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Abstract

Understanding relationships between spontaneous cancer in companion (pet) canines and

humans can facilitate biomarker and drug development in both species. Towards this end

we developed an experimental-bioinformatic protocol that analyzes canine transcriptomics

data in the context of existing human data to evaluate comparative relevance of canine to

human cancer. We used this protocol to characterize five canine cancers: melanoma, osteo-

sarcoma, pulmonary carcinoma, B- and T-cell lymphoma, in 60 dogs. We applied an unsu-

pervised, iterative clustering method that yielded five co-expression modules and found that

each cancer exhibited a unique module expression profile. We constructed cancer models

based on the co-expression modules and used the models to successfully classify the

canine data. These canine-derived models also successfully classified human tumors repre-

senting the same cancers, indicating shared cancer biology between canines and humans.

Annotation of the module genes identified cancer specific pathways relevant to cells-of-ori-

gin and tumor biology. For example, annotations associated with melanin production

(PMEL, GPNMB, and BACE2), synthesis of bone material (COL5A2, COL6A3, and

COL12A1), synthesis of pulmonary surfactant (CTSH, LPCAT1, and NAPSA), ribosomal

proteins (RPL8, RPS7, and RPLP0), and epigenetic regulation (EDEM1, PTK2B, and JAK1)

were unique to melanoma, osteosarcoma, pulmonary carcinoma, B- and T-cell lymphoma,

respectively. In total, 152 biomarker candidates were selected from highly expressing mod-

ules for each cancer type. Many of these biomarker candidates are under-explored as drug

discovery targets and warrant further study. The demonstrated transferability of classifica-

tion models from canines to humans enforces the idea that tumor biology, biomarker targets,

and associated therapeutics, discovered in canines, may translate to human medicine.
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Author summary

Understanding relationships between spontaneous cancer in companion (pet) canines

and humans can facilitate therapeutic development in both species. Towards this end we

developed a protocol that analyzes canine transcriptomics data in the context of existing

human data to evaluate comparative relevance of canine to human cancer. We used this

protocol to characterize five canine cancers: melanoma, osteosarcoma, pulmonary carci-

noma, B- and T-cell lymphoma, in 60 dogs. We identified five gene co-expression mod-

ules and found that their pattern of activation was distinct for each cancer. We

constructed a classification model based on these modules and used it to successfully clas-

sify canine and human transcriptomic data associated with the 5 cancers studied. Annota-

tion of the module genes identified cancer specific pathways relevant to cells-of-origin

and tumor biology. The analysis interprets cancer as a species shared, activation pattern,

of gene modules each representing different units of biology that come into play for each

cancer. 152 biomarker candidates, many of which are understudied as drug targets, were

identified for further study. The demonstrated transferability of classification models

from canines to humans enforces the idea that tumor biology, biomarker genes and thera-

peutics derived therefrom, in canines may translate to humans.

Introduction

The recognition of spontaneous cancer development in companion animals and the potential

for inclusion of such animals in biomarker and drug development studies, stems from decades

of scientific observation that pet dogs spontaneously develop malignancies that share morpho-

logic, histologic, and biologic characteristics with human cancers. [1,2] Human-canine simi-

larities include shared environment, intact host immunity, common tumor biology, similar

body size, and greater genome homology between dogs and humans than mice and humans in

cancer-gene families. [3,4] Many groups are conducting studies to compare tumor biology

between canine and human at the molecular level to complement clinical and histopathologic

findings made in both species. [5–12] A primary example involving a common canine-human

driver mutation is the parallel development of toceranib for treatment of mast cell tumors

(MCT) in dogs and sunitinib for treatment of Gastrointestinal stromal tumors (GIST) in

humans. This was based on the discovery that mutations in KIT [13,14] result in its constitu-

tive activation and is the cause of MCT in dogs and GIST in humans. Given this common biol-

ogy, the drug company Sugen was able to develop two virtually identical molecules in parallel,

sunitinib for use in humans [15] and toceranib for use in dogs. [16]

However, most cancer modeling experiments are performed in rodents. [17] While rodent

models have been valuable for investigating cancer mechanisms, they are not always represen-

tative of humans. For example, widely used mouse strains are inbred, and so have limited

genetic variation across animals. [18] Laboratory mice are also raised in a relatively uniform

environment and fed a standardized diet. This uniformity of rodents used in cancer studies is

unlike the heterogeneous population of human cancer patients. Xenograft models, in which

cancer cells are transplanted from human to an immune compromised mouse, limit their abil-

ity to accurately recapitulate cancer in humans. [19,20,21] These limitations of rodent models

may explain many of the failures of biomarker targets and therapeutics to translate to humans.

[22]

Access to high-quality canine samples is critical to understanding the complexities of

canine cancer and potential translation of canine findings to human cancer research. [23–25]
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This complexity may involve many genes, each with multiple splice variants and/or potential

oncogenic mutations, combined with significant expression changes relative to the normal

state. These effects are difficult to find using single gene analysis. The average expression of a

group of genes, [26,27] however, may be easier to detect. If such averages are considered, data

complexity is reduced, allowing elucidation of cancer similarities and differences within and

between canine and human species. These similarities and differences are often studied by

conducting two-condition, disease versus control experiments. Human or animal genomic

experiments are performed to find and characterize genes that exhibit significant expression

differences between the two conditions. These genes are then proposed as putative biomarkers

candidates. However, without simultaneous analyses of other diseases and species it is impossi-

ble to know if the discovered biomarkers are specific to the disease and species of interest. [28]

We developed a combined experimental-bioinformatic protocol to generate canine cancer

transcriptomic data and analyze it in the context of existing human data. The protocol, shown

in Fig 1, mitigates somewhat issues discussed above, i.e., use of canines as opposed to rodents,

access to high quality samples from established biobanks, tracking average expression values of

gene groups as opposed to individual genes, and analysis of multi-disease, multi-species data

as opposed to disease versus control data from one species. The individual components of this

protocol are not unique, but their combination is uncommon. Execution of this protocol can

increase the likelihood of quantifying relationships between canine and human cancer and

establishing cancer biomarker signatures common to both species.

We obtained treatment-naive patient canine sample sets (frozen tumor, and frozen normal,

typically healthy tissue taken as close to the tumor site as possible, Fig 1A) for each of five

tumor histological types (osteosarcoma, T-cell lymphoma, B-cell lymphoma, pulmonary carci-

noma, and melanoma) from the Pfizer-CCOGC (Canine Comparative Oncology and Geno-

mics Consortium) Biospecimen Repository. [29] We prepared 75 samples for RNA-Seq

analysis (Fig 1A). Each sample was split into 3 replicates to make 3 cDNA libraries for sequenc-

ing analysis (Fig 1B). All told 225 libraries were sequenced. The RNA-Seq sequence reads for

the 5 cancers were analyzed together and genes (Fig 1C) were clustered into co-expression

(Fig 1D) modules. [30] A co-expression module corresponds to a group of genes that have a

similar expression pattern across samples analyzed. Genes in a co-expression module are of

interest because such genes are thought to be members of the same biological pathways or part

of the same transcriptional regulatory program. We found that each cancer exhibited specific

activation for particular (primary) modules (Fig 1E). The co-expression modules were then

used to build models (Fig 1F) that classified the canine cancers with high sensitivity and speci-

ficity (Fig 1G). These models also successfully classified matched human data. Genes were

selected from those modules most highly activated for each cancer and proposed as diagnostic

biomarker candidates (Fig 1H).

Many of the genes in these modules have little evidence of being targeted with drugs for the

cancers studied. These genes, therefore, are good candidates for future target and/or drug dis-

covery efforts. Annotations associated with these genes [31,32] revealed some common, but

mostly distinct biological mechanisms for each cancer (Fig 1I). Most of these mechanisms are

known, but they provide validation for the co-expression modules, and biomarker genes

selected therefrom.

The work presented herein supports the comparative and clinical translational relevance of

canine-to-human cancer studies, and the biological mechanisms at play that allow cancers to

be accurately classified. The demonstrated transferability of canine derived diagnostic models

to the human case reinforces the idea that biomarkers used in the detection and treatment of

cancers are shared between canines and humans.
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Fig 1. Combined experimental-bioinformatics pipeline for multi-species, multi-disease, characterization, modeling, and

biomarker hypothesis generation.

https://doi.org/10.1371/journal.pcbi.1009450.g001
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Results

Five gene co-expression modules represent coordinated activation patterns

of gene groups associated with 5 types of cancer

We obtained 75 tissue samples (S1 File, S1 and S2 Figs) associated with treatment naive canine

patients from the Pfizer-CCOGC Biospecimen Repository. [29] These consisted of 12 tumor

samples and 3 matched controls (taken near the vicinity of the tumor, if possible) for each of

the 3 cancer types: pulmonary carcinoma (PULM), melanoma (MEL), and osteosarcoma

(OSA). For B-cell lymphoma (BLSA) we collected 15 tumor samples and 3 matched controls

and for T-cell lymphoma (TLSA) we collected 9 tumor samples and 3 matched controls. Histo-

pathological evaluation by a veterinary pathologist indicated that tumor specimens on average

contained 80% tumor cells and 20% stroma cells. The breed heterogeneity was high with 23

breeds represented in 60 dogs used for the study. One tumor biopsy for each sample was used

and RNA was extracted and determined to be of high quality with all RIN values> 7.0. See S2

File for details. Each RNA sample from the single tumor biopsy was divided into 3 replicates.

Each replicate was used to make 3 cDNA libraries for sequencing. [33,34] Each of the 3 librar-

ies were loaded onto 3 different lanes on the flow cell that goes into the sequencer. 225 libraries

in all were sequenced. See Methods section titled “RNA-Seq Experiments” for details.

After initial processing of the resulting sequence reads from RNA-Seq, we arrived at a

24,580 gene by 225 sample raw count matrix. See S3 File. We further processed the count

matrix by (i) removing canine genes with low read counts, (ii) removing canine genes with

low variance, (iii) removing canine genes with no associated human homologs, (iv) aggregat-

ing sample replicates, and (v) performing a Z scaling transformation (see Eq (1), discussion in

Methods). The final processed Z matrix (expression matrix, see S4 File) was composed of 4115

genes (rows) and 75 samples (columns). Relevant statistics associated with the Z matrix are: (i)

range = -0.75 to 49.29, (ii) median = -0.18, and (iii) 0%, 25%, 50%, 75% and 100% quantiles =

-0.75, -0.36, -0.18, 0.05, and 49.29, respectively. The distribution of Z scaled read counts, has a

minimum value near zero, and is splayed in a positive direction for genes with increasing

expression level. These Z scaled read counts, are essentially a measure of absolute activation

with 0 being the reference and are read counts processed into a form and range amenable to

module calculations. The positive splayed values of the Z matrix reflect the properties of the

original read count matrix, from which it was derived (minimum value = 0, all counts

positive).

Using an iterative clustering method, [30] we identified 5 gene co-expression modules asso-

ciated with the Z matrix. The modules are given in S5 File. Fig 2 shows the expression patterns

of each of these modules across the samples. The expression patterns of the modules across the

cancer samples are distinct, typically exhibiting significant activation for one or two cancer

types. Conversely each cancer exhibits a distinct expression pattern across modules, exhibiting

significant activation for one or two modules.

Each cancer type exhibits a distinct module activation profile

corresponding to significant activation of one of the five modules

For each module, we define its activation as an average across all genes of the module and all

samples associated with the cancer type or matched normal. The matched normal samples

were taken from the same dog as the tumor samples and were typically healthy tissue taken

near the tumor site. See S2 Fig for more information regarding the normal samples. The acti-

vation values of the modules for cancer and normal samples are shown in Fig 3A and 3B. P val-

ues associated with comparison of the module activation of each cancer to its activation in the
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Fig 2. Activation patterns of gene modules 1–5 across the cancer samples used in this study. Rows represent individual module

genes, columns represent samples, color coding represents activation ranging from low (blue) to high (red). Individual gene activations

are Z-scaled read counts computed using Eq (2). Representative genes from each module are shown at left.

https://doi.org/10.1371/journal.pcbi.1009450.g002
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normal controls are shown in Fig 3C. In Fig 3A–3C, the colored boxes are associated with the

primary module of each cancer type. The primary modules are defined as the most highly acti-

vated modules with statistically significant cancer sample activation relative to normal control

activation. Module 1 (225 genes) is the primary module of PULM, module 2 (204 genes) is pri-

mary to MEL, module 3 (158 genes) is primary to OSA, module 4 (69 genes) is primary to

BLSA and module 5 (161 genes) is primary to TLSA. Fig 3D shows notched box plots associ-

ated with the activation of primary module genes for each cancer and its matched normal. The

non-overlap of notch positions for cancers versus normal for all cancer types indicates signifi-

cant differences in gene activation between disease and normal states. The p values shown in

Fig 3. Comparison of module activations between cancer and normal samples. (A) Module activations for each of the 5 cancers studied. (B)

Module activations of matched normal controls. (C) Module activation p values for comparison of cancer sample activation with normal

sample activation. Colored entries in (A)-(C) mark the values for the primary modules of each cancer type. Primary modules are defined as the

highest expressed module with p< 0.05 for each cancer type. The primary modules are: module 1 (blue) for PULM, module 2 (orange) for

MEL, module 3 (purple) for OSA, module 4 (brown) for BLSA, and module 5 (green) for TLSA. (D) Box plots showing distributions of primary

module gene activations for each cancer and matched normal (Eq (3)). Open circles are oulier points. Some of the outlier points associated with

the tumor samples are labeled with representative genes from each module. Red diamonds locate positions of the average activation across all

genes within each module and all samples representing each cancer (Eq (5)). The center of each notch is the position of the median activation.

(E) PCA plot showing positions of cancer samples (circles) and associated matched normals (squares). Each sample is represented by a set of 5

module activations, each activation compiled as an average across all genes of each module.

https://doi.org/10.1371/journal.pcbi.1009450.g003
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Fig 3C confirm this. Fig 3E shows the positions of cancer (circles) and normal samples

(squares) in PCA1, PCA3 space. Each sample is represented by a set of 5 module activations,

with each activation compiled as an average across all genes of each module. The PCA plot

shows excellent separation of the five sets of tumor samples. For BLSA, TLSA, MEL, and OSA,

the normal samples are all similar, by their location near the center of the PCA plot. They are

also different than the tumor samples which typically appear nearer the edges of the PCA plot.

This implies that the normal samples were collected from similar tissues on the dogs but at

locations distant from the tumors. In these cases, the normal tissue collected is most likely

muscle or skin. The PULM normal samples, however, occupy the same region in the PCA plot

as the PULM tumor samples. This implies that the PULM normal samples were collected from

healthy lung tissue in the vicinity of the tumor.

Nearest neighbor models based on module activation profiles successfully

classified the canine samples used in this study

Because each cancer exhibits significant activation in different modules, we reasoned that the

gene modules could be used to build accurate cancer classification models. We used a nearest

neighbor approach to build the classification models. See the Methods section titled “Model

validation using internal canine data” for details. When we tested this classification model

for robustness using random subsample cross-validation on our internal data we obtained the

set of ROC curves and associated metrics shown in Fig 4A and 4B. The average AUC and sen-

sitivity (at a chosen specificity of ~0.7) across the ROC plots is 0.99 and 0.99 respectively.

These results indicate that classification of tumor samples used in this study was robust using

models built from gene co-expression modules.

The nearest neighbor models successfully classified both canine and human

transcriptomic data sets from external sources despite variability

introduced by different technical methods, species, and sample types

Because we consider the average expression of gene groups which have lower variability than

the expression values of single genes, we may be able to classify external canine data despite

the experimental variability introduced by different technical methods. If human cancer biol-

ogy is like canine, as we hypothesize, then the models may also classify external human data

despite the variability introduced by different species.

Toward these ends, we tested our classification models for robustness on external data of

the same cancer types for which the model was built. See the Methods section titled “Model

validation using external data” for details. Using the external canine transcriptomics data

(see S3 Fig, column titled “GEO series Dog”) we obtained the set of ROC curves shown in Fig

4C, and associated metrics in Fig 4D. The average AUC and sensitivity at a chosen specificity

of ~0.7 across the ROC plots is 0.97 and 0.99, respectively. Classification of external human

transcriptomics data (see S3 Fig, column titled “GEO series Human”) leads to the set of ROC

curves shown in Fig 4E, and associated metrics in Fig 4F. The average AUC, sensitivity and

specificity across the ROC plots is 0.95, 0.94, and 0.69, respectively. In a final test, we seeded

the external human data (S3 Fig, column titled “GEO series Human”) with negative data

(human) from cancer types not used to construct the models (S4 Fig, data from the genomic

data commons data portal). In this case the average AUC, sensitivity, and specificity across the

ROC plots is 0.91, 0.91, and 0.70. These results indicate that our gene co-expression modules,

derived from internal canine transcriptomic data, produce classification models, that also

apply to external canine and human data for cancer types matched to those studied in this

work (Fig 4A–4F). In addition, the models are selective for PULM, MEL, OSA, BLSA, and
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Fig 4. Tests of cancer classification models. (A)(B) ROC analysis of canine cancer models trained on half of the internal

canine data and tested on the other half. (C)(D) ROC analysis of canine cancer models trained on all internal canine data

and tested on external canine data of the same cancer type. (E)(F) ROC analysis of canine cancer models trained on all

internal canine data and tested on external human data of the same cancer type. (G)(H) ROC analysis of canine cancer

models trained on all internal canine data and tested on external human data of the same cancer types. External data sets

for cancer types other than PULM, MEL, OSA, BLSA, and TLSA are added as background negative data.

https://doi.org/10.1371/journal.pcbi.1009450.g004
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TLSA even in the presence of data for cancer types not used to construct the models (Fig 4G

and 4H).

Fig 4 exhibits the following trend in ROCS statistics from best to worse depending on the

data sets used: Canine internal (AUC = 0.99), canine external (AUC = 0.97), human external

(AUC = 0.95), human external augmented with cancer types other than MEL, PULM, OSA,

BLSA, and TLSA (AUC = 0.91). The ROCs statistics appear to decay as the data sets used to

test the classification models diverge from the original data set used to construct the models.

Annotations reveal some common but mostly distinct and separate biologic

themes associated with each cancer

We used the list of genes associated with each module to query the David bioinformatics

resource [35] and found KEGG [30] and GO [32] annotations associated with each module.

The annotation matrix is shown in Fig 5 for those annotations with p values < 0.005. [36] 17

annotations are shared across multiple cancer types and 59 are cancer specific. The full annota-

tion matrix (p< 0.05) for each cancer type is tabulated in S6 File (Tab 1). In this case 47 anno-

tations are associated with multiple cancers and 279 are cancer specific. These statistics suggest

that each gene co-expression module, to a significant extent, represents distinct annotation

sets. Since each cancer studied in this work is closely related to specific primary modules, the

annotations reveal some common but mostly distinct and separate biology associated with

each cancer.

Fig 5 reveals some general themes. Annotations shared by 3 or 4 modules are rather general,

e.g., “cytosol,” “protein binding,” and “ATP Binding.” Annotations shared by two modules are

more specific. For instance, modules 1 and 2, or 1 and 3 share annotations indicating biology

related to cell-cell or cell ECM interactions, e.g., “cell-cell adherens junction,” “cell adhesion,”

“extracellular matrix organization,” and “cell matrix adhesion.” Annotations shared by mod-

ules 2 and 3 focus on morphology, e.g., “angiogenesis,” and “axon guidance.” Annotations that

focus on internal cell processes, e.g., “nucleoplasm,” “nucleus,” and “intracellular signal trans-

duction” are shared by modules 4 and 5.

Annotations associated with one module only are the most specific of all, they are too

numerous to include all here, so we highlight just a few. Module 1 annotations, associated with

pulmonary carcinoma, focus on surfactants and vesicles, e.g., “surfactant homeostasis,” “lyso-

some,” and “positive regulation of extracellular exosome assembly.” Module 2 annotations

associated with melanoma focus on the cell cytoskeleton, e.g., “actin binding,” “barbed-end

actin filament capping,” “actin filament binding, and “microtubule cytoskeleton organization.”

Module 3 annotations associated with osteosarcoma focus on bone components or processes,

e.g., “collagen binding,” “extracellular matrix,” “skeletal system development,” “ossification,”

and “calcium ion binding.” Ribosomes and processes that occur therein are a focus for module

4 annotations associated with B-cell lymphoma, e.g., “ribosome,” and “translation initiation.”

Module 5 annotations associated with T-cell lymphoma focus on T-cell activities, e.g., “T-cell

receptor binding,” “T-cell activation,” “T-cell receptor signaling pathway,” or second messen-

ger systems, e.g., “Phosphatidylinositol signaling system,” “peptidyl-tyrosine autophosphoryla-

tion,” or epigenetic and transcriptional control, e.g., “histone-lysine N-methyltransferase

activity,” or “positive regulation of transcription-DNA templated.”

Biomarker hypotheses selected from the primary modules of each cancer

bear significant evidence linking them to their associated cancer

A juxtaposition of annotations, genes, and modules, specific to the various cancer types is

given in Figs 6–11. In these figures, for each cancer, and its associated modules we only
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Fig 5. KEGG and GO annotations for modules and associated cancers. Annotation matrix with rows enumerated by

the different annotations and columns enumerated by cancer types and associated primary modules. Matrix elements

are populated with 1 (and colored red) or 0 depending on whether the annotation is or is not associated with the

module. The red color is included to highlight the block diagonal nature of the matrix. The column titled “# Modules”

tallies the total number of modules that the annotations are associated with. The average BH corrected p values for these

associations are given in the last column of the Table. Only p values< 0.005 are shown. P values are shaded from red to
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included genes with activation > 1.5 (~95% confidence level for Z scores) as biomarker

hypotheses and we only included annotations that are specific to each cancer. The biomarker

hypotheses collected from Figs 6–11 are shown in Fig 12. See S7 File for expanded versions of

Figs 6–11, that include all module genes and all annotations for each cancer type. See the

Methods section titled “Module annotations” for a detailed description of these figures.

Examples of biomarker genes for pulmonary carcinoma (from Fig 6) that are associated

with the cancer specific themes discussed in relation to Fig 5 above are: CTSH, LPCAT1,

NAPSA, and ADGRF5 which are associated with “surfactant homeostasis,” genes ASAH1,

NAPSA, LRRK2, and CTSH which are associated with “Lysosome,” and genes SDC4 and SDC1
which are associated with “positive regulation of extracellular exosome assembly.” For all mod-

ule 1 biomarkers the average number of CTD (Comparative Toxicogenomics Database) [37]

references relating each gene to pulmonary carcinoma = 243 (Fig 6 column titled “CTD refer-

ence count”) and the average CTD inference score per gene = 54 (Fig 6 column titled “CTD

inference score”). See the Methods section titled “Biomarker link to literature and target

novelty” for discussion of CTD evidence. The CTD evidence indicates a sizable amount of lit-

erature implicating these module 1 biomarker genes to pulmonary carcinoma mechanism.

For melanoma specific themes, Fig 7 shows that TRPM7 is associated with “actin binding,”

DPYSL2 is associated with “microtubule binding” and “regulation of axon extension”, and

white, with the highest p values in red transitioning to the lowest p values in white. See S6 File (Tab 1) for the full set of

annotations (p< 0.05).

https://doi.org/10.1371/journal.pcbi.1009450.g005

Fig 6. Primary module 1 genes for pulmonary carcinoma. Genes (activation> 1.5) and annotations shown are specific to pulmonary carcinoma in

this study. In the table, red boxed 1 values indicate that the gene at far left in column 1 is associated with the annotation at top. White boxed 0 values

indicate that the gene (at left) is not associated with the annotation (at top). Pink boxes under BH corrected p value indicate genes with statistically

significant activation difference between tumor and normal samples. See S7 File which contains all module 1 genes for pulmonary carcinoma.

https://doi.org/10.1371/journal.pcbi.1009450.g006
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Fig 7. Primary module 2 genes for melanoma. Genes (activation> 1.5) and annotations shown are specific to melanoma in this study. In the table,

red boxed 1 values indicate that the gene at far left in column 1 is associated with the annotation at top. White boxed 0 values indicate that the gene (at

left) is not associated with the annotation (at top). Pink boxes under BH corrected p value indicate genes with statistically significant activation

difference between tumor and normal samples. See S7 File which contains all module 2 genes for melanoma.

https://doi.org/10.1371/journal.pcbi.1009450.g007

Fig 8. Primary module 3 genes for osteosarcoma. Genes (activation> 1.5) and annotations shown are specific to osteosarcoma in this study. In the

table, red boxed 1 values indicate that the gene at far left in column 1 is associated with the annotation at top. White boxed 0 values indicate that the

gene (at left) is not associated with the annotation (at top). Pink boxes under BH corrected p value indicate genes with statistically significant

activation difference between tumor and normal samples. See S7 File which contains all module 3 genes for osteosarcoma.

https://doi.org/10.1371/journal.pcbi.1009450.g008
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LYST is associated with “microtubule cytoskeleton.” For all module 2 biomarkers the average

number of CTD references relating each gene to melanoma = 30 and the average CTD infer-

ence score per gene = 17. These data indicate a smaller yet significant amount of literature

linking module 2 biomarker genes to melanoma mechanism.

In the case of osteosarcoma specific themes, Fig 8 shows that SPARK, LUM, SERPINH1,

MRC2, and PCOLCE are associated with “collagen binding,” COL5A2, LUM, COL6A3,

COL12A1, TNC, and PCOLCE are associated with “extracellular matrix,” COL5A2, COL12A1,

CDH11, and ALPL are associated with skeletal system development, COL5A2, SPARC, and

CDH11 are associated with “ossification,” and SPARC, CALU, CDH11, and FKBP10 are associ-

ated with “calcium ion binding.” The module genes have average CTD number of refer-

ences = 71 associating them with osteosarcoma and an average CTD inference score = 17. The

CTD evidence linking module 3 genes to osteosarcoma is significant and greater than for mel-

anoma, but less than that for pulmonary carcinoma.

For B-cell lymphoma themes, Fig 9 shows that RPS7, RPLP0, RPS23, RPS12, RPL10A, RPS5,

RPS16, RPL35, and RPS15 are associated with “ribosome,” and RPS7, RPLP0, RPS23, RPS12,

E1F4B, RPL10A, RPS5, RPS16, RPL35, RPS15, and EIF3K are associated with “Translational

Initiation.” The Module 4 genes have average CTD number of references = 6 associating them

to B-cell lymphoma and average inference score = 7. These data indicate a smaller amount of

literature linking Module 4 biomarker genes to B-cell lymphoma than for osteosarcoma, mela-

noma, and pulmonary carcinoma.

Fig 9. Primary module 4 genes for B-cell lymphoma. Genes (activation> 1.5) and annotations shown are specific to B-cell lymphoma in this study.

In the table, red boxed 1 values indicate that the gene at far left in column 1 is associated with the annotation at top. White boxed 0 values indicate that

the gene (at left) is not associated with the annotation (at top). Pink boxes under BH corrected p value indicate genes with statistically significant

activation difference between tumor and normal samples. See S7 File which contains all module 4 genes for B-cell lymphoma.

https://doi.org/10.1371/journal.pcbi.1009450.g009
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For T-cell lymphoma themes (Figs 10 and 11), genes DOCK2, FYN, and CD3G are associated

with “T-cell receptor binding,” CD3G, CD2, FYN, and ITK are associated with “T-cell activation,”

PLCG1, DGKA, INPP4B, and DGKZ are associated with “Phosphatidylinositol signaling system,”

PTK2B, JAK1, LCK, FYN, and ITK are associated with “peptidyl-tyrosine autophosphoryla-

tion,” and ETS1, LEF1, and ARID1A are associated with “positive regulation of transcription-

DNA templated.” The module 5 genes have average CTD number of references = 8 and aver-

age inference score of 6 linking them to T-cell lymphoma. The CTD evidence linking module

5 genes to T-cell lymphoma is small like it is for module 4 gene linkage to B-cell lymphoma.

Further evidence linking module genes to their associated cancers was found by comparing

module genes to cancer genes compiled in the COSMIC [38] (genes known to have mutations

associated with specific cancers) and OncoKB [39] (known oncogenes) databases. In Fig 12

genes found in COSMIC are colored pink and those genes with bold surrounding boxes are

found in OncoKB. For pulmonary adenocarcinoma, all module 1 genes are present in COSMIC

and have documented mutations associated with the cancer. Four of the genes, LRRK2, FAT1,

Fig 10. Primary module 5 genes for T-cell lymphoma. Genes (activation> 1.5) and annotations (KEGG, GO MF, and GO CC) shown are specific to

T-cell lymphoma in this study. In the table, red boxed 1 values indicate that the gene at far left in column 1 is associated with the annotation at top.

White boxed 0 values indicate that the gene (at left) is not associated with the annotation (at top). Pink boxes under BH corrected p value indicate

genes with statistically significant activation difference between tumor and normal samples. See S7 File which contains all module 5 genes for T-cell

lymphoma.

https://doi.org/10.1371/journal.pcbi.1009450.g010
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SDC4, and STAT3 are present in OncoKB and are known oncogenes. For melanoma, all mod-

ule two genes are present in COSMIC, and two of these genes, USP8 and PPFIBP1 are known

oncogenes present in OncoKB. In the case of module 3 genes associated with osteosarcoma,

eight are found in COSMIC (LUM, COL6A3, TNC, CALU, COL16A1, OMD, ITGB5, and

DPSYL3), and two (CDH11 and OMD) are oncogenes found in OncoKB. For B-cell lymphoma

only three genes are found in cosmic (CD22, MDN1, and PlCG2) and three genes (CD22,

PTPN6, PLCG2) are oncogenes. For T-cell lymphoma six genes are found in cosmic (JAK1,

PLCG1, FYN, ARID1A, EP300, and MAP3K1), and 13 are known oncogenes. These 13 genes

are ETS1, PTPRC, JAK1, NUMA1, LEF1, PLCG1, LCK, FYN, ARID1A, EP300, ITK, INPP4B,

and MAP3K1.

Many biomarkers selected from the primary modules of each cancer are

underexplored as drug targets

Using a combination of Pharos IDG target class, [40] CTD inference score, and CTD number

of references (columns 2, 3, and 4 of Figs 6–11) [41] we prioritized biomarkers in terms of

Fig 11. Primary module 5 genes for T-cell lymphoma. Genes (activation> 1.5) and annotations (GO_BP) shown are specific to T-cell lymphoma in

this study. In the table, red boxed 1 values indicate that the gene at far left in column 1 is associated with the annotation at top. White boxed 0 values

indicate that the gene (at left) is not associated with the annotation (at top). Pink boxes under BH corrected p value indicate genes with statistically

significant activation difference between tumor and normal samples. See S7 File which contains all module 5 genes for T-cell lymphoma.

https://doi.org/10.1371/journal.pcbi.1009450.g011
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Fig 12. Biomarker candidates selected from Figs 6–11. Genes colored pink are found in COSMIC, those with bold surrounding boxes are

found in OncoKB, those with a single asterisk are IDG class “Tbio”, and those with a double asterisk are IDG class “T dark”. Presence in

COSMIC means that there is documented evidence of the gene being mutated for the specific cancer, presence in OncoKB means that the gene

is a known oncogene, an IDG target class of “Tbio” or “Tdark” means that the gene is understudied as a drug target, i.e., there are no drugs or

small molecules active against these targets.

https://doi.org/10.1371/journal.pcbi.1009450.g012
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their “target novelty” defined as targets with few chemistries (approved drugs and other) that

have known activities against them. See the Methods section “Biomarker link to literature

and target novelty” for details regarding this prioritization. In Fig 12 high priority targets are

marked with an asterisk. These targets have the IDG classification “Tbio” which means that

they do not have known drug or small molecule activities, but they do have associated gene

ontology terms or a confirmed OMIM [42] phenotype. These targets also have a small CTD

inference score and few CTD references linking them to their associated cancer (see columns 3

and 4, Figs 6–11). Highest priority targets, in terms of novelty, are marked with a double aster-

isk. These targets have the IDG classification “Tdark” which means that they are essentially

unstudied.

In the case of pulmonary carcinoma (PULM), high priority targets are CD44, FAT1, SDC1,

and MYOF. These targets all share the annotations, “extracellular exosome” and “plasma mem-

brane”. In the case of melanoma (MEL), high novelty targets are SPPL2A, CHL1, AP4E1,

SECISBP2L, and COPS2. These targets are associated with a variety of annotations which

include “extracellular exosome”, “clathrin-coated pit”, “trans-Golgi network membrane”, “sig-

nal transduction”, and “axon regeneration.” For osteosarcoma, high novelty targets are

COL16A1 and KDELR2, and are associated with annotations that include “extracellular exo-

some”, “endoplasmic reticulum lumen”, “Golgi membrane”, “cell adhesion”, “extracellular

matrix organization”, and “integrin mediated signaling pathway”.

There are many more high novelty targets associated with B and T-cell lymphoma, than for

the other cancers. For B-cell lymphoma, high novelty targets are RPS7, RPLP0, RPS23, RPS12,

RPL10A, RPS5, RPS16, MYCPB2, RPL35, CD22, MDN1, RPS15, and WDY4. Most of these tar-

gets are components of the ribosome and are involved in the processes that occur therein. For

T-cell lymphoma, high novelty targets are EDEM1, CHD3, PPP1R16B, CYFIP2, CCR7, CTPS1,

HNRNPUL1, FMNL1, H3F3B, ARHGEF6, DOCK11, DIAPH1, DOCK2, CTSW, BIN2,

FAM120A, and DGKZ. Many of these targets are associated with cell signaling and second

messenger systems and are associated with annotations that include “ATP binding”, “GTPase

activator activity”, “nucleus”, “intracellular”, and “transcription, DNA-templated”. For more

details on target novelty please see the Methods section titled “Biomarker link to literature

and target novelty”.

We compared the dog breeds used in our study, with the dog breeds contained in the

American Kennel Club Database (https://www.akc.org/). The distribution of dog breeds repre-

sented in the tumor samples we chose for analysis roughly corresponds to the distribution of

dogs owned in the USA (according to the American Kennel Club data). Our top breeds, by

sample count were Golden Retriever, Mixed, Labrador Retriever, Boxer and Doberman. These

are also the most popular breeds to be registered by the American Kennel Club. Since we are

studying dog breeds commonly owned by people in the USA, the biomarker results presented

here are likely to be widely applicable. See S1 File (last tab titled “AKC_comparo”) for details.

Discussion

Most cancer modeling experiments are performed on rodents bearing experimentally induced

disease. [17] The shortfalls of these models may explain many of the failures of therapeutic and

biomarker hypotheses to translate to humans in the clinic. [22] Pet dogs spontaneously

develop malignancies that have common morphologic, histologic, and biologic characteristics

with human cancers. [1,2] This has highlighted the potential for inclusion of such animals in

biomarker and drug development studies as a complement to rodent models. Towards these

ends we have now identified five gene co-expression modules from bioinformatic analysis of

transcriptomic data for canine pulmonary carcinoma, melanoma, osteosarcoma, B- and T-cell
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lymphoma. We showed that each of the canine cancers exhibits a unique module activation

profile, represented by statistically significant expression of one or two of the modules (pri-

mary modules) specific to the cancers. We used these unique profiles to develop models that

successfully classified the canine cancer data to high sensitivity and specificity. We showed

that the models were also successful in classifying human transcriptomic data for the same five

cancer types, thereby demonstrating canine-human equivalence of the models. Annotations of

the primary modules of each cancer yielded some common but mostly cancer-specific biology.

We selected biomarker candidates from the highest expressing genes of the primary modules

of each cancer. Many of the biomarker genes turn out to be underexplored as drug discovery

targets and warrant further study.

Identification of gene modules that can be used to provide accurate classification of multi-

ple cancer types and are applicable to multiple species is a difficult endeavor. The success of

the current study depends on a combination of aspects that taken together are not commonly

applied.

First, because of our access to the Pfizer-CCOGC Biospecimen Repository, [29] we were

able to collect a large set of samples from naturally occurring tumors extracted from treatment

naïve dogs. Sample availability such as this is uncommon in the preclinical research setting.

[43] We collected 12 tumor samples and 3 matched controls for MEL, OSA, and PULM. We

collected 9 tumor samples and 3 matched controls for TLSA and 15 tumor samples and 3

matched controls for BLSA. The samples, on average, contained 80% tumor cells and 20%

stroma cells. The breed heterogeneity was high with 23 breeds represented in 60 dogs used for

the study. However, neither the tumor/stroma ratios nor the breed heterogeneity were con-

founding factors in our experiments. Please see S8 and S9 Files for details.

From Fig 3E we surmised that the normal samples for BLSA, TLSA, MEL, and OSA were

collected from a common tissue source, most probably muscle or skin at a site remote from

the tumors. The PULM normal samples, on the other hand, were collected from healthy lung

tissue, in the vicinity of the tumor. To validate these observations, we compiled a list of the top

200 expressing (read counts) genes for each normal sample, and then performed a tissue spe-

cific enrichment analysis using the Dougherty Web-based TSEA tool. [44] The tissue marker

genes pulled for the various normal samples, without a doubt, identified the B and T cell lym-

phoma normal tissues as skin with an admixture of adipose tissue, the osteosarcoma and mela-

noma normal samples were mainly skin with an admixture of muscle tissue, and the

pulmonary carcinoma normal samples were mainly lung with an admixture of muscle tissue.

These results are consistent with the positions of the normal samples on the PCA plot of Fig

3E. See S2 Fig for details. The result of these observations means that for PULM, it may be pos-

sible to deconvolute tissue specific transcription from cancer specific transcription based on

the p values for comparison of tumor to normal gene expression. For the other tumor types,

this deconvolution based on p values is not possible because the normal samples come from a

different tissue source than the tumors. We may, however, use the Z values in these cases to

determine if the genes are significantly expressed relative to background by considering only Z

values� 1.5 (~95% confidence level for Z scores). Using these genes, it then may be possible,

to use their associated annotations and inclusion, or not, in COSMIC [38] and OncoKB [39]

to decide if module genes are related to cancer and not simply tissue specific expression.

Second, rather than focusing on individual genes, we focused on gene co-expression mod-

ules. Expression values of these modules are computed as an average across module genes.

Consideration of a few gene modules and their averaged expression simplifies the system con-

siderably and is likely to be more consistent across cancer samples, than the expression of indi-

vidual genes. See S8 and S9 Files for details regarding stability of module expression as it

relates to tumor/stroma ratio and dog breed heterogeneity.
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There are many publications that describe the use of gene groups and their averaged expres-

sion to characterize cancers. Jin et al. [45] conducted a gene co-expression model analysis of

public available osteosarcoma canine and human data. They found three human modules,

eight canine modules, and four consensus modules, containing significant numbers of genes

common between the canine and human modules. We compared our module 3 osteosarcoma

genes (Fig 8 and S7 File) with the four consensus modules of Jin et al. [45] and found that six

of our biomarker candidates were also in Jin’s consensus module 1, these genes are SPARC,

COL6A3, PCOLCE, CALD1, ITGB5, and DPYSL3. We found that two of these genes, COL6A3
and ITGB5, as well as TNC and COL5A2 are significantly expressed relative to background in

module 3 and are associated with the focal adhesion-PI3K-Akt signaling axis in canine osteo-

sarcoma as seen in Fig 8 and S7 File. In addition, somatic mutations in COL6A3 and ITGB5

have been documented for osteosarcoma samples in COSMIC [38]. COL6A3, COL5A2, and

TNC code for extracellular matrix proteins. ITGB5 codes for a membrane bound integrin,

important for attachment of the cell to ECM. TNC inhibits the interaction of some ECM pro-

teins to integrins [46,47] thereby weakening the interaction between tumor cells and ECM.

This increases tumor cell mobility leading to metastasis. Further along the focal adhesion-

PI3K-Akt axis, ITGB5 interacts with PTK2 (not a gene found here but known to interact with

ITGB5) a focal adhesion kinase (FAK). FAKS are phosphorylated in response to integrin

engagement with the ECM. Activated FAK augments PI3K levels [48] which then catalyze the

formation of PIP3 [49]. PIP3 recruits AKT and PDK1 to the membrane where PDK1 phos-

phorylates AKT [49]. Activated AKT leads to a variety of outcomes including cell proliferation

and angiogenesis (via NOS proteins). PTEN a tumor suppressor downregulates PIP3 thereby

inhibiting downstream activities of AKT. Oncogenic mutations are noticeably absent from the

focal adhesion end (COL6A3, COL5A2, TNC, ITGB5) of the PI3K-Akt axis. However, onco-

genic mutations occur downstream of ITGB5 and include loss of function mutations in PTEN
[50] and gain of function mutations in FAK [51] or PI3K [50].

Previous work has shown that the PI3K-Akt pathway is dysregulated in canine osteosar-

coma [52] and frequently hyperactivated in human osteosarcoma [53]. The fact that COL6A3,

COL5A2, TNC, and ITGB5 which are highly activated here and part of the focal adhesion-

PI3K-Akt signaling axis implies that they are central to osteosarcoma and not simply tissue

specific activation. The activation of PI3K-Akt in canine and human osteosarcomas demon-

strated here and the overlap of our canine osteosarcoma biomarkers with the common canine-

human modules of Zin et al., demonstrates potential transferability of our canine osteosar-

coma biomarkers to humans.

In another example using gene groups and averaged expression to characterize cancers,

Loeffler-Wirth et al. [54] applied self-organizing map (SOM) machine learning to B-cell lym-

phoma transcriptomic data on 873 human biopsy specimens to cluster genes into 13 spot mod-

ules. We compared our canine derived module 4 genes (Fig 9 and S7 File) to the human

derived spot modules of Loeffler-Wirth and found that 7 of our module 4 genes were also in

the Loeffler-Wirth spot modules. These genes are IMPDH2, SAMSN1, PA2G4, DNAAF2,

AHCY, and UPT20. Two of these genes, IMPDH2 and SAMSN1 are highly expressed genes in

our list of biomarker candidates for B-cell lymphoma. SAMSN1, typically highly expressed in

lymphomas [55], is a splice variant of HACS1 which promotes RAC1-dependent membrane

ruffle formation. Membrane ruffling is an indicator of tumor cell motility and metastatic

potential. [56] IMPDH2 is involved in the synthesis of GTP which is an energy source for ribo-

some biogenesis and protein production. [57] In module 4 there are many significantly

expressed genes that code for structural components of the ribosome, e.g., RPS7, RPLP0,

RPS23, RPS12, RPL10A, RPS5, RPS16, RPL35, and RPS15. Upregulation of these components

implies ribosome biogenesis and is consistent with upregulation of IMPDH2. In dividing cells
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extreme up-regulation of IMPDH2 can lead to cell proliferation and malignancy in B- and T-

cell lymphoma as well as other cancers. [58] Mutations in IMPDH2 leading to B-cell lym-

phoma have not been reported but constitutive activation of MYC, its controlling transcription

factor have. [59] In B- cell lymphoma this constitutive activation can occur via translocation,

commonly resulting in MYC-IGH (immunoglobulin heavy chain) fusions. Constitutive activa-

tion of MYC can lead to the same for IMPDH2 which produces energy and proteins necessary

for construction of proliferating cells.

Annotations showing the relationship of SAMSN1 to membrane ruffling and IMPDH2 to

control by MYC which in B-cell lymphoma is constitutively activated by fusion to IGH, implies

that up regulation of SAMSN1 and IMPDH2 found here is associated with B-cell lymphoma

and not necessarily tissue specific transcription. In addition, the overlap of our canine derived

B-cell lymphoma biomarker genes with the human derived spot modules of Loeffler-Wirth

et al., implies potential transferability of our canine derived biomarkers to humans.

Jeffs et al. [60] performed DNA microarray analyses on 28 cell lines generated from human

melanoma tumor samples. Using hierarchical clustering they were able to partition the cell

lines into two groups and they identified a cluster of 106 genes exhibiting a different expression

pattern for each cell line group. Group 1 cells showed decreased expression of 66 genes (sub-

group 1) involved in neural crest and melanocyte development, differentiation, and pigmenta-

tion and upregulation of 40 genes (sub-group 2) related to angiogenesis, neurogenesis, immu-

nomodulation, and ECM remodeling. Group 2 cells exhibited the opposite expression pattern

across the 106 genes, i.e., up regulation of sub-group 1 genes and down regulation of sub-

group 2 genes. Cell motility measurements showed that Group 1 cells exhibited a 23-fold

higher capacity for migration than group 2 cell lines. We compared our module 2 genes for

melanoma (Fig 7 and S7 File) with the 106 gene cluster of Jeffs et al. and found an overlap of

eight genes. These genes along with their activation values Eq (3) for melanoma (MEL) are,

GPNMB (MEL activation = 18.59), UBL3 (MEL activation = 1.39), AP1S2 (MEL activa-

tion = 1.28), RAB38 (MEL activation = 0.91), EDNRB (MEL activation = 0.55), JUN (MEL acti-

vation = 0.34), and C1orf21 (MEL activation = -0.13). Limiting consideration to genes with

significant expression relative to background (Z > 1.5) we retain GPNMB only.

GPNMB with expression value of 18.59 is significantly expressed for melanoma in this

study and is characteristic of Jeffs non-migratory sub-group 2 human cell lines showing up

regulation of this gene. This implies that our melanoma samples are non-metastatic and is

consistent with the fact that we acquired them from primary tumors of dogs. Jeff’s studies were

performed on human cell lines, while ours were performed on canine tissue. The consistency

between our results and Jeff’s indicates that the canine melanoma genes described here (in par-

ticular, GPNMB) may potentially be useful biomarkers targets in both canines and humans.

GPNMB, the most highly expressed gene in primary module 2 of melanoma, locates to the

surface of melanoma cells. GPNMB is required for melanin production in melanocytes. Muta-

tions in GPNMB are reported in COSMIC but it is not clear if they are causative events in mel-

anoma. GPNMB is related to mutations in BRAF and MEK that do cause melanoma. Most

melanomas contain mutant BRAF or MEK subtypes. Melanoma develops resistance to BRAF

inhibitors (vemurafenib, dabrafenib) and MEK inhibitors (trametinib, cobimetinib). Resis-

tance occurs via increased expression of MITF a transcription factor. The expression levels of

GPNMB, a target gene of MITF, likewise increase. High expression of GPNMB promotes

tumor migration and invasion by interacting with integrins to localize immune-suppressive

and pro-angiogenic cells to the tumor [61] and renders melanoma resistant to BRAF and MEK
inhibitors. Combination therapy, however, which includes a BRAF or MEK inhibitor, com-

bined with glembatumumab vedotin (an antibody drug conjugate that targets GPNMB) inhib-

its GPNMB and effectively controls the growth of Melanoma. [62] The connection of GPNMB
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expression to mutations in BRAF and MEK which are common to melanoma implies that the

high expression of GPNMB found in this study is a manifestation of melanoma and not simply

tissue specific transcription.

Third, success of the current study also depends on the fact that we analyzed transcriptomic

data on multiple cancer types together. This allows for discovery of gene modules that are spe-

cific to one or another cancer type. Our analysis of canine transcriptomic data found 5 co-

expression modules and identified modules 4, 2, 3, 1, and 5 as primary modules to BLSA,

MEL, OSA, PULM, and TLSA respectively (Fig 3A). Such modules provide a good basis for

classification models (Figs 3E and 4). This is not possible in typical two state studies, i.e., dis-

ease versus control. A recent example related to our work can be found in the work of Peng

et al.[26] They analyzed 7 human cancers together, clustered genes into co-regulated sets and

from these identified a 14 gene signature able to distinguish primary human cancer samples

from normal controls. In addition, they found a lung cancer-specific gene signature, contain-

ing SFTPA1 and SFTPA2 genes, that was able to distinguish lung cancer from the other can-

cers. These SFTPA genes code for type A lung surfactant proteins. Our current results for

canine pulmonary carcinoma are related to the human results of Peng et al. but focus on those

genes involved in the synthesis and trafficking of lung surfactant proteins. The genes involved,

all associated with the GO BP term “surfactant homeostasis”, (Fig 6 and S7 File) are CTSH
(PULM activation = 7.33, Normal activation = 3.92, p = 4.07E-01), LPCAT1 (PULM activa-

tion = 4.43, Normal activation = 2.47, p = 4.51E-01), NAPSA (PULM activation = 2.73, Normal

activation = 3.31, p = 8.52E-01) and ADGRF5 (PULM activation = 2.45, Normal activa-

tion = 3.22, p = 7.34E-01). However, all p values are > 0.05 for comparison of tumor to normal

expression. Previously we identified the normal samples for pulmonary carcinoma as mainly

lung tissue with an admixture of muscle. That being the case, the high p values indicate that

the activation of these surfactant genes is a tissue specific effect.

High expression genes (activation > 1.5) in module 1 that do show statistically significant

tumor-normal expression differences (Fig 6 and S7 File) are: CD44 (PULM activation = 5.97,

normal activation = 1.17, p = 3.42E-02), FAT1 (PULM activation = 5.95, normal activa-

tion = 1.59, p = 3.26E-02), SDC1 (PULM activation = 2.78, Normal activation = 0.54,

p = 3.56E-02) and MYOF (PULM activation = 1.66, Normal activation = 0.12, p = 3.56E-02).

All four of these genes have been implicated in pulmonary carcinoma via a variety of mecha-

nisms. CD44 and its multiple splice variants are involved in a variety of cancer mechanisms,

[63] including angiogenesis via the ERM-VEGFR axis, cell proliferation via the ERM--

VEGFR-MAPK axis, metabolic shift in cancer cells via the SRC-AKT axis, and cancer cell inva-

sion via the HGF-MET-PI3K-AKT axis. Pastushenko et al.[64] found that loss of function in

FAT1 promotes EMT (Epithelial to Mesenchymal Transition) and subsequent metastasis in

lung cancer. Parimon et al.[65] found that SDC1 (syndecan-1) controls miRNA packaging in

exosomes and that this is essential for lung tumorigenesis. A truncated variant of SDC1 was

shown to stimulate metastasis of fibrosarcoma in a mouse model [66]. MYOF (Myoferlin) can

induce EMT by up-regulating mesenchymal related genes such as fibronectin and simulta-

neously down-regulating epithelial related genes such as E-cadherin.[67]

Our analysis of canine samples identifies tissue-specific genes involved in surfactant synthe-

sis and cancer associated genes related to EMT, exosome packaging, and angiogenesis as

unique to canine pulmonary carcinoma. This is complementary to the analysis of human sam-

ples by Peng et al. [26], which identify the upregulation of surfactant proteins as unique to

human pulmonary carcinoma. A more complete picture of the pulmonary carcinoma biology

is obtained when the two studies are considered together.

Many examples of multi-cancer transcriptomic analyses based on data from The Cancer

Genome Atlas (TCGA) exist. One representative study is that of Li et al.[68] who utilized
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transcriptomic data from TCGA to build predictor models that accurately classified 31 human

tumor types. Examples of large-scale multi-cancer transcriptomic analyses in the canine realm

are non-existent, mainly because of the lack of canine data. We found no examples of models

that simultaneously classified canine and human data for multiple cancer types.

All these described aspects of our protocol enabled precise transcriptomic characterization

in the form of a unique module expression profile for each canine cancer studied (Fig 2). This

rendered it possible to: (i) develop a classification model valid for 5 cancer types across two

species, (ii) focus on novel targets for drug discovery, and (iii) biologically interpret the data.

A demonstration of classification model performance is shown in the ROC plots of Fig 4.

High AUC (0.99) and sensitivity (0.99) averages are obtained for specificity fixed at 0.7, when

the classification models are built with one-half of the canine internal data for PULM, MEL,

OSA, BLSA, and TLSA, and tested on the other half (Fig 4A and 4B). The same is true when

the classification models, built with our entire internal canine data set, are tested on external

canine and human data of the same cancer type (see Fig 4C–4F). Interestingly, even when the

human data is seeded with cancer types different than those used to train the models, e.g.,

Glioblastoma, Adenocarcinoma of the colon, infiltrating duct carcinoma of the pancreas (see

S4 Fig), respectable ROC statistics are obtained as seen in Fig 4G–4H (average AUC, sensitiv-

ity, and specificity = 0.91, 0.91, and 0.70 respectively). The demonstrated transferability of clas-

sification models from canines to humans enforces the idea that tumor biology and biomarker

candidates discovered in canines may translate to human medicine.

The ROC statistics, however, decay as the model tests go from canine internal, to canine

external, to human external, to human external seeded with cancer types other than those used

to build the models. This is to be expected as the external data diverges from the data used to

build the models. In addition, the external data is generated under different laboratory condi-

tions than our internal data and these performance characteristics depend, to a large extent, on

the nature of the samples used to generate data in these external studies (see S3 and S4 Figs for

these data) and the nature of the internal samples used to construct our classification models

(see S1 Fig for details).

For example, in the case of melanoma we tested our classification model on the external

canine data of Blacklock et al. [69] (GSE129750) which was generated from samples of primary

and metastatic tumor sub-types, whereas our classification model was generated from primary

tumor data only. This may contribute to the lower performance seen in Fig 4C (blue ROC

curve, MEL AUC = 0.92) for tests using the external canine data as compared to Fig 4A (blue

roc curve, MEL AUC = 0.97) for tests using the internal canine data.

In another example, we tested our B-cell lymphoma classification model on the external

human data of Péricart et al. [70] (GSE120104) and Marques et al. [71] (GSE74266). The B cell

human lymphomas in these data sets contain human DLBCL lymphomas of subtype ABC

(Activated B cell lymphoma) and GCB (Germinal center B cell lymphoma). Our model was

trained on canine DLBCL (not otherwise specified). Even if we assume that our DLBCL data is

ABC, GCB, or a mixture of both, it is known that ABC/GCB genes are not strictly conserved

between dogs and humans [11]. This may explain why our B cell model performs worse as

seen in Fig 4E (cyan ROC curve, BLSA AUC = 0.84) for tests using the external human data as

compared to Fig 4C for tests using external canine data (cyan ROC curve, AUC = 0.98).

When we seed the human data set with data from cancer types other than those used to

build the models, the AUC and sensitivity (at fixed specificity of 0.7) declines for all cancer

types (except PULM, Fig 4G and 4H). The average AUC of 0.95 in Fig 4E and 4F (unseeded

case) reduces to 0.91 in Fig 4G and 4H (seeded case). This trend would surely continue for addi-

tional data seeded into the test set. At some point, the gene co-expression modules and the clas-

sification models based on them need to be recalculated using all data in the expanded data set.
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Ideally, transcriptomic data for all cancer types (hundreds) and non-cancer diseases (many

thousands) should be collected, gene co-expression modules calculated, and classification

models built therefrom. If the current computations on the 5 cancers studied in this work are

any indication, the module expression profiles in the expanded case should be unique to each

cancer, and the classification models built therefrom should be sensitive and specific to each

cancer across the whole range of cancers considered in the expanded set. The success of our

models in classifying PULM, MEL, OSA, TLSA, and BLSA, among 10–15 additional cancers

considered, bodes well for these larger computation. See Li et al.[68], Newton et al.[72], and

others [73,74] as examples of efforts similar in scope to those currently discussed.

Aside from their potential usefulness as cancer biomarkers, many of the module genes are

understudied as drug targets [75] and provide novel opportunities for drug discovery.

We used the Pharos interface to the IDG (Illuminating the Druggable Genome) [40] to cat-

egorize our module biomarkers and found that most were in the “Tbio” class, with a few classi-

fied as “Tdark” or “Tclin/Tchem”. “Tbio” and “Tdark” targets have no known small molecule

activities and are therefore underexplored and novel drug targets. See Fig 12 for the identifica-

tion of these underexplored drug targets (1 asterisk = Tbio, 2 asterisks = Tdark).

There is significant overlap between our module genes and the genes in COSMIC and

OncoKB. Genes associated with a particular cancer type that overlap with COSMIC means

that there have been found somatic mutations in that gene for samples of that cancer type.

Genes that overlap with OncoKB means that they are bona fide oncogenes. See Fig 12 for the

identification of these COSMIC or OncoKB genes (pink boxes = COSMIC, bold border

boxes = OncoKB.

The target priority/novelty, COSMIC, and OncoKB information is overlayed onto Fig 12.

High priority “Tbio” and “Tdark” targets are appended with one or two asterisks respec-

tively in Fig 12. COSMIC and OncoKB overlaps are delineated in Fig 12, by either a pink back-

ground for COSMIC overlap, or a bold surrounding box for an OncoKB overlap.

The information in Fig 12 can be used to pick a subset of high priority, novel drug target

genes. One way to do it is to focus specifically on COSMIC and OncoKB genes, because they

are known to be associated with the cancers studied. Then for these genes focus on the Tbio

and Tdark targets, those for which there are no active small molecule chemistries and are

understudied as drug targets. Genes satisfying these constraints are: CD44, FAT1, SDC1, and

MYOF for PULM, SPPL2A, CHL1, AP4E1, SECISBP2L, and COPS2 for MEL, COL16A1 for

OSA, and MDN1 and CD22 for BLSA. Some details are instructive here. For example, FAT1
(associated with PULM in this work) is found in COSMIC and is a known oncogene on this

list but strangely enough it is understudied as a drug target. Its Pharos target class is “Tbio”

which means that there are no small molecule chemistries that show activity against FAT1.

FAT1 plays important roles in cell migration and cell-cell contact. It has been reported to be a

tumor suppressor [76] and a tumor promoter [77] in different biological contexts.

AP4E1 (associated with MEL in our work) is found in COSMIC which means that it does

exhibit mutations in melanoma. AP4E1 encodes a protein that plays important roles in the

secretory and endocytic pathways which are important for cell communication in the tumor

microenvironment [78]. AP4E1 has a Pharos target class “Tdark”, which means that essentially

nothing is known about this target and there are no known active chemistries.

COL16A1 (associated with OSA in our work) and MDN1 (associated with BLSA in our

work) are both found in COSMIC. COL16A1 functions to maintain the integrity of the extra-

cellular matrix and is a “Tbio” target, while MDN1 functions as a transporter for ribosomal

proteins and is a “Tdark” target.

One may pick a lower priority, higher risk, list of novel drug targets by only requiring that

they are “Tbio” or “Tdark” targets irrespective of their membership in COSMIC or OncoKB.
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This leads us, for example, to a target such as KDELR2 for OSA. KDELR2 is required for nor-

mal vesicular trafficking through the Golgi. Another example is WDFY4 for BLSA which is

involved in autophagy.

It is apparent from the examples above that many of these understudied proteins are

involved in vesicle/protein trafficking or play supporting roles in signal transduction.

From the standpoint of biological interpretation, our approach integrates standard gene

expression analysis with gene co-expression module elucidation. Within a module, genes

exhibit similar activation patterns across the sample set (Fig 2) and so are likely to share com-

mon annotations, representing the underlying biology of the cancer to which the module is

associated. [79] The modules are used to infer common pathway membership (via correlated

expression) of a set of genes, without knowledge of the pathways. Annotation analysis, for the

genes of each module, done independently of the genes in other modules, facilitates biological

interpretation as evidenced by the block diagonal nature of the annotation matrix shown in

Fig 5. From this block structure, annotation themes (biological interpretation) are readily seen.

For example, as discussed previously, module 1 annotations for pulmonary carcinoma focus

on surfactants and vesicles, module 2 annotations for melanoma focus on cytoskeletal organi-

zation, module 3 annotations for osteosarcoma focus on bone components and processes,

module 4 annotations for B-cell lymphoma focus on ribosomes, and module 5 annotations

associated with T-cell lymphoma focus on cell signaling, second messenger systems, and epige-

netic control. The co-expression module analysis leads to an interpretation of cancer as an

activation pattern of gene modules each representing different units of biology that come into

play.

The demonstrated transferability of our classification models for canine cancer to the

human case, the clear biological interpretation of the modules, and the fact that many bio-

marker genes in these modules are understudied as drug targets, are important results. It

means that the gene modules, their component genes, and associated biological interpretation

are likely valid for both canine and human cancer studied here. We propose that biomarker

candidate genes discovered in this study (Fig 12) which work so well in classifying both canine

and human transcriptomic cancer data be further validated by determining if the proteins they

code for exist in tissue and blood of canines. Existence of the proteins in tissue, especially those

that are understudied as drug targets, provides actionable targets for future research on canine

cancer therapies and tissue-based canine diagnostics. Existence of said proteins in blood pro-

vides a basis for future research on non-invasive blood-based canine diagnostics. Therapies

and biomarkers that are successful in these canine studies should then be tested in the human

clinic. Since we have done the up-front work in this study to show the transferability of canine

cancer genes to the human case with respect to the cancers studied, therapies and biomarkers

derived from them that are successful in the canine clinic stand an excellent chance of success

in human clinical trials.

Methods

Tissue and blood specimens

We obtained from the Pfizer-CCOGC Biospecimen Repository [29] (Fig 1A) 12 frozen tumor

and 3 frozen normal canine sample sets for pulmonary adenocarcinoma, melanoma, and oste-

osarcoma. For B-cell lymphoma we selected 15 frozen tumor and 3 normal samples, and for T-

cell lymphoma 9 frozen tumor samples and 3 matched normal canine samples. All in all, 75

samples were chosen. The normal and tumor samples were taken from the same dog. The nor-

mal samples were extracted from the vicinity of the tumor site (but far enough away so as not

to include neoplastic cells). See S1 Fig and S1 File for details regarding the tumor sample
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histologies and S2 Fig regarding normal sample histologies. The Pfizer-CCOGC Biospecimen

Repository contains more than 60,000 samples from ~1,800 dogs using rigorously controlled

standard operating protocols from seven veterinary teaching hospitals. Samples were originally

harvested from treatment-naive patient canines. We used tumor samples acquired from pet

dogs within the context of routine veterinary cancer care because we believe that they are a

useful and underutilized adjunct to the current platform of animal-based systems used to

model human cancer.

RNA extraction and quality control

One tissue biopsy for each sample was used and from it we extracted 2 μg of RNA using an

RNeasy Fibrous Tissue Mini Kit (cat No./ID:7404) [80]. We then determined RNA integrity

using the Agilent 2100 Bioanalyzer [81] with RNA 6000 Nano Kit [82]. The RNA Integrity

Number (RIN) of the samples ranged between 7 and 10, with RNA Integrity Number (RIN) >

7 suitable for analysis [83]. See S2 File for details.

RNA-Seq experiments

Each RNA sample (75 altogether) from the single tumor biopsy was divided into 3 replicates

and each replicate was used to make 3 cDNA libraries for sequencing. Each of the 3 libraries

was loaded onto 3 different lanes on the flow cell that goes into the sequencer. 225 libraries

altogether were sequenced. The replicates allow for estimation of within sample variability of

gene expression which allows us to then make inferences between samples of the same cancer

type or between samples of different cancer types [84]. We used the NebNext Ultradirectional

RNA library kit [33] for preparation of RNA libraries for Illumina sequencing. This method

used two, iterative Oligo-dT binding steps to enrich mRNA from total RNA. 225 Illumina

library preparations were made from mRNA. RNA-Seq experiments were performed at ~

150X coverage using the Illumina HiSeq 2500 instrument (Fig 1B) [34]. (2�125bp paired end

reads, an average of 45 million reads per sample).

RNA-Seq data processing

The sequence reads (Fig 1B) were produced as 1,396 fastq files containing 125 base-pair paired

end reads. All primary processing of the sequencing data was performed on the National Insti-

tutes of Health Biowulf High Performance Computational system (https://hpc.nih.gov/

systems/). FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used to

assess sequence quality prior to further processing. We then aligned the fastQ reads to the can-

Fam3.1 [83] reference genome using the STAR [85] aligner. The HTSeq-count script from

HTSeq [86] was used to analyze the read alignments and assign reads and read counts to genes

by referencing the CanFam3.1 GTF annotations file from Ensembl.

The result of these manipulations is a gene by sample count matrix, which we denote by the

symbol C, with matrix elements given by Cg,s. The row dimension of this matrix spans 24,580

canine genes, g, and the column dimension spans 225 samples, s (Fig 1C). The read count

matrix is given in S3 File.

Each column of the raw count matrix, C, was scaled to account for slightly different number

of reads for each sample. Rows (delineated by genes) and columns (delineated by samples)

were further processed as follows:

• We retained only rows for which the canine official gene symbol has an associated human

homolog. [87]

PLOS COMPUTATIONAL BIOLOGY Gene modules common to canines and humans

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009450 September 27, 2021 26 / 38

https://hpc.nih.gov/systems/
https://hpc.nih.gov/systems/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://doi.org/10.1371/journal.pcbi.1009450


• We retained only rows (genes) for which the number of counts accumulated for the gene is

greater than 25 for at least 185 of the 225 samples.

• We retained only rows (genes) for which the count variance of the gene across the 225 sam-

ples is in the upper half of the sorted (decreasing in value) list of variances for all of the

genes. [88]

• Columns (samples) were averaged across technical replicates and only the sample replicate

averages were retained.

The final matrix contains 4,115 genes (rows) and 75 sample replicate averages. The matrix

was then centered and scaled using a Z transformation (function scale from the R base package

[89]):

Zg;s ¼
ðCg;s � hCisÞ

ss
ð1Þ

where<C>s is the average read count across all genes for samples s in C, and σs denotes the

standard deviation of the average read count. The Z matrix is provided in S4 File.

Gene co-expression modules

Initial gene sets were generated by applying standard clustering to the Z-transformed matrix

(function hclust from the R package fastCluster [90]). The clusters were generated such that

the number of genes per cluster was > 10 and< 100, a range consistent with the approximate

number of genes in a KEGG pathway [31]. 49 clusters (gene sets) were obtained. The number

of clusters was expanded to 23,569 by adding 100 randomly selected genes to each cluster, 481

times.

These 23,569 gene clusters were used as input into the R package eisa which utilizes the Iter-

ative Signature Algorithm (ISA) [30] for gene set refinement and generation of a finalized set

of gene co-expression modules associated with the entire Z-score matrix. (Fig 1D and S5 File).

These modules were calculated with our lab local canine data and from henceforward, the

identities of the module genes are fixed.

Module activation profiles

The activation of gene, g, associated with cancer sample, sc, is:

Ag;sc
¼ Zg;sc

ð2Þ

where the Z score matrix elements, Zg;sc
, are given by Eq (1). The activation of gene, g, associ-

ated with cancer, c, is the average activation of gene g across the set of samples representing

cancer c,

Ag;c ¼
1

Nc

XNc

sc¼1
Ag;sc

ð3Þ

where Nc is the number of samples representing cancer c. The activation of module, m, associ-

ated with sample, sc, is the average activation across all genes in module m for sample sc and is

given by:

Am;sc
¼

1

Nm

XNm

g¼1
Ag;sc

ð4Þ

where Nm is the number of genes associated with module m and the Ag;sc
elements are defined
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by Eq (2). The activation of module m associated with cancer c is the average of the Am;sc
across

all samples, sc, representing cancer, c, and is given by:

Am;c ¼
1

Nc

XNc

sc¼1
Am;sc

ð5Þ

where the Am;sc
elements are defined by Eq (4). Module activations for the various cancer types

are shown in Figs 2 and 3A.

The reference state for each cancer type is a matched normal sample taken from the same

dog in the vicinity of the tumor site. The activation of module m for the normal case is given

by:

Am;n ¼
1

Nn

XNn

sn¼1
Am;sn

ð6Þ

where n is the normal sample index, Nn is the total number of normal samples (3 altogether for

each cancer), sn designates normal sample, the sum runs over all normal samples associated

with the cancer, and

Am;sn
¼

1

Nm

XNm

g¼1
Ag;sn

ð7Þ

where Nm is the number of genes associated with module m, g is the gene index, and Ag;sn
is the

activation of gene g for normal sample sn. Module activation for the normal samples is given in

Fig 3B.

The statistical significance of all module (Eq (5)) and gene (Eq (3)) activations relative to

normal activation (Eq (6)) were calculated using either a standard two-tailed T test [91] or the

non-parametric Wilcoxon rank sum test [92]. The T test was used if the distribution of module

activations across tumor samples and normal samples was determined to be normal according

to the Shapiro-Wilks test. [93] If either distribution was determined not to be normal, then the

Wilcoxon rank sum test was used. The resulting p values were then multiple testing corrected

using the method of Benjamini-Hochberg. [94]. The computed p values are given in Fig 3C.

The module activation profile for a given cancer, Pc, (Fig 3A rows) is the set of module acti-

vations associated with each cancer:

Pc ¼ fAm;cg;m ¼ 1 � N ð8Þ

where N is the total number of modules determined from the ISA analysis (in our work

N = 5). For the normal activation profiles, Eq (8) applies but with the index c replaced by n
(Fig 3B rows). After the profiles were computed, the primary module of each cancer was deter-

mined as the highest significantly expressed module, statistically different between cancer and

normal states. The primary modules were determined to be modules 1, 2, 3, 4, and 5 for pul-

monary carcinoma, melanoma, osteosarcoma, B-cell lymphoma, and T-cell lymphoma,

respectively (Fig 3A row and column labels for colored entries, e.g., PULM, primary mod-

ule = 1, color blue, etc).

We used the R function boxplot() (R package gplots) to create a plot of the distributions of

primary module gene activations for each cancer and matched normal (Eq (3)) sample shown

in Fig 3D. We used the R function pca() (R package PCAtools) to run a PCA analysis of the

module by sample activation matrix (Eq (4)). The result of this analysis was used as input to

the R function biplot() (also PCAtools) to construct the PCA plot shown in Fig 3E.
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Predictive cancer models: Nearest neighbor models

Using Eq (8) the cancers can be represented by point locations in a 5-dimensional cartesian

space with axes defined by module activations computed with Eq (5). Each cancer occupies a

different position in this space (idealized in Fig 1F as large boxes). New transcriptomic data

from an external source can be “classified” by using its gene expression values to compute the

module activations (remember the module genes were determined using lab-local internal

canine data and are fixed), then positioning the new sample in module activation space (small

boxes, Fig 1F). The distance between the new sample point and each of the cancers is com-

puted, using:

Dc;sexternal
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

m¼1
ðAm;c � Am;sexternal

Þ
2

q

ð9Þ

where c is the cancer-type index, sexternal represents the external sample to be classified, m rep-

resents module, the summation runs from 1 to the total number of modules N, Am,c is the

module activation of the cancers as calculated by Eq (5) and Am;sexternal
is the module activation

of the new sample as calculated by Eq (4). The sample is then identified as the cancer to which

it is closest to. Before any such classification can be performed, the external data and the inter-

nal data must be simultaneously normalized so that the data sets, typically from different labo-

ratories, have the same dynamic range. To do this we apply quantile normalization using the

function normalize.quantiles() from the R package preprocessCore version 1.46.0.

Model validation using internal canine data

This distance model was validated using lab-local canine data by random subsampling cross

validation. In this method the sample set is split in half (by choosing at random) to create a

training and test set each consisting of 30 tumor samples across the 5 cancer types PULM,

MEL, OSA, BLSA, and TLSA for each set. Modules are computed using the training set sam-

ples. The module activations for each training set cancer are computed using Eq (5) and the

training set cancers are positioned in module space (Fig 1F upper, large squares). Using Eq (4)

the module activations are then calculated for each test data sample (using the modules deter-

mined from the training set, but the test set gene expression data) and each test sample is posi-

tioned in module space (Fig 1F upper, small squares, each colored according to cancer type).

For each training set cancer position, a list of test sample positions is generated, and sorted

increasing by distance (using Eq (9)) from the training cancer positions (Fig 1F upper, num-

bered small squares, distance from melanoma, MEL, as example). This produces 5 sort orders,

one for each training set cancer. For each training cancer, we identify the locations of the test

cancer samples of the same cancer type in the sorted set of test conditions (Fig 1F lower) and

from that construct a ROC plot tracking the true positive rate versus the false positive rate (Fig

1G). Evaluation metrics are then computed, these are area under the curve (AUC), sensitivity,

and specificity. The procedure is repeated 200 times and the finalized evaluation metrics are

computed as averages over the individual runs.

Model validation using external data

When validating the model using external data, we use all internally generated canine data

(4,115 genes and 60 tumor samples across 5 cancer types) to compute the gene co-expression

modules. Then we proceed as described above, but with two differences:

1. The module genes are fixed and not recalculated during random subsample cross- validation.
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2. We impose the constraint that each cancer is represented by the same number of samples

in the training and test sets.

3. Human external data for cancers other than the ones studied are added to the data set as

background negatives

We selected external data from NCBI-GEO (https://www.ncbi.nlm.nih.gov/geo/) [95] and

the Genomic Data Commons Data Portal (GDC, https://portal.gdc.cancer.gov/). The various

NCBI-GEO and GDC data series selected are shown in S3 and S4 Figs, respectively. Data from

these sets was selected, as much as possible, according to the following criteria to make it as

consistent as possible with our own internal data:

1. The data is associated with primary tumors.

2. The data is associated with tumors from treatment naive individuals.

3. Where possible the data must be RNA-Seq.

4. Where possible we used data from which gene counts were computed using STAR [85]

alignments.

We perform random sub-sample cross validation to test our models. When testing a model,

we pool all data together, then split it evenly into training and test sets, requiring that the num-

ber of positive cases (for any cancer we are focusing on) is the same in training and test sets.

This avoids ambiguity when interpreting the ROC statistics. Using the fixed module genes

(determined from our internal canine data), we use the training data in each trial to recalculate

the positions of each cancer in module activation space. The rest proceeds as described above

for validation using internal data. We performed 4000 trials of random subsample cross valida-

tion when using the external data. The reason for this large number of trials is that each trial

uses only a subset of the data available, to enforce the constraint that the number of positive

cases for each cancer type be the same. Therefore, we must increase the number of trials to

effectively use all the data available. The converged ROC results are shown in Fig 4.

Module annotations

Genes sets from individual co-expression modules were submitted, one set at a time, to the

David bioinformatics resource [35] functional annotation tool, to find associated KEGG [31]

pathways and GO [32] terms. We used Benjamini-Hochberg [36] corrected p values to guide

selection (p< 0.05) of annotation terms. We organized the results of this search in the form of

an annotation matrix with rows enumerated by the different annotations and columns enu-

merated by modules and their associated cancer types. Matrix elements were populated with 1

or 0 depending on whether the annotation is or is not associated with the module. See S6 File

for the full annotation matrix. Fig 5 shows a smaller version of this matrix, including only

annotations with p< 0.005.

Juxtaposition of annotations, genes, modules, cancer types, and biomarker

selection

For each module and its’ associated genes and cancer type, we performed the following

operations:

1. We sorted genes decreasing by their average activation across samples representing the

cancer.

2. We extracted annotations associated with the module genes from S6 File.
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3. We flagged individual genes associated with each annotation.

4. For each gene we gathered evidence from the Comparative Toxicogenomics database

(CTD) indicating an associating between the module gene and the cancer

The result of these manipulations is contained in S7 File. The organization of the tables in

this file is as follows:

1. Module genes are in column A and their associated cancer and normal activations (Eqs (3)

and (6)) in columns E and F, respectively. Module genes are sorted decreasing by their can-

cer activation values.

2. Annotations associated with the module start in column H and are arrayed horizontally in

row 3.

3. BH corrected p values associated with the annotations are shown in row 1 starting in col-

umn H.

4. Matrix elements (i, j) start in row 7, column H and contain a 1 if the gene on row i is associ-

ated with the annotation in column j, and a 0 if it is not.

5. Row 4, below the annotations tallies the total number of genes in the module associated

with the annotation. The elements of this row are sorted decreasing (horizontally) to posi-

tion the most important annotation towards the left.

6. Row 5 tallies the total number of genes with activation > 1.5 associated with the

annotation.

7. The gathered evidence associating each gene in the module to the cancer is in columns B

(Pharos IDG class [40]), C (CTD [41] inference score), and D (CTD number of references).

The queries used to pull the CTD evidence are shown in row 3, columns A-F. See the next

section for descriptions of the Pharos and CTD evidence.

8. Column G contains BH corrected p values for gene activation across cancer conditions (col-

umn F) compared to gene activation across normal conditions (Column E). p values are

colored pink if they are < 0.05.

Smaller versions of this matrix (Figs 6–11) were constructed for each cancer type, but only

including those annotations and genes specific to the cancer type and only those genes with

activation > 1.5. The activation cut-off value of 1.5 is used, because gene activations are based

on Z scores and activation values> 1.5 (relative to background) are significant at the 95% con-

fidence level. All the genes from Figs 6–11 were gathered into one place and are presented in

Fig 12 as a finalized set of biomarker candidates.

Biomarker link to literature and target novelty

The module genes were submitted as queries to the comparative toxicogenomics database

(CTD) [37] to find evidence supporting their link to the cancers they are associated with. The

evidence has two components:

1. The inference score: [41] A function of the relationship that the gene has to a chemistries

known to influence other genes that are part of the cancer mechanism. Inferences scores

are� 1, with larger values indicating a stronger gene-cancer connection.

2. The number of published articles documenting association of gene to cancer.

See Figs 6–11 and S7 File, columns C and D.
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The module genes were also submitted to Pharos, a web-based interface to the Target Cen-

tral Resource Database (TCRD). [40] This database was assembled by the Illuminating the

Druggable Genome (IDG) program and categorizes proteins according to the level of knowl-

edge associated with each. There are four broad Target Development Levels (TDL) or IDG

classes: Tclin, Tchem, Tbio, and Tdark. Tclin targets are those associated with approved drugs

of known mechanism of action, Tchem targets are associated with small molecule activities

(< 30nM) in ChEMBL, [96] Tbio targets do not have known drug or small molecule activities,

but they do have associated gene ontology terms or a confirmed OMIM [42] phenotype, and

Tdark targets are those that are essentially unstudied. These target development levels are

shown in column B, Figs 6–11 and in the tables included in S7 File. In Fig 12, Tbio and Tdark

targets are appended with 1 or 2 asterisks respectively.

To prioritize target novelty of biomarkers in terms of druggability, a combination of CTD,

Pharos, and expression information is used. In the case of targets associated with PULM,

where valid normal samples exist (normal samples from the same tissue type as the tumor sam-

ples), the following criteria are used:

1. The target activation (Z score) > 1.5.

2. The target p value for tumor expression vs. control is< 0.05.

3. The Pharos target development level is either Tbio or Tdark.

4. For Tbio targets, the CTD inference score is < 10 and the CTD number of references < 5.

In the case of MEL, OSA, BLSA, and TLSA, p values are ignored because valid normal sam-

ples for these cancers are not available (criteria 2).

The activation cut-off value of 1.5 is used above, because gene activations are based on Z

scores and activation values> 1.5 (relative to background) are significant at the 95% confi-

dence level.

These criteria reduce the number of targets to a manageable level for future exploration/

studies. If resources are available, one may relax the criteria to consider additional targets and,

if not, one may use more stringent criteria to consider fewer targets.

Supporting information

S1 Fig. Canine tumor samples and assigned histology used in this study.

(TIF)

S2 Fig. Normal sample gene markers and assignment to tissue type. Normal samples were

from the same dog as the tumor samples and were taken as near the tumor site as possible but

far enough away so as not to include any neoplastic tissue. The top 200 expressed genes from

each normal sample were submitted to the Tissue Specific Expression Analysis Tool (TSEA)

[44] to identify the origins of the normal samples.

(TIF)

S3 Fig. Geo data sets used to test canine and human classification models developed on

internal canine data.

(TIF)

S4 Fig. Genomic data commons data sets used to test human classification models devel-

oped on internal canine data.

(TIF)
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S1 File. Biospecimens.

(XLSX)

S2 File. RNA quality.

(XLSX)

S3 File. Raw count matrix.

(TXT)

S4 File. Z matrix.

(XLSX)

S5 File. Gene modules.

(XLSX)

S6 File. Annotations: Full.

(XLSX)

S7 File. Annotations: Gene detail.

(XLSX)

S8 File. Tumor, stroma, and breed purity study.

(DOCX)

S9 File. Tumor, stroma, and breed purity study data.

(XLSX)
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