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Abstract: The extraction of phenolic compounds from canola meal produces functional health
products and renders the canola meal a more digestible animal feed. The extracted phenolics may
have novel bioactivity worth investigation. In this study, several solvents were evaluated for their
ability to extract phenolic compounds from canola meal: water (WE) and various 80% organic
solvent/water mixtures of methanol (ME), acetone (AE), ethanol (EE), butanol (BE), chloroform
(CE) and hexane (HE). The in vitro antioxidant and anti-obesity properties of various extracts were
investigated. Anti-obesity properties were studied using adipogenic differentiation inhibition of a
murine mesenchymal stem cell line (C3H10T1/2) and a pancreatic lipase inhibition assay. AE, ME, and
BE showed significant (p < 0.05) adipogenesis and pancreatic lipase inhibitory activities and may have
more pharmacological properties. AE down-regulated the gene expression of the major adipogenic
transcription factor, peroxisome proliferator-activated receptor gamma (PPARYy), correlating to
phenolic content in a dose-dependent manner. The chemical characterization of AE revealed the
presence of sinapic acid, ferulic acid, and kaempferol derivatives as main bioactive phenols.
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1. Introduction

Canola (Brassica napus L., rapeseed, oilseed rape) is used as a medicinal food in Middle Asia, North
Africa, and West Europe. There is also evidence of its use by early Australian and New Zealand settlers
as well as the indigenous population [1]. Large amounts of protein-rich canola meal are generated
globally during the extraction of canola seed oil. Over 70 million tonnes of canola/oilseed rape is
produced per year, resulting in over 40 million tonnes of canola meal. The high phenolic content of
canola meal renders it less appealing as an animal feed. On the other hand, plant phenols are attracting
increasing attention as multipotent antioxidant molecules that can be used to generate high-value
nutraceutical products. The extraction of canola meal phenols is an appealing high-tech solution to
generate antioxidant-rich extracts for the food and pharmaceutical industries while enhancing the
value of the remaining meal by increasing its digestibility [2].

Polyphenols are a major component of the bioactive molecules isolated from plant extracts
and have been associated with their ability to modify a range of diseases, including cardiovascular
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disease [3,4]. Inflammation which underlies chronic vascular diseases such as atherosclerosis has
been shown to be targeted by different types of polyphenols such as lignans, phenolic acids and a
variety of flavonoids. At the cellular level, the mode action of polyphenols as anti-inflammatory
mediators [5] includes antioxidant activity [6], regulating cell signaling associated with downregulation
of pro-inflammatory cytokine expression [7] and reducing endothelial cell dysfunction [8]. A number
of population studies have linked dietary flavonoid intake with reduced cardiovascular disease [9]
with a possible stronger association with a beneficial effect with flavonols and flavones. More recently
a meta-analysis of dietary flavonoid and lignan intake and mortality found that flavonoids were
associated with a decreased risk of chronic vascular disease mortality [10].

It is well understood that phenolic extracts such as those found in canola often demonstrate
in vitro antioxidant activity [11,12]. However, antioxidant activity does not always correlate with
clear health properties. A more useful approach to characterizing plant biophenols is by assessing
their bioactivity in systems that mimic physiological conditions. As animal and clinical studies have
limitations (e.g., high cost and low throughput), in vitro bioassays to screen for pharmacological
activities are a more useful alternative especially at early stages of biological screening.

Earlier work has pointed to the importance of canola-derived by-products as potential bioactive
compounds. Canola meal proteins and hydrolysates have both been shown to possess pharmacological
properties [13]. Canola meal protein isolates and enzymatic hydrolysates have also been shown to have
anti-obesity properties in vitro [14]. However, the anti-obesity properties of canola meal biophenols
have not yet been investigated.

Obesity is increasing worldwide [15], due to lifestyle changes, less physical exercise, and unhealthy
eating habits [16]. A hallmark of obesity is the accumulation of fat tissue as a result of prolonged
increase in energy intake compared to output, and it is a major risk factor in many human diseases
including diabetes mellitus, cancer, atherosclerosis, and hypertension [17]. Oxidative stress plays a
significant role in the pathology of obesity [18]. Very few medications are approved as anti-obesity
agents. Yet, their cost, efficacy and safety are largely disappointing. Thus, there is a stressing need
to find more affordable, effective and safer alternatives [19]. Plant phenols, indirectly as well-known
antioxidants and directly through their anti-obesity activities [20], have been shown to be an unrivaled
resource of newer anti-obesity agents.

Adipocytes are specialized insulin-sensitive cells that store fat and secrete hormones. Most of
the fats stored in adipocytes are in the form of triglycerides. Adipocytes originate from progenitor
cells (preadipocytes), and the process of differentiation to adipocytes is termed adipogenesis [21].
At the cellular level, obesity is associated with hypertrophy of adipocytes and the production of new
adipocytes from precursor cells. A potential anti-obesogenic approach can be through the inhibition of
pre-adipocytes differentiation to mature cells, hence reducing adipocyte numbers. Inhibition of the
adipogenic differentiation pathway is commonly assessed using the mouse preadipocyte “3T3 L1”
clonal cell line which has been used to determine the impact of compounds regulating adipogenesis [22].
An alternative cell line, “C3H10T1/2”, is a multipotent embryonic mesenchymal stem cell line that
can be differentiated into adipocytes, and has been previously used to demonstrate anti-adipogenic
properties [23].

During differentiation, the transcription factor peroxisome proliferators-activated receptor gamma
(PPARY) acts as a master regulator of adipogenesis [14]. PPARgamma (PPARY), a major regulator of
adipogenesis, is a nuclear receptor and is a part of the PPARs family. It accumulates particularly in
adipose tissues to regulate the expression of genes with their essential role to differentiate [24]. Growth
of triglycerides (TG) in mature adipocyte is triggered when adipogenic transcriptional factors such as
PPARy/CCAT/enhancer-binding protein (C/EBP) are expressed [24]. It leads to a pathway to regulate
fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC) [25]. PPARY can detect lipase activity [26].
Therefore, bioactivity of canola extracts can also be assessed in relation to their capacity to inhibit
pancreatic lipase exclusively as the concentration that inhibits 50% (IC50) of pancreatic lipase (PL)
activity in contrast to standard Orlistat.
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Sinapic acid [27], and hydroxycinnamic acids [28] are known for the lipolysis and their role
in anti-adipogenesis. Polyphenols including quercetin, resveratrol, apigenin, and myricetin are
known to bind with particular residues (Phe264, His266, 11e281, Cys285, and Met348) of the PPARy
receptor to establish anti-adipogenicity during the early stages of the differentiation [29]. For example,
ethanol extracts of bamboo stems have been shown to play a vital role in the downregulation of
differentiation markers C/EBP3, PPARy, and FABP4 (fatty acid-binding protein) [30]. Likewise,
extracts of Mangifera indica L. leaf have also been shown to be effective in reducing the effect of
PPARy suggesting their potential use in obesity management [31]. Furthermore, polyphenol extracts
of purple maize (Zea mays L) and purple silk corn extracts have been shown to have activities
such as anti-inflammatory,anti-adipogenic,anti-diabetic and induction of lipolysis [32,33]. Moreover,
pomegranate juice has also been shown to down-regulate adipogenic genes and lipase [34]. Specific
compounds identified include quercetin, luteolin, vanillic acid and protocatechuic acid, rutin [33],
ellagic acid and punicalagin [34].

Pancreatic lipase is a key enzyme secreted from the pancreas and plays a major role in the
hydrolysis of 50%—70% of dietary triglycerides to monoacylglycerides and free fatty acids before
absorption by enterocytes [20]. Therefore, inhibition of this enzyme may result in lower fat absorption.
In this study, various solvent mixtures were used to recover canola meal phenols and study their
composition and bioactivities. The phenolic composition of various extracts from canola meal, their
in vitro antioxidant and anti-obesity activities were investigated.

2. Results

Canola meal was extracted with water (WE) and various 80% organic solvent/water mixtures of
methanol (ME), acetone (AE), ethanol (EE), butanol (BE), chloroform (CE) and hexane (HE). The canola
meal extracts CME were chemically characterized and screened for their anti-obesity properties.

2.1. Phenolic Composition of Canola Meal Extracts

Gallic acid was used to produce a calibration curve by linear regression for the analysis of total
phenolic content (TPC) from canola meal extracts (R? = 0.9998). The TPC of various extracts in
decreasing order was as follows: AE > BE > ME > EE > WE > CE > HE (Figure 1).

Canola meal extracts

0 50 100 150
mg GAE/g DW

Figure 1. Total phenol content of canola meal extracts (CMEs) expressed as mg GAE/g extractable
matter. WE: water extract, ME: methanol extract, EE: ethanol extract, AE: acetone extract, BE: butanol
extract, CE: chloroform extract, HE: hexane extract. Bars with different letters have means that are
significantly different (p < 0.05).
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Various extracts were chemically characterized by HPLC-DAD-MS/MS using commercially
available reference standards and spectral data from previous literature [2]. Different extracts showed
different phenolic profile [35] that reflects the relative polarity of various extracting solvents. In accord
with total phenolic content, the acetone extract AE showed the largest number of peaks and the highest
recovery (peak height). Most peaks were of intermediate polarity, eluting between 15-40 min in the
60-minute long chromatograms (Figure 2). In alcoholic and acetone extracts, the major peak observed
was sinapine (Peak 1). The major peak observed in water, chloroform, and hexane extracts was feruloyl
choline (4-O-8’) guaiacyl-di-sinapoyl (Peak 7).

mal

Figure 2. On-line HPLC-antioxidant analyses of acetone extract. Eluting time in minutes (x-axis) and
absorbance in mAU (Y-axis). (A) Chromatogram at 280 nm (B) ABTS scavenging detection at 414 nm:
Compounds identified were (1) sinapine, (2) feruloyl choline (4-0-8") guiacyl, (3) unknown, (4) feruloyl
choline (5-8) guaiacyl, (5) kaempherol-sinapoyl-trihexoside, (6) trans-sinapic acid, (7) feruloyl choline
(4-O-8’) guaiacyl-di-sinapoyl, (8) disinapoyl dihexoside, and (9) disinapoyl hexoside.

Compounds present in AE were characterized by HPLC-DAD with online detection of free radical
scavenging activity of eluting compounds using an ABTS scavenging assay, as shown in Figure 2,
Table 1. Peaks 1-9 in Figure 2 are the main contributors to the antioxidant activity of the extract
(showing peaks in the ABTS chromatogram).
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Table 1. Major compounds identified in acetone extract as represented in Figure 2.

Peak No. Identity AE RT Amax ABTS ESI* ESI’ MW
1 Sinapine 4 15.7 237,328 ++ 310 ézéé’ 310
2 Ferroyl choline(4-0-8") guiacyl v 17.7 270b, 325b +++ 476 NI 476
3 Unknown x 246 26022 025805' ++ 429 427 428
4 Ferroyl choline guiacyl isomer v 18.3 270b, 325b ++ 476 NI 476
5 Kaempherol-sinapoyl-trihexoside vV 26.3 268, 333 + 979 978 977
6 Trans-sinapic acid vV 32.6 324 ++ NI 223 224
7 Feruloyl choline (4-O-8) v 36.1 323 ++ 682 NI 682

guaiacyl-di-sinapoyl
8 Disinapoyl dihexoside v 38.6 230, 330 ++ NI 753 754
9 Disinapoyl hexoside vV 40.7 330 ++ NI 591 592

AE, acetone extract; v less; v/, medium; v/, high peak; x, no peak; RT, retention time; Amax, UV-vis
spectra; ESI™, electrospray ionization peaks in negative mode; ESI*, electrospray ionization peaks in positive
mode; MW, molecular weight; NI, did not ionize under ESI modes; b, broad peak; s, peak shoulder;
ABTS (2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) representing ABTS scavenging activity in online
assay (antioxidant); +, low ABTS scavenging activity; ++, good ABTS scavenging activity; +++, high ABTS
scavenging activity.

2.2. Canola Meal Extracts Inhibit Intracellular Lipid Accumulation

Cell viability was determined by the CellTiter 96® AQueous non-radioactive cell proliferation assay
according to the manufacturer’s protocol [ 14]. The CellTiter 96® AQueous assay constitutes of a solution
of a novel [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium
salt (MTS) and an electron coupling reagent (phenazine methosulfate, PMS). MTS is bio-reduced by
cells into a formazan product that is soluble in tissue culture medium. Untreated cells served as a
control and were assumed to be 100% viable. To assess the effect of DMSO on the viability, cells were
incubated with various concentrations of DMSO (0.05%-0.3%) in cell culture medium, DMEM, and the
proportion of viable cells was determined (Figure 3A). The toxicity of various extracts on cells was
examined in the range 1-3 mg/mL (Figure 3B).

A 1007 £33 0.1%[3 0.15% [ 0.2% MM 0.25% WM 0.3% B 150,
a
b 1mg/mLEE 1.5mg/mLES 2 mg/mL BE 2.5 mg/mL MM 3 mg/mL
80 -
<
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= 401 >
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Figure 3. Determination of cell viability using the CellTiter 96® AQueous non-radioactive cell
proliferation assay, and adipogenic differentiation inhibition by canola meal extracts (CMEs). (A) The
effect of DMSO on C3H10T1/2 cell viability. The effect of DMSO concentration (0.1%, 0.15%, 0.2%, and
0.3%) on cell viability was assessed using the CellTiter 9%6® AQueous non-radioactive cell proliferation
assay. Results are expressed as mean + standard deviation (n = 3). Bars with different letters have
mean values that are significantly different (p < 0.05) at different concentrations. (B) The effect of canola
meal extracts on C3H10T1/2 cell (CME) cell viability. Viability was assessed using the CellTiter 96®
AQueous non-radioactive cell proliferation assay at different concentrations (1, 1.5, 2, 2.5, and 3mg/L)
of CMEs. Results are expressed as mean + standard deviation (1 = 3). Bars with different letters have
mean values that are significantly different (p < 0.05) at the same concentration.

The in vitro anti-adipogenic effect of CME was examined with 1.5 mg/mL of EE and BE, and
2 mg/mL of AE, ME, HE, CH, and WE in the presence of adipogenic differentiation media (ADM) for
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seven days. Cells of C3H10T1/2 were then stained with Oil Red O stain (Figure 4A) and visualized by
light microscopy and quantified by measuring absorbance at 510 nm (Figure 4B). Fat globules appeared
as red granules, as shown in Figure 4A, demonstrating differentiation into adipocytes [36]. Following
staining with Oil Red O, a clear distinction can be seen in undifferentiated cells (Figure 4A, panel i)
and differentiated cells (Figure 4A, panel ii).
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Figure 4. Adipogenic differentiation inhibition by canola meal extracts (CME’s). (A) Qualitative
assessment of the effect of CMEs on adipogenic differentiation visualized at 10 um: (i) undifferentiated
cells—negative control; (ii) differentiated cells—positive control; differentiated cells with CMEs (iii)
acetone (AE), (iv) methanol (ME), (v) butanol (BE), (vi) ethanol (EE), (vii) hexane (HE), (viii) chloroform
(CE), and (ix) water (WE). (B) Quantitative analysis of adipogenesis inhibition. Oil red staining
measured at 510 nm was used to assess the level of adipogenesis in differentiated mesenchymal stem
(CH310T1/2) cells incubated with various CMEs. Results are expressed as means + standard deviation
(n = 3). Bars with different letters have means that are significantly different (p < 0.05).
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All extracts inhibited stem cell differentiation to some extent. The cells treated with AE showed
the highest level of inhibition (p < 0.05). In general, we can categorize the CME into the following
clusters: strong inhibitors (AE and HE), moderate inhibitors (ME, BE, and WE), and mild inhibitors
(EE and CE). Accordingly, large lipid vacuoles were clearly noticeable in EE- and CE-treated cells,
showing minimal inhibition had occurred (Figure 4A, panels vi,viii).

Excess storage of lipid as adipose tissue has been identified as a risk factor for the development of
many diseases [37]. Although canola meal has never been studied for its anti-adipogenic potential,
many naturally-occurring flavonoids, phenolic acids, and lignans have demonstrated a capacity to
inhibit the lipid droplet deposition in the adipose tissue [38].

2.3. Canola Meal Extract Mediated Reductions in Lipid Accumulation are Correlated with a Reduction in
PPARy Expression

To determine the effects of CMEs on PPARYy expression, PPARy immunostaining of cells undergoing
differentiation was undertaken (Figure 5A,B). The typical nuclear localization of PPARy was seen in
differentiated cells (Figure 5B, panel DC). No nuclear PPARY staining was observed for either AE-
or BE-treated cells, and a low level of staining was observed in HE-treated cells. BE appeared to
inhibit adipogenic differentiation at the lower dose of 1.5 mg/mL. These results indicate that CMEs
appear to differ in their ability to inhibit adipogenesis to different extents. The level of PPARYy gene
expression in the cells treated with CMEs was determined using qRT-PCR (Figure 5B). Cells incubated
in culture media alone acted as a negative control and untreated fully-differentiated cells were used as
a positive control. The expression level of PPARy in the C3H10T1/2 cells treated with AE exhibited a
significant decrease (p < 0.05) compared to the positive control. BE treated cells also showed a lower
expression of PPARy, and a reducing trend was observed as follows: HE < ME < WE < EE < CE.
PPARy gene expression levels followed the same trend seen with Oil Red O staining (Figure 4A) and
PPARy immunofluorescence staining (Figure 5A).

Previous studies have shown that reduced PPARy gene expression correlates with inhibition of
adipogenesis in 3T3-L1 adipocyte cells treated with extracts of cranberries and onion peel [22,39]. Also,
canola proteins and their hydrolysates have been shown to reduce the expression of genes coding for
PPARy proteins in C3H10T1/2 cells [14].
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Figure 5. (A) Immunofluorescence staining of PPARy in CME treated mesenchymal stem cells
(CH310T1/2) visualized at 10 um: (UN) undifferentiated cells—negative control; (DC) differentiated
cells—positive control. Differentiated cells treated with CMEs: Acetone extract (AE); methanol extract
(ME); butanol extract (BE); ethanol extract (EE); hexane extract (HE); chloroform extract (CE); and water
extract (WE). Captured images with no number labels are cells stained with fluorescein isothiocyanate
(FITC). Images labeled with “1” show cells stained with 4’,6-diamidino-2-phenylindole (DAPI); images
labeled with “2” show the normal view of cells, and images labeled with “3” are merged images of FITC
stained cells, DAPI stained cells, and normal images, respectively. (B) Quantitative analysis of PPARy
gene expression in C3H10T1/2 cells treated with CMEs. Results are expressed as means + standard
deviation (1 = 3). Bars with different letters have mean values that are significantly different (p < 0.05).

2.4. Inhibition of Pancreatic Lipase Activity

The ICsj values for pancreatic lipase (PL) inhibition of the seven CME are shown in Figure 6.
All extracts demonstrated some level of inhibition towards PL with AE showing the highest
(1.60 + 0.06 mg/mL), and the CE the lowest (5.42 + 0.07 mg/mL) (p < 0.05) levels of inhibition.
BE also showed a high level of PL inhibition. From these results, we conclude that the phenolic
compounds in AE and BE are active in both the inhibition of lipid accumulation in adipocytes and
lipase enzymatic activity. Several plant extracts have been shown to have PL inhibitory effects [40].
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Figure 6. Inhibitory effect of CME (ICsy) on pancreatic lipase inhibition: Inhibition concentrations at
50% (ICsp) values of pancreatic lipase (x-axis) activity of Orlistat, AE, ME, BE, EE, HE. CE, WE (y-axis).
Results are expressed as means + standard deviation (n = 3). Bars with different letters have mean

values that are significantly different (p < 0.05).
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3. Discussion

Acetone showed superior phenol extraction abilities (287.7 + 16.3 mg GAE/g extractable matter),
which has been observed before in other plant extracts [41]. Butanol and methanol extracts showed
high levels of extraction, without a significant difference in their abilities to extract canola phenolic
compounds. Although ethanol has an intermediate polarity between methanol and butanol, ethanol
extracts recovered significantly less phenols. Highly-polar (water) and non-polar (chloroform and
hexane) solvents showed the least potential to extract canola phenols. Phenolic profiling of all extracts
was undertaken [35]; however, only the chemical characterization of the extract with the highest phenol
content (AE) is discussed here. Alcohol and acetone extracts showed the largest number of peaks.

Interestingly, water extracts were comparable to hexane and chloroform extracts in their ability to
extract phenolic compounds as these extracts contained almost the same number of peaks. However,
water extracts appeared to have higher recovery. The data gathered from UV-vis spectra, ABTS
scavenging activity, and relative retention times were compared with reference standards and literature
data to characterize the chemical composition of CMEs as described previously [2]. The online-ABTS
HPLC analysis showed that, generally, most detected compounds demonstrate good ABTS radical
scavenging activity. A few exceptions canbe observed, such as Peak 5 (kaempferol-sinapoyl-trihexoside),
which had no ABTS scavenging activity. Meanwhile, Peak 2 (feruloyl choline guiacyl) was the sixth
most abundant component in AE (Figure 2A), yet it appeared as the second highest peak in the online
ABTS radical scavenging trace (Figure 2B), reflecting a strong free radical scavenging activity that is
not proportional to its relative concentration.

DMSO (0.2%) solution was selected as the solvent that achieved a complete dissolution of
extracts and maintained approximately 70% cell viability in accord with previous studies [42]. The
anti-adipogenic effects of samples at these concentrations has been shown not to be due to the effect
of DMSO [43]. All extracts demonstrated more than 70% viability at < 2 mg/mL, apart from BE and
EE which showed similar viability at < 1.5 mg/mL. Therefore, 1.5 mg/mL of the ethanol and butanol
extracts, and 2 mg/mL of all other extracts were used for cell culture experiments (Figure 3B).

All extracts demonstrated significant inhibition of stem cell differentiation. The cells treated with
AE showed the highest inhibition (p < 0.05). In general, we can categorize the CME into the following
clusters: strong inhibitors (AE and HE), moderate inhibitors (ME, BE, and WE), and mild inhibitors (EE
and CE). Accordingly, large lipid vacuoles were clearly noticeable in EE- and CE-treated cells showing
minimal inhibition had occurred (Figure 4A, panels vi,viii).

The inhibition of PL has been identified as a potential target for the treatment of obesity. So far,
many plants have been examined for their PL inhibitory potential [40]. All CMEs showed some PL
inhibitory potential (Figure 6). The most potent inhibitor was AE followed by alcoholic extracts, while
the least potent were HE and CE. Lipase inhibition correlated well with the degree of adipogenic
inhibition measured by Oil Red O staining (Figure 4A).

4. Materials and Methods

4.1. Materials

Chemicals used included HPLC-grade methanol from Thermo Fisher Scientific (Reagent Lane
Fair Lawn, NJ, USA), anhydrous acetonitrile from UNICHROME (Sydney, Australia), sodium
carbonate, ferric chloride, Folin—Ciocalteu reagent, 2,2’-azinobis (3-ethylbenzothiazoline-6-sulfonic
acid) diammonium salt (ABTS), 2-4-6-tris(2-pyridyl)-s-triazine (TPTZ), potassium persulphate, gallic
acid, ferulic acid, sinapic acid, formic acid and membrane nylon filters (0.22 um), from Sigma Aldrich
(Sydney, Australia). Kaempferol was obtained from Extrasynthese (Genay, France). Chemicals
including orlistat, 4-methylumbelliferyl oleate (4-MU oleate), tris hydrochloride (Tris-HCl), calcium
chloride (CaCly), and sodium citrate, sodium chloride (NaCl) were obtained from Sigma-Aldrich
(Sydney, Australia). Pancreatic lipase (PL, porcine) was purchased from Roche Diagnostic (Melbourne,
Victoria, Australia).
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The murine embryonic fibroblast mesenchymal stem cell line (C3H10T1/2) was purchased from the
American Type Culture Collection (Rockville, MD, USA). The CellTitre® AQueous non-radioactive cell
proliferation assay kit and GoTaq Green 2x master mix were purchased from Promega (Fitchburg, WI,
USA); Aurum™ total RNA kit and iScript™ advance cDNA synthesis kits were obtained from Bio-Rad
Laboratories (Hercules, CA, USA); and RT-PCR grade water was purchased from Life Technologies
(Scoresby Victoria, Australia).

Cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) plus 10% Fetal Bovine
Serum (FBS), and 1% penicillin and streptomycin, and passaged using a 0.25% trypsin-EDTA
solution. Dexamethasone, penicillin/streptomycin, L-glutamine, 3% para-formaldehyde (PFA), and
phosphate-buffered saline (PBS) were purchased from Sigma-Aldrich Chemicals (St. Louis, MI, USA).

4.2. Recovery of Canola Meal Biophenols

Canola meal was extracted with water and a range of aqueous 80% solvents, namely, acetone,
methanol, butanol, ethanol, hexane, and chloroform. Canola meal phenols are essentially hydrophilic
in nature [44-46]. Using hydro-organic solvents maximizes the potential of extracting canola phenols
both qualitatively and quantitively. We employed various solvents with a wide range of polarities
in order to comprehensively explore canola meal bioactive constituents. While hydro-alcoholic
solvents are the most commonly used extraction solvent for plant phenols [47,48], hydro-acetone
solvents showed superior quantitative properties [2,35]. Chloroform and hexane are immiscible with
water, while n-butanol has limited water miscibility. Their mixtures with water form interesting
two-phase extraction systems that have been frequently reported in the literature [49,50]. Chemical
characterization of the extracts has been performed [35]. The prepared extracts were freeze-dried and
referred to as acetone extract (AE), methanol (ME), butanol (BE), ethanol (EE), hexane (HE), chloroform
(CE), and water (WE). All freeze-dried extracts were then reconstituted in 50% methanol and filtered
through a syringe filter (0.22 pm).

4.3. Measurement of Total Phenolic Content

Total phenolic content (TPC) was determined using the Folin—Ciocalteu reagent, as previously
described [2]. A calibration curve was produced using a range of gallic acid concentrations (0.1, 0.2, 0.3,
0.4,0.5, and 0.6 mg/mL) in 50% aqueous methanol. A 100 uL aliquot of each standard or sample was
added to a 10 mL volumetric flask, containing 7 mL of ultra-pure water (UPW) and then mixed with
500 uL of Folin—Ciocalteu reagent and 1.5 mL of 20% sodium carbonate. Following incubation for 1 h at
room temperature, the absorbance was measured at 760 nm using a Cary 50 spectrophotometer (Varian,
Victoria, Australia), with software Cary WinUV version 3, (Varian, Victoria, Australia), and results
were expressed as milligrams of gallic acid equivalents (GAE) per gram dry weight (mg GAE/g DW).

4.4. Cell Culture and Adipogenic Differentiation

C3H10T1/2 cells were cultured in DMEM, containing 10% FBS, 1% penicillin-streptomycin, and
1% L-glutamine and incubated at 37 °C in a humidified incubator with 5% CO,. Media was replaced
every 3 days. At 75% confluency, cells were trypsinized using 0.25% trypsin-EDTA solution for 2-5 min
and then re-suspended in DMEM cell culture medium in a 1:10 ratio. Cell viability was assessed using
the CellTiter 96®AQueous non-radioactive cell proliferation assay, according to the manufacturer’s
protocol, with C3H10T1/2 cells plated at a density of 5000 cells/well in a 96-microplate cultured first
with 0.1% to 0.3% DMSO with DMEM. Then, depending on the solubility of each extract, samples were
used at a percentage of 1% to 3% with a suitable DMSO percentage. DMEM was used as a negative
control. Following incubation for 24 h at 37 °C, absorbance was measured at 570 nm using a FLUOstar
omega UV-vis spectrophotometer (BMG Labtech, Offenburg, Germany).

For adipogenic differentiation, C3H10T1/2 cells were cultured to 70% confluency and then exposed
to adipogenic differentiation media (ADM) consisting of DMEM with 0.5 pM rosiglitazone, 10 pM
insulin, 0.25 pM indomethacin, 1 pM dexamethasone, and 0.5 mM 3-isobutyl -1-methyxanthine (IBMX).
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ADM was replaced every 48 h, for a seven-day period before the cells were examined by Oil Red
O staining.

4.5. Oil-Red O Staining Staining and Quantification of Intracellular Lipid Droplets

Oil Red O staining was performed according to the procedure described previously [51]. Briefly,
C3H10T1/2 cells were treated with ADM containing 2 mg/mL of AE, ME, HE, CE, and WE or 1.5 mg/mL
of BE and EE extracts for seven days. Cells were rinsed briefly with PBS, fixed, and air-dried before
staining, then rinsed carefully with PBS, and viewed under an inverted microscope (Nikon Eclipse
Ti-U inverted, Japan).

4.6. Immunofluorescence Staining of PPARy

Cells were incubated with canola extracts (as detailed above) in ADM for seven days, after
this period cells were fixed with 3% paraformaldehyde (PFA), rinsed with phosphate buffer saline
(PBS), then treated with 0.1% Triton X-100 for 7 min at room temperature (RT), and rinsed again with
PBS. The cells were then incubated for 30 min in blocking buffer prepared by mixing 5% goat serum
(Gibco®, Eggenstein, Germany) in PBS. The cells were then incubated with anti-PPARy (81B8) rabbit
monoclonal antibody (1:50) Cell Signalling Technology (Danvers, MA, USA) for one hour at ambient
temperature, then washed gently with PBS and incubated in the dark with anti-rabbit IgG (Fab 2)-Alexa
Fluor® 488 (1:100; Cell Signalling Technology) for one hour. Finally, they were counterstained with
4’,6-diamidino-2-phenylindole (DAPI) counterstain. Cells were observed using an AIR*/A1*confocal
laser microscope system (Nikon, NY, USA).

4.7. Quantitative PCR (qPCR) of PPARy Gene Expression

Total RNA was isolated from treated and un-treated C3H10T1/2 cells using the Aurum™ total
RNA kit (Bio-Rad), following the manufacturer’s protocol. The concentration and quality of RNA were
measured using a Nanodrop 2000"analyser (Thermo Scientific Ltd, Melbourne, Australia). The purity
of the RNA samples was measured and an absorbance ratio at A260/A280 of 1.84 was achieved.

Complementary DNA (cDNA) was synthesized using the iScript Advance cDNA synthesis kit
for RT-qPCR (Bio-Rad) according to the manufacturer’s protocol. The reverse transcription reaction
was incubated in a thermocycler using the amplification cycles at 25 °C, 5 min; 42 °C, 30 min; 85 °C, 5
min, and 4 °C, 5 min. The amplification of the synthesized cDNA was performed by PCR at a final
concentration of 300 ng/20 uL, using 12.5uL 2x GoTaq buffer, with 0.5 pL (1 uM) of forward and reverse
primers specific for PPARy and (3-actin, the housekeeping gene.

The PCR primers for PPARyl were designed based on murine PPARy 1 (accession
number: NM_011146.2) [52]. PPARy forward 5 TTTTCAAGGGTGCC AGTTTC, reverse
5 AATCCTTGGCCCTCTGAGAT; B-actin with forward 5CACCCGCGAGTACAACCTTC, reverse
5’ CCCATACCCACCATCACACC. The PCR product sizes were 197 base pairs (bp) (PPARy) and 207 bp
(B-actin). Amplified products were separated by electrophoresis on 2% agarose gel and visualized
with ethidium bromide. The gel images were analyzed and captured using the molecular imager gel
doc XR+ system (Bio-Rad, NSW, Australia).

For real-time PCR amplification, a total volume of 20 pL reaction was prepared using 2x Soso fast
mix (BioRad): 10 L 2x Soso fast mix, 0.1 uL (at a final concentration of 0.2 uM) of forward and reverse
primers, 1 uL of cDNA template (600 ng), with a total reaction volume of 20 uL with DNase-free
water. The gPCR reactions were carried out using a ‘C1000 thermal cycler with real-time system CFX96
(Bio-Rad) using the following parameters: initially at 95 °C, 3 min; followed by 95 °C, 1 min; 59 °C,
1 min; and repeated 39 times.

4.8. Pancreatic Lipase Inhibition

Inhibition of pancreatic lipase (PL) was determined as described [53]. CMEs were dissolved
in Tris-HCI buffer (13 mM) containing 50 mM NaCl and 1.3 mM CaCl,. The reaction mixture was
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prepared in a 96-well microplate and included with 25 uL of each sample 50 pL of substrate [Orlistat]
(0.1 mM), and 25 pL of PL enzyme (50 U/mL) and incubated at 25 °C for 30 min and the reaction was
stopped with the addition of 100 uL of sodium citrate (100 mM, pH 4.2).

The relative fluorescence intensity was measured using a Cary eclipse fluorescence
spectrophotometer (Varian, Inc, Victoria, Australia) at an excitation wavelength of 355 nm and
an emission wavelength of 460 nm. The results were expressed as an ICs value, obtained via a
least square regression line of the logarithm of the amount of samples against the pancreatic lipase
activity (%).

4.9. Chromatographic Characterization of Canola Extracts

For the online ABTS with HPLC-DAD and liquid chromatography-mass spectroscopy (LC-MS),
the following standards were used: naringenin, gallic acid, catechin hydrate, caffeic acid,
chlorogenic acid, ferulic acid, rutin, luteolin, sinapic acid, trans-cinnamic acid, 4-hydroxybenzoic acid,
phenylisothiocyanate, quercetin, ellagic acid, tyramine, pyrogallol, and vanillic acid, which were
purchased from Sigma Aldrich (Sydney, Australia). Epicatechin and kaempferol were obtained from
Extrasynthese (Genay, France).

4.9.1. Online High-Performance Liquid Chromatography with Diode Array Detector Coupled with
ABTS Scavenging Activity (HPLC-DAD-Online ABTS).

All CME at 1.5 mg/mL concentration in 50 % aqueous methanol were filtered through a 0.22 pm
syringe filter, following vortex/sonication before being analyzed by HPLC. All conditions were
maintained as described by Obied et al. [2] with minor modifications. Each sample, blanks (50%
aqueous methanol), and standards were analyzed for qualitative control and identification purposes.

Online ABTS with HPLC-DAD was achieved on a Varian Prostar 240 solvent delivery system
connected with a Varian Prostar 410 autosampler. In addition, the outflow from HPLC-DAD was
attached to a reaction coil (PEEK; 3.4 m X 0.178 mm, maintained at 37 °C) joined to a Perkin—-Elmer
series 10 HPLC pump (Varian 2401 pump). Changes in ABTS®** absorbance were measured at 414 nm
using a Varian 9050 UV-vis detector. Data analysis was performed using the Star chromatography
workstation version 6.41 2004 (Varian, Inc., CA, USA).

4.9.2. High-Performance Liquid Chromatography-Diode Array Detection-Tandem Mass
(HPLC-DAD-MS/MS).

For the HPLC-DAD-MS/MS, all required conditions were maintained as described by
Obied et al. [2] with minor modifications. The total run time was 70 min including the MS procedure,
and was performed in both the negative and positive ion mode (m/z 100-1200). Results were
analyzed using an Agilent Mass Hunter workstation version B.01.04 2008 (Agilent Technologies,
Waldbronn, Germany).

For quantitative determination, each extract was analyzed in triplicate at 280 nm and the mean
reported. Sinapic acid (0.0625 to 1100 pug/mL) was used as the standard to generate a calibration curve
for quantification (R? = 0.9935) and concentrations expressed as milligram of sinapic acid equivalent
per gram of dry weight (mgSAE/g DW).

4.10. Statistical Analysis

Experiments were performed in triplicate, and results are presented as the mean + standard
deviation (SD). All results were analyzed using Graph pad prism 5, Microsoft Excel 2016, and one-way
analysis of variance (ANOVA) using statistical analysis system (SAS®system) for Windows V8 (SAS
institute, NC, USA). Comparison between sample means were calculated using the Duncan multiple
range test at a 5% probability level (p < 0.05).
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5. Conclusions

The most abundant phenols in CMEs are in AE, ME, and BE. These extracts demonstrated potent
anti-adipogenic and anti-lipase activities. At the molecular level, a marked reduction in PPARy
mRNA expression was associated with AE and BE treatment of adipogenic differentiating cells. CME
showed ABTS radical scavenging activity. AE has the highest content of TP and the most potent
ABTS scavenging, anti-adipogenic, and PL inhibition. Sinapine and derivatives of sinapic acid,
namely, kaempferol and ferroyl choline guiacyl, are the main contributors to CME antiradical activities.
The results obtained in this study demonstrate the importance of solvent choice for the recovery of
biophenols and in the observed pharmacological properties. Phenols are the main active constituents
responsible for antioxidant and anti-adipogenic activity. Further research is required to isolate the
main bioactive phenols, study the mechanism of action and find out if these activities are reproducible
in vivo.

Author Contributions: P.S. and S.H. designed the experiments. S.H. performed the experiments. S.H., A.U.R.,
DJ.L., C.L.B. and H.K.O. wrote the manuscript. All authors have read and agree to the published version of
the manuscript.

Funding: This work was supported by a writing grant from Chares Sturt University. Wagga Wagga. Australia.

Acknowledgments: This work was funded by a Charles Sturt University, Faculty of science higher degree
scholarship. The author is thankful to Adeola Alashi, Saliya Gurusinghe, and Gayle Petersen for their technical
support during this research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Rahman, M.; Khatun, A.; Liu, L.; Barkla, B.]. Brassicaceae mustards: Traditional and agronomic uses in
Australia and New Zealand. Molecules 2018, 23, 231. [CrossRef]

2. Obied, HK,; Song, Y,; Foley, S.; Loughlin, M.; Rehman, A.-U.; Mailer, R.; Masud, T.; Agboola, S. Biophenols
and antioxidant properties of australian canola meal. J. Agric. Food Chem. 2013, 61, 9176-9184. [CrossRef]

3. Tangney, C.C; Rasmussen, H.E. Polyphenols, inflammation, and cardiovascular disease.
Curr. Atheroscler. Rep. 2013, 15, 324. [CrossRef]

4. Hollman, P.C.; Cassidy, A.; Comte, B.; Heinonen, M.; Richelle, M.; Richling, E.; Serafini, M.; Scalbert, A.;
Sies, H.; Vidry, S. The biological relevance of direct antioxidant effects of polyphenols for cardiovascular
health in humans is not established. J. Nutr. 2011, 141, 9895-1009S. [CrossRef]

5. Choy, K.W.; Murugan, D.D.; Leong, X.-E; Abas, R.; Alias, A. Flavonoids as natural anti-inflammatory agents
targeting nuclear factor-kappa B (NF«B) signalling in cardiovascular diseases: A mini review. Front. Pharmacol.
2019, 10, 1295. [CrossRef]

6. Kim, D.-O.; Lee, C.Y. Comprehensive study on vitamin C equivalent antioxidant capacity (VCEAC) of
various polyphenolics in scavenging a free radical and its structural relationship. Crit. Rev. Food Sci. Nutr.
2004, 44, 253-273. [CrossRef]

7. Csiszar, A.; Smith, K.; Labinskyy, N.; Orosz, Z.; Rivera, A.; Ungvari, Z. Resveratrol attenuates TNF-a-induced
activation of coronary arterial endothelial cells: Role of NF-«B inhibition. Am. J. Physiol. Heart Circ. Physiol.
2006, 291, H1694-H1699. [CrossRef] [PubMed]

8. Engler, M.B.; Engler, M.M.; Chen, C.Y.; Malloy, M.].; Browne, A.; Chiu, E.Y.; Kwak, H.-K.; Milbury, P;
Paul, S.M.; Blumberg, J. Flavonoid-rich dark chocolate improves endothelial function and increases plasma
epicatechin concentrations in healthy adults. J. Am. Coll. Nutr. 2004, 23, 197-204. [CrossRef] [PubMed]

9.  Peterson, ].].; Dwyer, ].T.; Jacques, PF.; McCullough, M.L. Associations between flavonoids and cardiovascular
disease incidence or mortality in European and US populations. Nutr. Rev. 2012, 70, 491-508. [CrossRef]
[PubMed]

10. Grosso, G.; Micek, A.; Godos, |.; Pajak, A.; Sciacca, S.; Galvano, F; Giovannucci, E.L. Dietary flavonoid and
lignan intake and mortality in prospective cohort studies: Systematic review and dose-response meta-analysis.
Am. |. Epidemiol. 2017, 185, 1304-1316. [CrossRef]


http://dx.doi.org/10.3390/molecules23010231
http://dx.doi.org/10.1021/jf4026585
http://dx.doi.org/10.1007/s11883-013-0324-x
http://dx.doi.org/10.3945/jn.110.131490
http://dx.doi.org/10.3389/fphar.2019.01295
http://dx.doi.org/10.1080/10408690490464960
http://dx.doi.org/10.1152/ajpheart.00340.2006
http://www.ncbi.nlm.nih.gov/pubmed/16973825
http://dx.doi.org/10.1080/07315724.2004.10719361
http://www.ncbi.nlm.nih.gov/pubmed/15190043
http://dx.doi.org/10.1111/j.1753-4887.2012.00508.x
http://www.ncbi.nlm.nih.gov/pubmed/22946850
http://dx.doi.org/10.1093/aje/kww207

Int. ]. Mol. Sci. 2019, 21,1 15 of 17

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Kumar, S.; Andy, A. Health promoting bioactive phytochemicals from Brassica. Int. Food Res. J. 2012, 19,
141-152.

Amorati, R.; Valgimigli, L. Methods to measure the antioxidant activity of phytochemicals and plant extracts.
J. Agric. Food Chem. 2018, 66, 3324-3329. [CrossRef] [PubMed]

Aider, M.; Barbana, C. Canola proteins: Composition, extraction, functional properties, bioactivity,
applications as a food ingredient and allergenicity - A practical and critical review. Trends Food Sci. Technol.
2011, 22, 21-39. [CrossRef]

Alashi, A.M.; Blanchard, C.L.; Mailer, R].; Agboola, S.O.; Mawson, A.].; Aluko, R.E.; Strappe, P. Effects
of canola proteins and hydrolysates on adipogenic differentiation of C3H10T/2 mesenchymal stem cells.
Food Chem. 2015, 185, 226-232. [CrossRef] [PubMed]

Hocking, S.; Dear, A.; Cowley, M.A. Current and emerging pharmacotherapies for obesity in Australia.
Obes. Res. Clin. Pract. 2017, 11, 501-521. [CrossRef] [PubMed]

Yang, ].; Chen, C.; Zhao, S.; Ge, F,; Liu, D. The inhibitory effect of different solvents extracts from walnut
shell (Juglans regia L.) on pancreatic lipase and adipogenesis of 3T3-L1 preadipocytes. J. Food Nutr. Res. 2014,
2, 664-670. [CrossRef]

Rayalam, S.; Della-Fera, M.A.; Baile, C.A. Phytochemicals and regulation of the adipocyte life cycle.
J. Nutr. Biochem. 2008, 19, 717-726. [CrossRef]

Marseglia, L.; Manti, S.; D’Angelo, G.; Nicotera, A.; Parisi, E.; Di Rosa, G.; Gitto, E.; Arrigo, T. Oxidative
stress in obesity: A critical component in human diseases. Int. ]. Mol. Sci. 2015, 16, 378-400. [CrossRef]
Soeng, S.; Evacuasiany, E.; Widowati, W.; Fauziah, N.; Manik, V.; Maesaroh, M. Inhibitory potential of
rambutan seeds extract and fractions on adipogenesis in 3T3-L1 cell line. J. Exp. Integr. Med. 2015, 5, 55-60.
[CrossRef]

Sergent, T.; Vanderstraeten, J.; Winand, J.; Beguin, P.; Schneider, Y.-J. Phenolic compounds and plant extracts
as potential natural anti-obesity substances. Food Chem. 2012, 135, 68-73. [CrossRef]

Stephens, ].M. The fat controller: Adipocyte development. PLoS Biol. 2012, 10, €1001436. [CrossRef]
[PubMed]

Kowalska, K.; Olejnik, A.; Rychlik, J.; Grajek, W. Cranberries (Oxycoccus quadripetalus) inhibit adipogenesis
and lipogenesis in 3T3-L1 cells. Food Chem. 2014, 148, 246-252. [CrossRef] [PubMed]

Callcott, E.T.; Santhakumar, A.B.; Strappe, P.; Luo, ].; Blanchard, C.L. Polyphenols from Australian-grown
pigmented red and purple rice inhibit adipocyte differentiation. J. Cereal Sci. 2018, 81, 140-146. [CrossRef]
Lee, H.; Li, H.; Kweon, M.; Choi, Y.; Kim, M.; Ryu, J.-H. Isobavachalcone from angelica keiskei inhibits
adipogenesis and prevents lipid accumulation. Int. J. Mol. Sci. 2018, 19, 1693. [CrossRef] [PubMed]
Chayaratanasin, P.; Caobi, A.; Suparpprom, C.; Saenset, S.; Pasukamonset, P.; Suanpairintr, N.; Barbieri, M.A.;
Adisakwattana, S. Clitoria ternatea flower petal extract inhibits adipogenesis and lipid accumulation in
3T3-L1 preadipocytes by downregulating adipogenic gene expression. Molecules 2019, 24, 1894. [CrossRef]
[PubMed]

Martin, H.; McGhie, T.K,; Bentley-Hewitt, K.; Christeller, ]. PPARy as a sensor of lipase activity and a target
for the lipase inhibitor orlistat. Lipids Health Dis. 2013, 12, 48. [CrossRef] [PubMed]

Moon, H.; Imran, K.; Rahman, S.; Yoon, D.; Marimuthu, V.; Kim, Y. Sinapic Acid Induces the Expression of
Thermogenic Signature Genes and Lipolysis through Activation of Pka/Creb Signaling in Brown Adipocytes.
BMB Report. Available online: https://europepmc.org/article/med/31401979 (accessed on 12 August 2019).
Alam, M.A.; Subhan, N.; Hossain, H.; Hossain, M.; Reza, H.M.; Rahman, M.M.; Ullah, M.O. Hydroxycinnamic
acid derivatives: A potential class of natural compounds for the management of lipid metabolism and
obesity. Nutr. Metab. 2016, 13, 27. [CrossRef]

Aranaz, P; Navarro-Herrera, D.; Zabala, M.; Miguéliz, I.; Romo-Hualde, A.; Lopez-Yoldi, M.; Martinez, J.A.;
Vizmanos, J.L.; Milagro, EI.; Gonzalez-Navarro, C.J. Phenolic compounds inhibit 3T3-L1 adipogenesis
depending on the stage of differentiation and their binding affinity to PPARy. Molecules 2019, 24, 1045.
[CrossRef]

Goh, S.; Kim, D.; Choi, M.-H.; Shin, H.-J.; Kwon, S. Effects of bamboo stem extracts on adipogenic
differentiation and lipid metabolism regulating genes. Biotechnol. Bioprocess Eng. 2019, 24, 454-463.
[CrossRef]


http://dx.doi.org/10.1021/acs.jafc.8b01079
http://www.ncbi.nlm.nih.gov/pubmed/29557653
http://dx.doi.org/10.1016/j.tifs.2010.11.002
http://dx.doi.org/10.1016/j.foodchem.2015.03.054
http://www.ncbi.nlm.nih.gov/pubmed/25952862
http://dx.doi.org/10.1016/j.orcp.2017.07.002
http://www.ncbi.nlm.nih.gov/pubmed/28818558
http://dx.doi.org/10.12691/jfnr-2-10-2
http://dx.doi.org/10.1016/j.jnutbio.2007.12.007
http://dx.doi.org/10.3390/ijms16010378
http://dx.doi.org/10.5455/jeim.200115.or.120
http://dx.doi.org/10.1016/j.foodchem.2012.04.074
http://dx.doi.org/10.1371/journal.pbio.1001436
http://www.ncbi.nlm.nih.gov/pubmed/23209380
http://dx.doi.org/10.1016/j.foodchem.2013.10.032
http://www.ncbi.nlm.nih.gov/pubmed/24262553
http://dx.doi.org/10.1016/j.jcs.2018.04.011
http://dx.doi.org/10.3390/ijms19061693
http://www.ncbi.nlm.nih.gov/pubmed/29882838
http://dx.doi.org/10.3390/molecules24101894
http://www.ncbi.nlm.nih.gov/pubmed/31108834
http://dx.doi.org/10.1186/1476-511X-12-48
http://www.ncbi.nlm.nih.gov/pubmed/23566279
https://europepmc.org/article/med/31401979
http://dx.doi.org/10.1186/s12986-016-0080-3
http://dx.doi.org/10.3390/molecules24061045
http://dx.doi.org/10.1007/s12257-019-0029-2

Int. ]. Mol. Sci. 2019, 21,1 16 of 17

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.
46.

47.

48.

49.

50.

Sferrazzo, G.; Palmeri, R.; Vanella, L.; Parafati, L.; Ronsisvalle, S.; Biondi, A.; Basile, E; Li Volti, G.; Barbagallo, I.
Mangifera indica L. leaf extract induces adiponectin and regulates adipogenesis. Int. J. Mol. Sci. 2019,
20, 3211. [CrossRef] [PubMed]

Chaiittianan, R.; Sutthanut, K.; Rattanathongkom, A. Purple corn silk: A potential anti-obesity agent with
inhibition on adipogenesis and induction on lipolysis and apoptosis in adipocytes. J. Ethnopharmacol. 2017,
201, 9-16. [CrossRef] [PubMed]

Zhang, Q.; de Mejia, E.G.; Luna-Vital, D.; Tao, T.; Chandrasekaran, S.; Chatham, L.; Juvik, J.; Singh, V,;
Kumar, D. Relationship of phenolic composition of selected purple maize (Zea mays L.) genotypes with their
anti-inflammatory, anti-adipogenic and anti-diabetic potential. Food Chem. 2019, 289, 739-750. [CrossRef]
[PubMed]

Les, F.; Arbonés-Mainar, ].M.; Valero, M.S.; Lopez, V. Pomegranate polyphenols and urolithin A inhibit
a-glucosidase, dipeptidyl peptidase-4, lipase, triglyceride accumulation and adipogenesis related genes in
3T3-L1 adipocyte-like cells. J. Ethnopharmacol. 2018, 220, 67-74. [CrossRef]

Hussain, S. Bioactive Compounds in Canola Meal. Ph.D. Thesis, Charles Sturt University, Bathurst,
Australia, 2015.

Gosmann, G.; Barlette, A.G.; Dhamer, T.; Arcari, D.P; Santos, ].C.; de Camargo, E.R.; Acedo, S.; Gambero, A.;
Gnoatto, S.C.B.; Ribeiro, M.L. Phenolic compounds from mate (Ilex paraguariensis) inhibit adipogenesis in
3T3-L1 preadipocytes. Plant Foods Hum. Nutr. 2012, 67, 156-161. [CrossRef]

Greenberg, A.S.; Coleman, R.A.; Kraemer, F.B.; McManaman, J.L.; Obin, M.S.; Puri, V,; Yan, Q.-W.; Miyoshi, H.;
Mashek, D.G. The role of lipid droplets in metabolic disease in rodents and humans. J. Clin. Investig. 2011,
121,2102-2110. [CrossRef]

Wong, C.P; Kaneda, T.; Morita, H. Plant natural products as an anti-lipid droplets accumulation agent.
J. Nat. Med. 2014, 68, 253-266. [CrossRef]

Moon, J.; Do, H.-J.; Kim, O.Y.; Shin, M.-]J. Antiobesity effects of quercetin-rich onion peel extract on the
differentiation of 3T3-L1 preadipocytes and the adipogenesis in high fat-fed rats. Food Chem. Toxicol. 2013,
58, 347-354. [CrossRef]

Seyedan, A.; Alshawsh, M.A.; Alshagga, M.A.; Koosha, S.; Mohamed, Z. Medicinal plants and their inhibitory
activities against pancreatic lipase: A review. Evid. Based Complement. Altern. Med. 2015, 2015, 973143.
[CrossRef]

Azmir, ].; Zaidul, 1.5.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.;
Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A
review. J. Food Eng. 2013, 117, 426-436. [CrossRef]

Warnke, I.; Goralczyk, R.; Fuhrer, E.; Schwager, J. Dietary constituents reduce lipid accumulation in murine
C3H10 T1/2 adipocytes: A novel fluorescent method to quantify fat droplets. Nutr. Metab. 2011, 8, 30.
[CrossRef] [PubMed]

Karmase, A.; Jagtap, S.; Bhutani, K.K. Anti adipogenic activity of Aegle marmelos Correa. Phytomedicine 2013,
20,1267-1271. [CrossRef] [PubMed]

Xu, L.; Diosady, L. Interactions between canola proteins and phenolic compounds in aqueous media.
Food Res. Int. 2000, 33, 725-731. [CrossRef]

Barthet, V.J. Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2016.

Przybylski, R.; Eskin, N.M. Oil composition and properties. In Canola; Elsevier: Amsterdam, The Netherlands,
2011; pp. 189-227.

Obied, H.K. Biography of biophenols: Past, present and future. Funct. Foods Health Dis. 2013, 3, 230-241.
[CrossRef]

Soto, C.; Caballero, E.; Pérez, E.; Zuiiiga, M.E. Effect of extraction conditions on total phenolic content and
antioxidant capacity of pretreated wild Peumus boldus leaves from Chile. Food Bioprod. Process. 2014, 92,
328-333. [CrossRef]

Babbar, N.; Oberoi, H.S.; Sandhu, S.K.; Bhargav, V.K. Influence of different solvents in extraction of phenolic
compounds from vegetable residues and their evaluation as natural sources of antioxidants. J. Food Sci. Technol.
2014, 51, 2568-2575. [CrossRef] [PubMed]

Ignat, I; Volf, I.; Popa, V.I. A critical review of methods for characterisation of polyphenolic compounds in
fruits and vegetables. Food Chem. 2011, 126, 1821-1835. [CrossRef]


http://dx.doi.org/10.3390/ijms20133211
http://www.ncbi.nlm.nih.gov/pubmed/31261958
http://dx.doi.org/10.1016/j.jep.2017.02.044
http://www.ncbi.nlm.nih.gov/pubmed/28257978
http://dx.doi.org/10.1016/j.foodchem.2019.03.116
http://www.ncbi.nlm.nih.gov/pubmed/30955674
http://dx.doi.org/10.1016/j.jep.2018.03.029
http://dx.doi.org/10.1007/s11130-012-0289-x
http://dx.doi.org/10.1172/JCI46069
http://dx.doi.org/10.1007/s11418-014-0822-3
http://dx.doi.org/10.1016/j.fct.2013.05.006
http://dx.doi.org/10.1155/2015/973143
http://dx.doi.org/10.1016/j.jfoodeng.2013.01.014
http://dx.doi.org/10.1186/1743-7075-8-30
http://www.ncbi.nlm.nih.gov/pubmed/21569430
http://dx.doi.org/10.1016/j.phymed.2013.07.011
http://www.ncbi.nlm.nih.gov/pubmed/23972792
http://dx.doi.org/10.1016/S0963-9969(00)00062-4
http://dx.doi.org/10.31989/ffhd.v3i6.51
http://dx.doi.org/10.1016/j.fbp.2013.06.002
http://dx.doi.org/10.1007/s13197-012-0754-4
http://www.ncbi.nlm.nih.gov/pubmed/25328197
http://dx.doi.org/10.1016/j.foodchem.2010.12.026

Int. ]. Mol. Sci. 2019, 21,1 17 of 17

51. Singh, R.; Artaza, J.N.; Taylor, WE.; Gonzalez-Cadavid, N.F; Bhasin, S. Androgens stimulate
myogenic differentiation and inhibit adipogenesis in C3H 10T1/2 pluripotent cells through an androgen
receptor-mediated pathway. Endocrinology 2003, 144, 5081-5088. [CrossRef]

52. Thyagarajan-Sahu, A.; Lane, B.; Sliva, D. ReishiMax, mushroom based dietary supplement, inhibits adipocyte
differentiation, stimulates glucose uptake and activates AMPK. BMC Complement. Altern. Med. 2011, 11, 74.
[CrossRef]

53. Nakai, M.; Fukui, Y.; Asami, S.; Toyoda-Ono, Y.; Iwashita, T.; Shibata, H.; Mitsunaga, T.; Hashimoto, F.;
Kiso, Y. Inhibitory effects of oolong tea polyphenols on pancreatic lipase in vitro. J. Agric. Food Chem. 2005,
53, 4593-4598. [CrossRef]

@ © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).



http://dx.doi.org/10.1210/en.2003-0741
http://dx.doi.org/10.1186/1472-6882-11-74
http://dx.doi.org/10.1021/jf047814+
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Phenolic Composition of Canola Meal Extracts 
	Canola Meal Extracts Inhibit Intracellular Lipid Accumulation 
	Canola Meal Extract Mediated Reductions in Lipid Accumulation are Correlated with a Reduction in PPAR Expression 
	Inhibition of Pancreatic Lipase Activity 

	Discussion 
	Materials and Methods 
	Materials 
	Recovery of Canola Meal Biophenols 
	Measurement of Total Phenolic Content 
	Cell Culture and Adipogenic Differentiation 
	Oil-Red O Staining Staining and Quantification of Intracellular Lipid Droplets 
	Immunofluorescence Staining of PPAR 
	Quantitative PCR (qPCR) of PPAR Gene Expression 
	Pancreatic Lipase Inhibition 
	Chromatographic Characterization of Canola Extracts 
	Online High-Performance Liquid Chromatography with Diode Array Detector Coupled with ABTS Scavenging Activity (HPLC-DAD-Online ABTS). 
	High-Performance Liquid Chromatography-Diode Array Detection–Tandem Mass (HPLC-DAD-MS/MS). 

	Statistical Analysis 

	Conclusions 
	References

