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Abstract
Introduction: Digital biomarkers have significant potential 
to transform drug development, but only a few have contrib-
uted meaningfully to bring new treatments to market. There 
are uncertainties in how they will generate quantifiable ben-
efits in clinical trial performance and ultimately to the chanc-
es of phase 3 success. Here we have proposed a statistical 
framework and ran a proof-of-concept model with hypo-
thetical digital biomarkers and visualized them in a familiar 
manner to study power calculation. Methods: A Monte Carlo 
simulation for Parkinson’s disease (PD) was performed using 
the Captario SUM® platform and illustrative study technolo-
gy impact calculations were generated. We took inspiration 
from the EMA-qualified wearable-derived digital endpoint 
stride velocity 95th centile (SV95C) for Duchenne muscular 
dystrophy, and we imagined a similar measurement for PD 
would be available in the future. DaTscan enrichment and 
“SV95C-like” endpoint biomarkers were assumed on a hypo-
thetical disease-modifying drug pivotal trial aiming for an 

80% probability of achieving a study p value of less than 0.05. 
Results: Four scenarios with different combinations of tech-
nologies were illustrated. The model illustrated a way to 
quantify the magnitude of the contributions that enrich-
ment and endpoint technologies could make to drug devel-
opment studies. Discussion/Conclusion: Quantitative mod-
els could be valuable not only for the study sponsors but also 
as an interactive and collaborative engagement tool for 
technology players and multi-stakeholder consortia. Estab-
lishing values of digital biomarkers could also facilitate busi-
ness cases and financial investments.

© 2022 The Author(s).
Published by S. Karger AG, Basel

Introduction

Background
Digital biomarkers will transform drug develop-

ment. The pharmaceutical industry and digital health 
companies have been evaluating and piloting various 
digitally enabled measurements in drug development 
trials. The Digital Medicines (DiMe) Society’s library of 
digital endpoints captures 302 examples across the in-
dustry [1].
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In 2019, stride velocity 95th centile (SV95C) received 
qualification from the European Medicines Agency 
(EMA) as the first wearable-derived digital endpoint for 
Duchenne muscular dystrophy [2]. Servais et al. [3] esti-
mated the required pivotal trial sample size in the Duch-
enne study would be reduced by 70% compared to using 
the traditional 6-min walk test or North Star Ambulatory 
Assessment as the primary endpoint. This clearly illus-
trates the potential magnitude of impact that digital tech-
nologies can have on study performance. However, de-
spite the numerous evaluation attempts, very few tech-
nologies have made a real-life impact on bringing new 
treatments to market by serving as pivotal study enrich-
ment or endpoints.

Parkinson’s disease (PD) is a neurodegenerative disor-
der characterized by motor impairments such as tremor, 
bradykinesia, dyskinesia, and gait abnormalities [4]. Dis-
ease onset is typically in late adulthood and progression 
takes place over decades. There is no approved disease-
modifying drug treatment today [5].

Lack of precision in therapeutic outcome measures is 
a well-known problem in the treatment of PD [6] and 
many neurodegenerative diseases. Drug development for 
neurodegenerative disorders is difficult and large-scale 
phase 3 failures are common due to sparse, subjective 
data [7]. Dorsey highlights the variability of subjective or 
quasi-objective measures like finger-tapping in the Uni-
fied Parkinson’s Disease Rating Scale (UPDRS) and ar-
gues that digital biomarkers could improve evaluation of 
new treatment in these therapeutic areas [7].

However, the pharmaceutical R&D community is cau-
tious of adopting digital endpoints until they are fully 
proven [8]. Our project aims to develop a business tool to 

help close this gap, using PD as the exemplar disease with 
high unmet clinical need and significant technology po-
tential.

Project Rationale
In Figure 1, we list six key factors that affect a drug de-

velopment clinical study. Digital health technologies 
could improve accuracy in study patient selection (en-
richment) and outcome measurement (endpoints). A 
study would be more effective if larger proportions of the 
study samples gave a true response signal, in other words, 
correctly identified target disease patients showing dis-
ease-specific outcome improvement. Other contributing 
factors are outside of a typical biomarker team’s remit; 
drug effect rate is largely determined by the therapeutic 
compound in the context of disease biology. Clinical ex-
perts set the sample size, therapeutic response threshold, 
and outcome monitoring duration.

We have identified five gaps for pharmaceutical spon-
sors and technology providers to address in the ecosystem 
of digital biomarkers. The gaps 1, 2, and 3 occur as a result 
of poor mutual understanding between the pharmaceuti-
cal sponsors and technology providers. The direct aim of 
the Moneyball project was to address the gaps 4 and 5 be-
low, and then we hope this will indirectly narrow the gaps 
1, 2, and 3.
1.	 Gaps in evidence requirements: Digital biomarker de-

velopment follows the V3 (verification, analytical vali-
dation, and then clinical validation) process [9]. Clini-
cal validation is often the most resource-consuming 
step [9, 10] and needs drug development sponsor en-
gagement. On the other hand, technologies can obtain 
regulatory approval with analytical validation. Explic-

Fig. 1. Schematic illustration of the contri-
butions of digital technologies to improv-
ing clinical study success.
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it joint efforts are needed in advance to align biomark-
er measurements to therapeutic objectives [11].

2.	 Gaps in the economic models: Digital technology com-
panies typically seek financial returns by selling the de-
vices and/or services and often expect to make return on 
investment in a short-term. On the other hand, pharma-
ceutical companies would view digital clinical measure-
ment technologies as study-long investments that will be 
rewarded upon drug product commercialization.

3.	 Digital innovation favours desirability over feasibility: 
Pharmaceutical companies often overestimate the tech-
nology benefits and underestimate the development and 
regulatory burdens. Due to a general shortage of techni-
cal expertise [12], mistakes are often made to assume 
that fast technology development cycles in the consum-
er IT world translate to regulated health devices.

4.	 Uncertainties in clinical study impact: A lack of quan-
tified and agreed view on clinical study performance 
creates an imbalance between the benefits and burdens 
of the technologies. The discomfort and inconve-
nience to the patients are easier to imagine, but the 
values remain speculative in neurodegenerative dis-
eases where there are few approved treatments and 
successful study templates. Many clinical development 
teams perceive technologies primarily as a potential 
study enrolment challenge and they seek positive proof 
of the benefits to justify such a burden.

5.	 Lack of a common value framework in multiparty tech-
nology collaborations: Digital biomarker development 
is often pursued in consortia comprised of not only 
technology providers and pharmaceutical companies 
but also academia and patient groups [2, 3, 13]. Quan-
tification of the values should facilitate the attribution 
of resource contributions to the parties involved.

The Project Inspiration: Moneyball
Reading Michael Lewis’ baseball novel Moneyball, we 

found a parallel between the sport and the pharma indus-
try. For the last decade, the pharmaceutical industry has 
been attracted by promising but unproven trendy digital 
health wearables and artificial intelligence. In a similar 
way, rich major league baseball teams paid multimillion-
dollar salaries to line up promising but unproven young 
players in their roster [14]. In the 2011 Bennett Miller film 
Moneyball, Peter Brand says the following to Oakland 
Athletics general manager Billy Beane [15]:

Your goal shouldn’t be to buy players. 
Your goal should be to buy wins.
In order to buy wins, you need to buy runs. 
There is a championship team we can afford. 

This called to mind how the pharmaceutical industry 
has been chasing novel digital technologies with very lit-
tle clinical study performance benefits realized at the 
end. We reinterpreted the Moneyball lines to our busi-
ness.

Our goal shouldn’t be to buy technologies. 
Our goal should be to buy clinical study successes. In order to buy 
clinical successes in terms of study p value, we need to buy true 
responders. 
There is an optimized study design we can afford. 

Billy himself was a high school baseball star who was 
scouted by the New York Mets, but he did not succeed 
as a big-league player. We have numerous cases of 
health technologies that were terminated after pilots. 
With this metaphor, we first asked what drove clinical 
study success, and then applied technology evaluation 
in a quantitative model. In the next section, we will 
present the quantitative model proposed for evalua-
tion. This model will then be applied in an illustrative 
example in the design of a biomarker-enriched PD 
study.

Methods

General Modelling Concepts
Our model has been developed to reflect the probability of suc-

cess of a drug development clinical trial in quantitative terms. Typ-
ically, this means the study achieving a p value of less than 0.05 for 
its primary endpoints and showing that the drug is more effective 
than the placebo. With Monte Carlo analysis output in a histogram 
format, we use the term probability of study success (PoSS) to in-
dicate the probabilistic occurrence of p < 0.05. In Figure 2, we il-
lustrate an example of 80% PoSS, which corresponds to 80% of the 
area under the histogram being to the left of the p = 0.05 line, and 
20% of the area is to the right.

The structure of the model has similarities to the modelling 
framework proposed by Wiklund [16], with parts of the model be-
ing required for the assessment of the PoSS. Other parts of the 
model are used to capture project level implications, which are 
described in a later paragraph. In our model, we primarily focus 
on three components of the design of a clinical trial: the choice of 
endpoint, i; the choice of study population, j; and the sample size 
per treatment arm, n.

Treatment Effect
The observed treatment effect in a trial designed to use end-

point i, and targeted study population j, is denoted Êij (where for 
ease of notation, we omit the fact that Êij is also a function of n). 
The estimated treatment effect is assumed to reflect the observed 
difference between two treatment arms, e.g., between an active 
treatment group and a control group, each of size n. We model the 
observed value as the underlying true treatment effect, Eij, plus 
random error, εij,

Êij = Eij + εij.
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The observational error, εij, is approximated by a normal dis-
tribution with mean zero and variability given by the standard er-
ror, SE (Êij), i.e., εij ∼ N [0, SE (Êij)]. For a continuous endpoint, 
the standard error would be calculated as

( )ij ijSE 2 ,E /n�=

where we assume that the estimated treatment effect can be ap-
proximated by the difference between two group means. While the 
comparison of two group means is a simple approximation, the 
formulation is quite general, and the approximation is applicable 
to many different types of responses [17].

The true treatment effect, Eij, is assumed to follow a stochastic 
distribution, representing the current belief and uncertainty re-
garding the effectiveness of the treatment under development. 
While the desired treatment effect is often specified as a single 
value in a target product profile (or similar document), we argue 
that a more realistic model should acknowledge the fact that the 
true treatment effect of an investigational treatment is unknown 
[18].

Criteria for Study Success
A requirement for considering a clinical trial to be successful 

is that its results show sufficient estimated efficacy. A common 
criterion to declare success is based on showing a statistically sig-
nificant difference between the treatment groups. Success is then 
declared if the observed p value from the trial is lower than what 
is required for a given level of significance, α, i.e., success is de-
clared if p̂ ij < α/2 (assuming a two-sided significance level is spec-
ified). Let I define an indicator function representing the out-
come that the trial is successful:
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We assume that the test statistic used for the evaluation of the 
trial can be approximated by the ratio of the estimated treatment 
effect and its standard error:
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which is consistent with the assumption that the analysis is  
approximated by the difference between two group means. With 
the test statistic, Ẑij, being normally distributed, the one-sided  
p value is given by p̂ ij = 1 – ϕ (Ẑ ij), where ϕ denotes the normal dis-
tribution function.

Choice of Study Population
The model described so far is generic and allows for the assess-

ment of any choice of study population. We will illustrate, in this 
paragraph, how the model is adapted to the case where there is an 
option whether to use a technology (e.g., a biomarker) for popula-
tion enrichment. Assume that there are two subgroups of patients; 
a positive subgroup that is expected to benefit from the treatment 
under development, and a negative subgroup that is expected to 
experience less benefit from the treatment. The treatment effects 
in the two subgroups will be denoted as E+j and E–j, respectively. 
Let i = 1 denote the strategy where a biomarker is used to screen 
and select the recruited patients, enrolling only the subset of pa-
tients categorized into the positive subgroup, and let i = 2 denote 
the strategy where the enrichment biomarker is not used. We will 
refer to the two study population strategies as “specific” (where 
patients are selected for enrolment, i = 1) and “nonspecific” (where 
patients are not biomarker-selected for enrolment, i = 2).

The specific strategy is applied with the intention to capture the 
positive subgroup, i.e., to have the treatment effect, E+j. However, 
since the biomarker used for selection cannot be expected to have 
perfect sensitivity and specificity, the selection procedure will gen-
erally, unintentionally, include some patients from the negative 
subgroup. The probability of inclusion from the two subgroups is 

Fig. 2. Illustration of PoSS of 80%.
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given by the positive predictive value (PPV) of the biomarker, 
which is calculated as follows:

( ) ( )
+

+ +

.
1 1

Sens Pr ev
PPV

Sens Pr ev Spec Pr ev
´

=
´ + - ´ -

As seen from this formula, the PPV is a function of the preva-
lence of the positive subgroup, and of the sensitivity and specific-
ity of the biomarker used for patient selection. The treatment effect 
with the specific strategy is then

E1j = PPV × E+j + (1 – PPV) × E–j.

For the nonspecific strategy, the two subgroups will be enrolled 
in proportions given by the prevalence of the subgroups:

E2j = Prev+ × E+j + (1 – Prev+) × E–j.

The treatment effect anticipated for the two subgroups, E+j 
and E–j, are key inputs when comparing the two population se-
lection strategies. We propose using a factor, F, to represent the 
relation between the subgroups, i.e., E–j = F × E+j. This implies 
that an explicit assumption regarding the size and distribution 
is only required for the positive subgroup, E+j.

Choice of Endpoint
The model allows for the assessment and comparison of any 

selection of feasible endpoints for the clinical trial. In the case of 
evaluating a digital technology, we assign assumptions regarding 
the treatment effect distribution for both a digitally enhanced end-
point and a standard endpoint in the indication of interest, e.g., the 
outcome of a rating scale. We will denote the two endpoints as j = 
A and j = B, respectively, and the corresponding treatment effects 
are consequently denoted EiA and EiB.

Monte Carlo Simulation
We will utilize Monte Carlo simulations when evaluating the 

performance of various design strategies and, in particular, when 
assessing the value of digital technologies. A simulation will in-
clude K iterations, and in each iteration, k, a random number is 
drawn from the stochastic distribution assigned to each of the pa-
rameters in the model. For example, this implies drawing a new 
value for the true treatment effect, Ek

ij, and the random observa-
tional error, εk

ij, in each iteration. Based on these input values, oth-
er components and performance metrics can be calculated. In par-
ticular, the probability of study success can be calculated as follows:

1

1
PoSS ,

K
k

k
K I-

=
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i.e., the proportion of iterations representing a successful outcome.

Extensions to Other Data Types
We have previously described the model for the situation where 

the endpoint of interest is measured as a continuous variable. Our 
model can of course be adapted to other situations, and we will 
now illustrate an adaption of the model where the analysis is based 
on response rate differences.

As illustrated above, for the continuous endpoint, the observed 
treatment effect is obtained as the underlying true treatment effect 
plus a random error, Êij = Eij + εij, where Eij represents the true dif-
ference between the mean of two treatment groups. This represen-
tation might also be used for response rates, using a normal distri-

bution approximation of the binomial distribution. A more accu-
rate adaption to the response rate situation would use the 
underlying binomial distribution of the response rates. In this case, 
the observed treatment effect would be the difference between the 
observed response rates in the two treatment arms, i.e., 

 
i

ij
RE =

A C
j .ijR
n n

-

The observed number of responders in the control group is giv-
en by a binomial distribution, R̂C

ij ~ binomial (n, PC
ij), and for the 

number of responders in the active treatment arm, R̂A
ij ~ binomial 

(n, PC
ij + Eij). The key input to the model is then the assumptions 

regarding the probabilities of responders in the control group, PC
ij, 

and the improvement in response rate achieved by the active treat-
ment, Eij.

Time-Dependent Treatment Effect
The model described in previous paragraphs implicitly as-

sumed that the duration of treatment or duration of follow-up was 
fixed, or that the treatment effect was not impacted by treatment 
duration. In many situations, however, the treatment effect will 
depend on the duration of treatment. The choice of follow-up time 
may, in these cases, be an important aspect of the design of the 
trial and, consequently, a key aspect in evaluating the merits of a 
digital technology’s implementation. Our model would then be 
adapted to let the treatment effect be a function of time, Eij (t). If 
the underlying science suggests that the treatment effect of the 
drug would approximately follow an S-shaped increase and even-
tually approach a full effect, the logistic function may be used as a 
model:

( )
( )

max
ij

ij .
1 exp τ

E
E t

h t
=

é ù+ - -ê úë û

The input parameters to this model would be the maximal 
treatment effect eventually obtained after a long follow-up, Eij

max, 
the time at which half of the maximal effect is obtained, τ, and the 
slope of the treatment effect increase, h. Another alternative for a 
time-dependent treatment effect might occur when the underlying 
disease is continuously deteriorating, e.g., following an approxi-
mately linear decline. If the treatment is disease modifying, and 
thereby is reducing the slope of decline, an adaption of the model 
might be to assume that treatment effect is proportional to time, 
i.e., Eij (t) = m × t.

Project Level Extensions
In a previous paragraph, we introduced the PoSS as a key per-

formance metric by which the use of digital technologies in a clin-
ical trial could be evaluated. It should be noted, however, that the 
proposed quantitative modelling and simulation approach could 
be expan1jded to assess, from a holistic perspective, the impacts 
for the development project as a whole. For the example of a digi-
tal screening enrichment tool, such an end-to-end project evalua-
tion would account for several aspects that might negatively im-
pact the eventual value of using the tool. These include the follow-
ing:
•	 Increased cost for performing the stratification.
•	 Longer time to recruit patients (due to a lower screening to en-

rolment ratio).
•	 Lower market size (since only a subset of market is targeted).
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These aspects of the tool should be balanced against the poten-
tial for positive impact, e.g.,
•	 Increase in the probability of success.
•	 Fewer patients required in the trial (due to a higher treatment 

benefit in the targeted subgroup).
•	 Potential for premium pricing in a specific targeted patient 

population.
Following the framework laid out in Wiklund [16], a multitude 

of project-level metrics could be obtained to inform the assessment 
of digital technology strategies. With a model including the down-
stream impacts on success probabilities in subsequent phases, as 
well as anticipated consequences on market and sales, key perfor-
mance measures like the expected net present value, return on in-
vestment, and probability of technical and regulatory success, for 
example, could be obtained.

Technologies Providing Example Background
We built our proof-of-concept simulation model inspired by 

the qualified neuroimaging biomarker of dopamine transporter 
(DAT) developed by the Critical Path for Parkinson’s (CPP). In 
2018, the EMA issued a qualification opinion to use DAT imaging 
to enrich PD clinical trials. CPP’s submission dataset (including 
their power calculation) was made public. CPP’s analysis conclud-
ed, and subsequently convinced the authorities, that exclusion of 
subjects who had “scan without evidence of dopaminergic deficit” 
(SWEDD) could reduce the study sample size by 24% in placebo-
controlled DAT-imaging enriched trials with a drug effect of 50% 
reduction in the progression rate [19].

Since we did not find digital endpoints for PD with the same 
evidence level as DAT-imaging, we referred to SV95C and its EMA 
biomarker qualification as if it were for PD. The EMA qualified 
SV95C as a secondary endpoint in Duchenne MD in 2019, and 
with a valid and suitable wearable device worn at the ankle, it 
would quantify a patient’s ambulation ability directly and reliably 
[3, 20]. We must remind the reader that SV95C was developed for 
and is qualified for Duchenne muscular dystrophy, and we are not 
suggesting it could be used in PD. Rather, those evaluating our 

proof-of-concept simulation model should conclude that if in fu-
ture a similarly evidenced outcome monitoring technology emerg-
es for one of the treatable PD symptoms, then the improvement of 
the study performance may be quantified as illustrated in this pa-
per. We did not attempt to replicate the exact scientific evidence 
of the SV95C biomarker into our PD model, but instead we as-
sumed that improvement in signal objectivity and continuous data 
collection [3] could be replicated.

As illustrated in Figure 3 below, we designed a model and per-
formed Monte Carlo simulations with patient selection and out-
come signal detection input parameters, using Captario SUM® as 
the analytical engine. We illustrated four strategies for the use of 
digital technologies with the model:
1.	 Both DAT enrichment (exclusion of SWEDD) and SV95C-like 

digital endpoint
2.	 Without DAT enrichment but with SV95C-like digital endpoint
3.	 DAT enrichment with non-digital endpoint, e.g., UPDRS
4.	 Neither DAT enrichment nor digital endpoint.

The values assigned to the input parameters of the model, to 
reflect the four strategies above, are given in the Table 1 below. The 
model was equipped with a simple user-interface to input assump-
tion parameters, as shown in Figure 4. The implementation of the 
model also included graphical capabilities to show study technol-
ogy impact calculations for the scenarios in terms of PoSS, sample 
size required, and signal detection timeframe.

Results

Based on the Moneyball PoC model and the as-
signed illustrative input parameters, we present two 
primary graphical outputs for study technology im-
pact calculations. In Figure 5, we illustrate how the 
PoSS of the different design strategies may depend on 
the sample size of the study. With the input parame-

Fig. 3. Schematic illustration of the quantitative model, the Monte Carlo simulation, and its application to the 
DaTscan and SV95C example.
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Table 1. Parameter values of the quantitative model used in the illustrating example

Parameter Notation Value used in 
simulation

Response rate in control group Pij
C 20%

Treatment effect (response rate difference between treatment arms) (Eij)
Positive subgroup, with SV95C-like E+A Mean: 15%

Range: 10–20%
Positive subgroup, without SV95C-like E+B Mean: 15%

Range: 0–30%
Factor of negative subgroup treatment effect F 0
Sample size (per treatment arm) n Evaluated over a 

range 200–700
Significance level to declare study success α 5%
Biomarker (DaTscan) sensitivity Sens 80%
Biomarker (DaTscan) specificity Spec 80%
Subgroup prevalence Prev Mean: 80%

Range: 70–90%
Model for time-dependent treatment effect

Maximal treatment effect (Eij
max)

Positive subgroup, with SV95C-like E+A
max Mean: 15%

Range: 10–20%
Positive subgroup, without SV95C-like E+B

max Mean: 15%
Range: 0–30%

Half-time for treatment effect τ
With SV95C-like 0.25 years
Without SV95C-like 0.5 years

Slope of logistic function h
With SV95C-like 5
Without SV95C-like 3

Number of iterations K 10,000

Fig. 4. Screen shot of the parameter input view of the PoC model in the Captario SUM® platform.
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ters assigned for these illustrations, the difference be-
tween the design strategies could be quantified by 
reading off the sample size required to achieve a de-
sired PoSS. Sample size reduction of nearly 50% re-
duction may appear drastic, but we reiterate that this 
should be attributed to the assumptions (and the pre-
viously established potential of DAT imaging and 
SV95C) rather than to the model.

The same type of graph could be used to quantify the 
difference in PoSS. As illustrated in Figure 6, considering 
a sample size of n = 400, these results would correspond 
to a PoSS improvement from 70% to 87% when both tech-
nologies are applied.

The model is also capable of running similar calcula-
tions for study duration impact (signal detection duration 
from the start of treatment, to be more precise). If we ap-

Fig. 5. An illustration, based on the Mon-
eyball PoC model, of PoSS and its depen-
dence of sample size for the four design 
strategies. Figure annotation illustrates the 
quantification of potential benefits in sam-
ple size reduction.

Fig. 6. An illustration, based on the Moneyball PoC model, of PoSS and its dependence of sample size for the four 
design strategies. Figure annotation illustrates the quantification of potential benefits in improving PoSS.



Mori/Wiklund/ZhangDigit Biomark 2022;6:36–4644
DOI: 10.1159/000525255

plied the approach outlined in the Time-dependent treat-
ment effect paragraph above, then the results of Figure 7 
would correspond to a substantial reduction in the study 
duration. Earlier drug launches lead to higher asset life-
cycle values.

Discussion/Conclusion

The Moneyball project was undertaken not only to as-
sess the feasibility of such a quantification tool but also to 
discuss the technology inclusion process with clinical de-
velopment teams. We received largely positive feedback 
on our approach of tying technology-enabled measure-
ments to study performance. However, many highlighted 
the challenge that, unlike with baseball players, technol-
ogy performance statistics were often unavailable. Initial 
stakeholder insights can be summarized in the following 
four points. A Moneyball model could support meaning-
ful business activities in
1.	 Identifying technology-enabled measurements with 

meaningful impact, and simulating their potential in-
teractively and in real time,

2.	 Starting biomarker evaluations by thinking what 
drives clinical study performance,

3.	 Quantifying the benefits and costs of clinical measure-
ment technologies ahead of time (and writing concrete 
business cases for investments in technology), and

4.	 Focussing on and allocating resources to enable tech-
nology-inclusive study designs several years before 
pivotal study initiation.
Our Moneyball proof-of-concept model was built to 

incorporate the functions that were required to illustrate 

the points described in the Project Rationale section of 
this paper. We used the existing modelling platform in 
Captario SUM® and made the customizations necessary 
for live demonstration and small group discussions. As 
stated before, the model neither reflected any actual drug 
in development nor was designed to be used immediately 
for on-going clinical development programmes. The PD 
disease model was deliberately over-simplified to limit 
the project scope.

Further development of the model and user interface 
are desired, in particular:
•	 Distinguishing different biomarker types. This first 

version of the model does not account for the nuances 
between predictive and prognostic biomarkers. The 
authors recognize this as a limitation to the model. In 
real study design simulations, the impact of each bio-
marker needs to be assessed in the context of the pa-
tient population and treatment intent. The model 
should address this need in future development.

•	 Reflecting the heterogeneity of symptomatic presenta-
tions between patients, while maintaining the rele-
vance of technology-enabled measurements. It is criti-
cal to have early guidance from clinical study teams on 
the expected treatment response signals and their min-
imal clinically important difference.

•	 Integrating multiple biomarker technologies within pa-
tient selection or outcome measurements. We imagine 
some clinical studies consider using a combination of 
genotype-based disease-risk stratification and neuroim-
aging phenotypes like DaTscan for patient selection.

•	 Incorporating other types of study endpoint. We illus-
trated the quantitative model for the cases where the 
endpoint of interest was either a continuous endpoint 

Fig. 7. An illustration, based on the Mon-
eyball PoC model, of the PoSS and its de-
pendence of treatment time for the four de-
sign strategies. Figure annotation illus-
trates the quantification of potential 
benefits in reducing treatment time and 
study duration.
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or a response rate. Other types of endpoint are, how-
ever, often used for the analysis of clinical trials, e.g., 
odds ratios, survival times, and hazard ratios. The 
Captario SUM® platform can be adapted to accom-
modate these situations:

•	 Adopting realistic disease progression and treatment 
effect curves. PD and other chronic diseases of future 
interest have a disease progression and treatment pe-
riod of ten or more years. Some therapies require life-
long follow-up.

•	 Sharpening the digital biomarker contribution dia-
logue between pharma sponsors and technology part-
ners by speaking the same language on study perfor-
mance improvements. A discussion guide document 
listing key questions between the parties should be de-
veloped in future.

•	 Aligning and integrating with the study power calcula-
tion methodologies so that drug development strategy 
and novel measurement technologies can be evaluated 
concurrently.

•	 Making the model broadly available to the pharmaceu-
tical R&D community, technology companies, and the 
ecosystem. We would like to pursue a collaborative 
and open-platform approach to make improvements 
to the toolkit.
We conducted the Moneyball proof-of-concept proj-

ect as an illustration of quantitative modelling that could 
serve a broad set of stakeholders in the drug development 
technology ecosystem. The underlying framework is dis-
ease-agnostic, and with simple modifications to the as-
sumptions, it could be adopted for therapeutic areas out-
side of PD. The model should also be applicable to other 
biomarker modalities, such as in vitro diagnostics.

Digital biomarkers will help novel PD therapies and 
drive the values of drug assets. The pharmaceutical indus-
try must continue the journey. We recommend this type 
of integrated thinking process is incorporated into key 
portfolio management decisions of pharmaceutical com-
panies. We believe this model is useful as a collaborative 
engagement tool with clinical development teams within 
pharmaceutical companies or technology providers seek-
ing to confirm the value of their offering. Lastly, we cau-
tion the potential users that this model should be consid-
ered as a compass to set the general direction, rather than 
a map to make precise study protocol decisions.

Moneyball inspired us with innovative use of statistical 
modelling to win baseball games. We applied the spirit to 
address the uncertainties in drug development and newly 
emerging digital biomarkers. Our model could help iden-
tify the most valuable measures and technology players. 

However, there is a difference – all stakeholders, includ-
ing awaiting patients, can win if we can bring novel treat-
ments to market. The authors sincerely hope this article 
stimulates broad collaborations in the digital biomarker 
ecosystem.
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