to functional maps. Further research might be
critical for making the connection among molecular, anatomical,
and functional representations.

Taking the many neuroimaging and disease studies of the
cerebellum together, we noticed that the traditional human
cerebellar anatomical lobules are very different from the
molecular zebrin patterns and cerebellar functional topographic

maps. By unifying the anatomical, molecular, and functional
topography, we can explain how the cerebellum works through
cerebrocerebellum circuits, affecting the various networks.
Many neuroimaging studies have revealed cerebellar functional
topographical features that are correlated with different
brain networks related to motor and non-motor functions.
These functional areas cross anatomical lobule borders
(3, 44), indicating that functional maps are different from
anatomical topography. Considering the similarity of three
functional representations and zebrin patterns of cerebellum,
the zebrin-positive/-negative cells’ properties may be more
crucial to cerebellar functions. Due to the current limitations of
neuroimaging techniques, we cannot demonstrate zebrin stripe
in conventional MRI studies. However, Boillat et al. showed
similar longitudinal stripe-like patterns by using quantitative T1
and T2∗ mapping at ultrahigh field (7T) MRI (104). Solodkin
et al. also demonstrated the visualization of zebrin-like patterns
in SCA1patients by fMRI connectivity and this zebrin patterns
diminished during the disease progression of SCA1 (105).
Therefore, by separating the zebrin-like signals in neuroimaging
studies, we might be able to study the alteration and function of
zebrin stripe and its relationship to clinical disease.

CONCLUSIONS

In this article, we reviewed cerebellum-related studies from
multiple viewpoints, including aspects of molecular function,
structural features, functional imaging, and clinical diseases. Due
to the complexity and incomplete nature of the field being
reviewed, the overall picture of the mechanisms underlying
cerebellar functions remains confusing and challenging. We
emphasized in particular the roles of zebrin stripe in the
cerebellum, which have been found to be related to specific
climbing fibers and their olivo–cortico–nuclear pathways.
Evidence from several neuroimaging studies has demonstrated
the presentations of cerebellar functional topography, which is
similar to the zebrin pattern. The cerebellar functional maps cross
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the borders of the conventional anatomical cerebellar lobules.
Functional imaging studies have also shown compensatory
phenomena in cerebellum-related diseases, such as AD, PD, MS,
and SCA. We hypothesized that these compensatory phenomena
are related to zebrin patterning and offered a new perspective
on cerebellar functions based on the evidence from molecular,
functional imaging, and clinical studies.

This review has some limitations. The precise relationships
among the anatomical cerebellum, molecular stripe patterns,
and functional topography are unknown. The neuroimaging
studies showed zebrin-like patterns, but we need more studies
to confirm the zebrin-like patterns in imaging studies are
identical to the molecular zebrin patterns. The functional
imaging of molecular zebrin pattern is still being developed.
Furthermore, a computational model of cerebrocerebellar
connections that addresses how the cerebellum processes
information and regulates cerebrocerebellar network circuits is
still unavailable.

Several fundamental theories of cerebellar function exist.
One of the most famous theories regarding cerebellum
functionality is the dysmetria of thought theory based on
the universal cerebellar transform (UCT) (4, 38, 46, 106,
107). This model implies a general function for regulating
multiple circuits. In this framework, impairments in UCT
function cause the dysregulation of these subcircuits that leads
to functional loss, which has been called “the dysmetria of
thought theory” (108). However, multiple functionality theory
suggests unique and diverse functions for the different circuits
(100). The electrophysiology of the zebrin pattern is the key
that holds the answer regarding which fundamental theory
is preferable. If zebrin-positive and zebrin-negative cells have
similar electrophysiological cell activity but different functions
due to distinct and specific olivo–cortico–nuclear pathways,

the universal cerebellar transform is supported. However,
if zebrin-positive and zebrin-negative cells have different
electrophysiological activities coupled with different pathways,
the multiple functionality theory is more likely. We need more
studies to investigate these fundamental theories.

Furthermore, the compensatory phenomena resulting in
enhanced cerebrocerebellar circuits are important for plasticity
and learning. Cerebellar stimulation with techniques such
as rTMS or TDCS and the application of other forms of
cerebrocerebellar circuit neuromodulation may be effective for
the control of motor symptoms or CCAS in patients with
cerebellar lesions. At present, cerebellar plasticity produced
by cerebellar regulation is still a new research topic. More
research is required to understand the neural mechanisms, their
relationship to zebrin-positive and zebrin-negative cells (5), and
their association with the neuromodulation of the cerebellum
based on this knowledge with potential therapeutic applications
for different cerebellar disorders (6).
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