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Seasonal to inter-Annual 
Variability of primary production 
in chesapeake Bay: prospects to 
Reverse eutrophication and change 
Trophic Classification
Lawrence W. Harding Jr.1*, Michael e. Mallonee2, elgin S. perry3, W. David Miller4, 
Jason e. Adolf5, charles L. Gallegos6 & Hans W. paerl7

estuarine-coastal ecosystems are rich areas of the global ocean with elevated rates of organic 
matter production supporting major fisheries. Net and gross primary production (NPP, GPP) are 
essential properties of these ecosystems, characterized by high spatial, seasonal, and inter-annual 
variability associated with climatic effects on hydrology. Over 20 years ago, Nixon defined the trophic 
classification of marine ecosystems based on annual phytoplankton primary production (APPP), 
with categories ranging from “oligotrophic” to “hypertrophic”. Source data consisting of shipboard 
measurements of NPP and GPP from 1982 to 2004 for Chesapeake Bay in the mid-Atlantic region of the 
United States supported estimates of APPP from 300 to 500 g C m−2 yr−1, corresponding to “eutrophic” 
to “hypertrophic” categories. Here, we developed generalized additive models (GAM) to interpolate 
the limited spatio-temporal resolution of source data. Principal goals were: (1) to develop predictive 
models of NPP and GPP calibrated to source data (1982 to 2004); (2) to apply the models to historical 
(1960s, 1970s) and monitoring (1985 to 2015) data with adjustments for nutrient loadings and climatic 
effects; (3) to estimate APPP from model predictions of NPP; (4) to test effects of simulated reductions 
of phytoplankton biomass or nutrient loadings on trophic classification based on APPP. Simulated 40% 
decreases of euphotic-layer chl-a or tn and no2 + no3 loadings led to decreasing APPP sufficient to 
change trophic classification from “eutrophic’ to “mesotrophic” for oligohaline (OH) and polyhaline (PH) 
salinity zones, and from “hypertrophic” to “eutrophic” for the mesohaline (MH) salinity zone of the bay. 
These findings show that improved water quality is attainable with sustained reversal of nutrient over-
enrichment sufficient to decrease phytoplankton biomass and APPP.

Annual phytoplankton primary production (APPP) accounts for ~50 petagrams (=50 × 1012 kg) of net primary 
production (NPP) in the oceans each year, half the global total for oceanic and terrestrial ecosystems according to 
a comprehensive review by Chavez et al.1. Among ocean provinces, estuarine-coastal ecosystems have been char-
acterized as biogeochemical “hot spots” by Cloern et al.2 based on high contributions to APPP. In 1995, Nixon3 
classified marine ecosystems as “oligotrophic” to “hypertrophic” based on APPP, with several estuaries in the 
mid-Atlantic region of the United States ranking toward the high end of the range (Fig. 1). Important advances 
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in understanding phytoplankton dynamics in estuarine-coastal ecosystems followed a Chapman Conference of 
the American Geophysical Union (AGU) convened in Rovinj, Croatia in 2004, culminating in comprehensive 
global syntheses that highlighted long-term trends of biomass, floral (=taxonomic) composition, and APPP2,4–6.

Nearly 20 years ago, we published depth-integrated models of net and gross primary production (NPP, 
GPP) for Chesapeake Bay (Fig. 2)7. These models were based on an approach by Behrenfeld and Falkowski8, the 
Vertically Generalized Production Model (VGPM), calibrated with long-term measurements of 14C-assimilation 
in the bay from 1982 to 20047. Spatial, seasonal, and inter-annual variability of NPP and GPP in the bay was not 
well-defined prior to our studies, limiting the ability to resolve inter-annual variability of APPP9–15. We recently 
quantified climatic effects on water-quality properties including chl-a, Secchi depth, and oxidized nitrogen (nitrite 
plus nitrate = NO2 + NO3) using statistical models with terms for freshwater flow, salinity, and nutrient loadings 
to distinguish variability from long-term trends16–18. Here, we apply a similar approach to NPP and GPP, leading 
to improved spatio-temporal resolution of APPP sufficient to resolve inter-annual variability.

Recognition of eutrophication as a pressing issue in Chesapeake Bay stimulated individual studies dating 
to the 1970s9–26, and long-term monitoring of water-quality properties initiated in the mid-1980s (Chesapeake 
Bay Program, US Environmental Protection Agency, http://www.chesapeakebay.net). Combined results define 
an annual cycle of phytoplankton biomass dominated by a spring bloom of centric diatoms following the 
winter-spring freshet of the Susquehanna River, with integrated, water-column chlorophyll-a (chl-a) reaching 
~1000 mg m−2 from April to mid-May. North-south gradients of light and nutrients driven by freshwater dis-
charge deliver buoyancy, nutrients, and suspended particulate matter to the bay, strongly affecting the timing, 
position, and magnitude of the spring bloom, as reviewed by Malone14.

Seasonal warming leads to sea-surface temperatures (SST) ranging from 18 to 20 °C by late spring to 
early summer as persistent density stratification sets up. Deposition of organic material originating from the 
spring-bloom provides the substrate to fuel microbial metabolism, eventually leading to depletion of dissolved 
oxygen (DO) beneath the pycnocline, and regeneration of nutrients to support maximum NPP in summer. A 
transition in the phytoplankton community occurs from May to June following the sinking of spring-bloom 
diatoms, with a decrease of integrated, water-column chl-a to <200 mg m−2 14. The summer flora is primarily 
composed of smaller, <20 µm diatoms, flagellated cells, including dinoflagellates, chrysophytes, cryptophytes, 
and non-motile picoplankton, such as cyanobacteria and other small, <3 µm cells, supporting the annual maxi-
mum of NPP from July to August27,28.

Nutrient over-enrichment of the bay led to a 5- to 10-fold increase of surface chl-a for the polyhaline (PH) 
salinity zone, and a 1.5- to 2-fold increase for oligohaline and mesohaline (OH, MH) salinity zones from the 1950s 
to the 1990s20,21. These increases were stimulated by eutrophication after World War II, evident in upward “tra-
jectories” of total nitrogen (TN) and NO2 + NO3 loadings29,30. Seasonal and inter-annual variability of freshwater 
discharge underlies spatio-temporal variability of water-quality properties, superimposed on historical changes 
and complicating the detection of long-term trends. We used statistical models to distinguish the eutrophica-
tion signal from variability associated with climatic effects, documenting the doubling of flow-adjusted TN and 
NO2 + NO3 loadings from 1945 to the early 1980s16–18. Newer studies followed this approach to adjust for climatic 
effects on water quality, phytoplankton biomass, floral composition, and NPP16–19.

Despite numerous studies of plankton ecology in Chesapeake Bay, limited spatio-temporal resolution of NPP 
and GPP restricts our ability to define inter-annual variability of APPP. To address this limitation, we developed 
statistical models of NPP and GPP based on earlier depth-integrated models7,31, including an expanded set of 
predictor variables to account for nutrient loading and climatic effects on hydrology16–18. Principal goals were: (1) 
to develop predictive models of NPP and GPP calibrated to source data (1982 to 2004); (2) to apply the models 
to historical (1960s, 1970s) and monitoring (1985 to 2015) data with adjustments for nutrient loadings and cli-
matic effects; (3) to estimate APPP from model predictions of NPP; (4) to test effects of simulated 40% reductions 

Figure 1. Trophic classification presented by Nixon (1995) based on APPP (g C m−2 y−1) including examples 
for selected estuarine-coastal ecosystems4.
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of phytoplankton biomass or nutrient loadings on trophic classification based on APPP. Targeting these goals 
allowed us to test the hypothesis that nutrient reductions adopted by Chesapeake Bay jurisdictions would lead to 
reduced APPP and a change of trophic classification.

Methods
cruises. Data were collected on 78 cruises on four research vessels from March 1982 to November 2004. All 
stations we occupied to measure NPP and GPP are depicted in Fig. 1. Data from a subset of these cruises were 
analyzed previously7. Experimental protocols for measuring NPP and GPP were specific to individual projects 
identified by acronyms in Table 1. CB cruises (1982–83) consisted of an initial transect for horizontal mapping 
to determine salinity, temperature, chl-a, nutrient, and turbidity gradients and to select stations for measuring 
NPP. ProPhot and FITS cruises (1987–88) and LMER PROTEUS cruises (1989–94) occupied stations along a 
north-south transect to map water-quality properties and to measure NPP and ancillary properties. NASA cruises 
(1993–94) occupied three stations per cruise in the lower bay, plume, and adjacent shelf waters interspersed with 
mapping legs to measure NPP, GPP, and ancillary properties. LMER TIES cruises (1995–2000) sampled stations 
at 0.5° latitudinal increments, and additional stations lateral to the north-south axis, for a total of nine to 27 sta-
tions per cruise. LMER TIES cruises also included legs for horizontal and vertical mapping, in-situ sampling of 

Figure 2. Map of study site showing major rivers, cities, salinity zones, and water-quality sampling stations in 
Chesapeake Bay.
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phytoplankton, zooplankton, and fish, towed-body sampling with an instrumented SCANFISH (Geological & 
Marine Instrumentation), and continuous underway measurements of water-quality properties using the ship’s 
Serial ASCII Instrumentation Loop (SAIL) system. EPA, NASA, and NSF cruises (2001–2004) used the same 
protocols as TIES cruises.

Horizontal transects. Continuous underway sampling on horizontal transects was used to characterize 
distributions of water-quality properties. Some methods used on horizontal transects were described previously7. 
Instrumentation was specific to the vessel used. For CB, ProPhot, and FITS cruises on the Cape Hatteras and 
Ridgely Warfield (1982–1988), discrete samples were spaced 4–5 km along transects. Yellow Springs Instruments 
model 33 salinometer and model 57 oxygen meter were used for mapping on CB cruises on the Cape Hatteras 
(1982–1983). Interocean, Inc. Inductive Conductivity and Temperature Indicator (ICTI) was used on ProPhot 
and FITS cruises on the Ridgely Warfield (1987–1988). The NASA cruise on the Aquarius (1994) used a SeaBird 
conductivity-temperature-depth-fluorescence-oxygen instrument package (CTDFO2) in pump-through mode. 
NSF LMER PROTEUS, TIES, and NASA, Biocomplexity, and SGER cruises on the Cape Henlopen (1989–2004) 
used the ship’s flow-through SAIL system for surface mapping, with SeaBird sensors for salinity and temperature, 
and Turner Designs model 10 fluorometers for chl-a and turbidity. Instrument readings were calibrated for all 
transects using periodic grab samples.

Cruise Research Vessel Date Cruise Research Vessel Date

CB-1 Cape Hatteras Mar-82 NASA 94-02 Cape Henlopen Apr-94

CB-2 Cape Hatteras Jun-82 LMER 94-02 Cape Henlopen Apr-94

CB-3 Cape Hatteras Nov-82 LMER 94-05 Cape Henlopen Jul-94

CB-4 Cape Hatteras Mar-83 NASA 94-05 Aquarius Jul-94

ProPhot-23 Ridgley Warfield Apr-87 LMER 94-08 Cape Henlopen Oct-94

ProPhot-24 Ridgley Warfield May-87 TIES 98-01 Cape Henlopen Apr-98

FITS-13 Ridgley Warfield Jul-87 TIES 98-02 bp Cape Henlopen Jul-98

FITS-15 Ridgley Warfield Aug-87 TIES 98-02 Cape Henlopen Aug-98

ProPhot-25 Ridgley Warfield Mar-88 TIES 98-03 Cape Henlopen 0ct-98

ProPhot-26 Ridgley Warfield Apr-88 TIES 99-01 Cape Henlopen Apr-99

ProPhot-27 Ridgley Warfield May-88 TIES 99-02 Cape Henlopen Jun-99

LMER 89-1 Cape Henlopen Feb-89 TIES 99-02raz Cape Henlopen Jul-99

LMER 89-2 Cape Henlopen Mar-89 TIES 99-02 bp Cape Henlopen Jul-99

LMER 89-3 Cape Henlopen Apr-89 TIES 99-03 Cape Henlopen Oct-99

LMER 89-4 Cape Henlopen May-89 TIES 00-01 Cape Henlopen Apr-00

LMER 89-5 Cape Henlopen Jun-89 TIES 00-02 Cape Henlopen Jul-00

LMER 89-6 Cape Henlopen Jul-89 TIES 00-03 Cape Henlopen Oct-00

LMER 89-7 Cape Henlopen Aug-89 BIO 01-01 Cape Henlopen Apr-01

LMER 89-8 Cape Henlopen Sep-89 BIO 01-02 Cape Henlopen Aug-01

LMER 89-9 Cape Henlopen Nov-89 BIO 01-03 Cape Henlopen Oct-01

LMER 90-3 Cape Henlopen Apr-90 BIO 02-01 Cape Henlopen Apr-02

LMER 90-4 Cape Henlopen Apr-90 BIO 02-02 Cape Henlopen Jul-02

LMER 90-5 Cape Henlopen May-90 BIO 02-03 Cape Henlopen Oct-02

LMER 90-6 Cape Henlopen May-90 BIO 03-01 Cape Henlopen Apr-03

LMER 90-7 Cape Henlopcn Jul-90 MOVE 08-03 Cape Henlopen Aug-03

LMER 90-8 Cape Henlopen Aug-90 BIO 03-02 Cape Henlopen Oct-03

LMER 90-11 Cape Henlopen Nov-90 SGER 11-03 Cape Henlopen Nov-03

LMER 91-3 Cape Henlopen Apr-91 ACE 04-01 Cape Henlopen Apr-04

LMER 91-4 Cape Henlopen May-91 BIO 04-01 Cape Henlopen Apr-04

LMER 91-6 Cape Henlopen Jul-91 ACE 04-02 Cape Henlopen Apr-04

LMER 91-7 Cape Henlopen Aug-91 ACE 04-02B Cape Henlopen May-04

LMER 91-9 Cape Henlopen Sep-91 ACE 04-03B Cape Henlopen May-04

LMER 91-10 Cape Henlopen Oct-91 ACE 04-04 Cape Henlopen Jun-04

LMER 91-11 Cape Henlopen Oct-91 ACE 04-04B Cape Henlopen Jun-04

LMER 91-11 Cape Henlopen Oct-91 ACE 04-04 C Cape Henlopen Jul-04

LMER 92-03 Cape Henlopen Apr-92 BIO 04-02 Cape Henlopen Jul-04

LMER 92-06 Cape Henlopen Jul-92 ACE 04-05 Cape Henlopen Aug-04

LMER 92-09 Cape Henlopen Oct-92 ACE 04-06 Cape Henlopen Aug-04

LMER 93-06 Cape Henlopen Oct-93 BIO 04-03 Cape Henlopen Sep-04

Table 1. Summary of cruises, research vessels, and dates for measurements of 14C-assimilation in simulated in-
situ incubations for samples collected at 716 stations on 78 cruises from 1982 to 2004.
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Vertical profiles. Vertical profiles of salinity, temperature, dissolved oxygen (DO), and chl-a fluorescence 
were determined from hydro-casts at a set of stations spaced 10–20 km along horizontal transects. Some of 
the methods to obtain vertical profiles of these properties were described previously7. Hydrocasts were made 
with Yellow Springs salinity and DO meters (see above) on 1982–1983 cruises, a Sea Bird model 9 CTDFO2 on 
1987–1988 cruises, and a Neil Brown Mark III CTDFO2 on 1989–2004 cruises. Discrete samples were collected 
in Niskin bottles to calibrate fluorometers and DO meters. Surface sunlight during the day (E0 = downwelling 
irradiance, photosynthetically available radiation = PAR) was measured with a Li-Cor quantum meter model 
190 S (or equivalent) coupled to a Li-Cor model 550 or 1000 integrator. The sensor was mounted near the deck 
incubators we used to measure simulated in-situ NPP and GPP. Diffuse light attenuation coefficient for PAR 
(KPAR) was determined from vertical profiles with a submersible Li-Cor quantum meter model 188B with a 192S 
sensor or equivalent for CB, ProPhot, FITS, and LMER PROTEUS, TIES, and NASA cruises. Secchi depths (m) 
were determined for all stations and cruises. Euphotic-layer depth (Zp) was estimated as the depth to which 1% 
of E0 penetrated based on vertical profiles of downwelling irradiance (Ez), or from Secchi depth using calibration 
regressions32. NSF LMER TIES and NASA cruises also conducted vertical profiles with a Biospherical Instruments 
multi-spectral environmental radiometer (MER-2040/41) to measure KPAR and spectral light attenuation.

Water-quality properties. Chl-a was determined using spectrophotometric and fluorometric measure-
ments on acetone extracts (90%) of particulate material collected by vacuum filtration onto glass-fiber filters 
(Whatman GF/F or equivalent, 0.3–0.8 µm nominal pore sizes). Spectrophotometric chl-a was derived from tri-
chromatic equations applied to absorbances measured on a Beckman DK-2 or equivalent, and fluorometric chl-a 
was measured on a Turner model 110, 111, or Turner Designs model 10 calibrated by spectrophotometry20,21. 
Secchi depth was the depth at which a 30-cm white disk became invisible when lowered over the side of the 
research vessel. NO2 + NO3 was measured using analytical methods documented by the EPA/CBP33,34 following 
protocols described by D’Elia et al.35.

Simulated in-situ incubations. NPP was measured at 723 stations from 1982 to 2004, and GPP at 525 
stations from 1995 to 2004. Whole-water samples were collected in Niskin bottles mounted on a rosette sampler 
at sunrise at a depth of 0.5 to 1.0 m, contents were pooled in a darkened carboy, and dispensed to 125–150 ml 
glass incubation bottles. The euphotic layer is well mixed in the bay and chl-a is homogenously distributed in 
the upper 5–10 m. NPP and GPP were determined using 14C-sodium bicarbonate uptake in deck incubators 
cooled with flowing surface water (±1 °C of in-situ temperatures). 2 to 5 µCuries of 14C-sodium bicarbonate 
(ICN Pharmaceuticals, Inc., or Amersham Searle, Inc.) were added to each incubation bottle. Total 14C-sodium 
bicarbonate activity was determined for a time-zero aliquot from one of the incubation bottles, and from a small 
amount of stock isotope added to scintillation cocktail made basic with NaOH (Aquasol, New England Nuclear, 
Inc., or equivalent). Incubation bottles were exposed to a range of sunlight levels using neutral density screens 
providing 100 (no screens), 58, 34, 21, 11, 4 and 1% transmission to simulate seven depths in the euphotic layer. 
Dark uptake was measured in an opaque bottle and used as a tare value to adjust uptake in illuminated bottles.

NPP on cruises from 1982 to 1983 was measured in 3–4 h incubations repeated four times during the photo-
period, with additional bottles incubated throughout the night. NPP on cruises from 1987 to 2004 was measured 
in 24-h incubations, and GPP on cruises from 1995 to 2004 was measured in 4–6 h incubations. Concurrent 
measurements using 14C and O2 methodologies confirmed this approach accurately estimated NPP and GPP7. 
Duplicate 25–150 ml subsamples (depending on phytoplankton biomass) were withdrawn at the end of these peri-
ods and filtered onto glass fiber filters (Gelman AE or Whatman GF/F) under low vacuum pressure (<150 mm 
Hg). Filter pads were rinsed with filtered water of equivalent salinity as the sample and acidified with 0.01 N HCl 
in a fume hood to remove residual inorganic label. Activities were determined on a Packard Instruments Tri-Carb 
or model 3320 liquid scintillation counter. Duplicate aliquots were withdrawn from incubation bottles to deter-
mine chl-a using methods described above. Total CO2 was measured by gas-stripping, capture, and analysis on 
a Beckman model 864 infrared analyzer for 1982–83 cruises, Gran titration for 1987–1988 cruises, and by gas 
chromatography on a Hach Cable Series 100 AGC for 1989–2004 cruises.

computations of npp and Gpp. Equations to compute NPP and GPP combined terms for 14C-uptake 
in lighted bottles tared against non-photosynthetic 14C-uptake in dark bottles, divided by the total 14C activity 
added, and multiplied by a discrimination factor of 1.05 for 14C vs 12C and a term for total CO2 (mM) converted 
to weight (mg m−3). The resulting volumetric rates (PP, mg C m−3 h−1) were used to compute NPP and GPP by 
converting simulated incubation depths as percent surface irradiance (E0) to actual depths based on KPAR from 
vertical profiles of irradiance (Ed) or Secchi depth. Multiple-segment trapezoidal integration was applied to PP 
from the surface to euphotic-layer depth to obtain NPP and GPP. NPP was determined from 24-h incubations 
and GPP from 4–6 h incubations scaled to the photoperiod using E0 during incubations as a proportion of total 
E0 for the day. Optimal photosynthesis, PB

opt, was determined as maximum PP in simulated in-situ incubations 
normalized to chl-a. Observed values of log10 PB

opt were binned in 1° increments as a function of SST following 
the approach of Son et al.31 and analyzed by polynomial regression. Estimates of log10 PB

opt from these regressions 
were used as model inputs to predict NPP for historical (1960s, 1970s) and monitoring (1985–2015) programs.

Freshwater discharge, climatic effects. Daily freshwater discharge from the Susquehanna River (SRF) 
and monthly cumulative discharge (SUM) were obtained from the U.S. Geological Survey (USGS) (http://md.wa-
ter.usgs.gov) for the Conowingo Dam gaging station near the head of the bay (latitude 39° 39′ 28.4″, longitude 76° 
10′ 28.0″). TN and NO2 + NO3 loadings were obtained as monthly values (106 kg) from the USGS. We focused 
on the Susquehanna River as this large river dominates distributions of nutrients and phytoplankton in the main 
stem bay. Nutrient loadings from other tributaries are significantly reduced by processes within their confines, 
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attenuating effects of lateral inputs on the bay proper16–18. Climatic effects were quantified by applying GAM to 
input files for NPP, GPP, and water-quality properties, including terms for freshwater flow (log10 monthly SRF, 
log10 monthly SUM) and salinity. Model predictions of NPP and GPP for low-flow, “dry” conditions were based 
on flow terms set at 10th percentiles joined by salinity terms at 90th percentiles; mean-flow model predictions were 
based on flow and salinity terms held constant at their mean values; model predictions for high-flow, “wet” con-
ditions were based on flow terms set at 90th percentiles joined by salinity terms at 10th percentiles.

Analytical steps. A flow-chart of analytical steps, including data sources, modeling approach, and simula-
tions is presented in Fig. 3. Statistical analyses were conducted using “R” v. 3.6.0. Non-linear fits of time-series 
data were developed using GAM from the “R” package ‘mgcv’, containing functions similar to those designed 
by T. Hastie in S-Plus, and based on a penalized regression-spline approach including automatic smoothness 
selection36–38. Model predictions of NPP and GPP were adjusted for climatic effects using GAM, as described 
previously for water-quality properties16–19. A comparable approach by Beck and Murphy39 compared GAM to 
weighted regressions of time, discharge and season (WRTDS) developed by Hirsch et al.40, noting the flexibility 
of GAM to add relevant predictor variables as a strength of GAM over alternatives.

Model fits, residuals, flow-adjusted model predictions at monthly increments, adjusted R2, generalized cross 
validation (GCV) score, % deviance explained, p-values for F-statistics, and root mean square error (RMSE) 
were obtained for each model. Degrees of smoothing (knots = k) were selected by the “R” package ‘mgcv’ to 
minimize the GCV score, followed by post-hoc adjustments of “k” for individual terms using the function “gam.
check”. Graphical presentations were prepared with Kaleidagraph 4.5.2 (Synergy Software, Inc.). These include 
time series of mean, monthly NPP and euphotic-layer chl-a (Fig. 4a–c), polynomial regressions of PB

opt on SST 
(Fig. 5a,b), observed vs model-fitted values of log10 NPP and log10 GPP (Fig. 6a–f), probability distributions of 
observed and predicted log10 NPP and log10 GPP (Fig. 7a–d), comparisons of predicted log10 NPP from gam1 
and gam2 (Fig. 8a–c), time-series of log10 chl-a, log10 euphotic-layer chl-a, and model predictions of log10 NPP 
from 1985 to 2015 (Fig. 9a–i), flow-adjusted model predictions of log10 euphotic-layer chl-a and log10 NPP for 
low-flow, mean-flow, and high-flow conditions (Fig. 10a–f), time series of APPP based on mean-flow model pre-
dictions of NPP and simulated reductions of euphotic-layer chl-a or TN and NO2 + NO3 loadings, and observed 
euphotic-layer chl-a (Fig. 11a–c), and historical reconstructions of mean, monthly log10 NPP and log10 chl-a for 
the 1960s and 1970s with estimates of APPP (Fig. 12a–f).

Results
Annual cycles. Spatial and seasonal differences were evident in mean, monthly euphotic-layer chl-a and 
NPP based on shipboard measurements in Chesapeake Bay from 1982 to 2004 (Fig. 4a–c). Seasonal maxima of 
phytoplankton biomass and production occurred in summer for the OH salinity zone, with euphotic-layer chl-a 
~40 mg m−2 and NPP ~1200 mg C m−2 d−1 in July and August (Fig. 4a). Contrasting patterns for the MH salinity 
zone consisted of a well-developed spring bloom with euphotic-layer chl-a >80–100 mg m−2 in April and May, 
displaced several months from a summer maximum of NPP >2000 mg m−2 d−1 in July (Fig. 4b). A second maxi-
mum of euphotic-layer chl-a from 60–80 mg m−2 occurred in fall for the MH salinity zone but was not matched by 
a maximum of NPP (Fig. 4b). Annual cycles of euphotic-layer chl-a and NPP for the PH salinity zone were similar 
in profile and somewhat lower compared to those for the MH salinity zone, with maxima of euphotic-layer chl-a 
~60 mg m−2 and NPP ~1700 mg m−2 d−1 in May and September, respectively (Fig. 4c). Table 2 summarizes the 
statistical properties of shipboard measurements from 1982 to 2004 by salinity zone and season, including Zp, 
salinity, SST, surface chl-a, euphotic-layer chl-a, NPP, and GPP.

Figure 3. Summary of analytical steps including data sources, modeling approach, and simulations.
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Models of pB
opt, npp, and Gpp. PB

opt was estimated from third-order polynomial regressions of observed 
log10 PB

opt on binned SST as described by Son et al.31. These regressions had p < 0.001 and R2 > 0.80 (Fig. 5a,b). 
Estimates of log10 PB

opt from these regressions were combined with input data on water-quality properties to 
predict NPP and GPP. Table 3 presents a complete list of predictor variables for models of NPP and GPP. Simple, 
linear regressions of observed vs model-fitted log10 NPP and GPP had p < 0.001 for OH, MH, and PH salinity 
zones (Table 4; Fig. 6a–f). Probability distributions of observed and model-fitted log10 NPP and GPP confirmed 
that the models generated unbiased estimates as model predictions displayed statistical attributes indistinguish-
able from observations (Fig. 7a–d).

Model predictions. Five GAM formulations were developed to accommodate estimates of log10 NPP and 
log10 GPP based on availability of data for predictor variables in different time periods (Table 5). We focused pri-
marily on model predictions of log10 NPP as these supported estimates of APPP. Model predictions of log10 NPP 
were compared for gam1 and gam2, i.e., model formulations with and without the predictor variable “sequential 
year” (Seq_year). By omitting Seq_year in gam2, we avoided an assumption that long-term trends in calibration 
data (1982 to 2004) were unchanged for water-quality properties outside that range (2005 to 2015) that were 
used to predict log10 NPP. Both gam1 and gam2 captured seasonal to interannual variability of log10 NPP, with 
differences in long-term trends expressed in simple, linear regressions of model predictions on year (Fig. 8a–c). 
Subsequent analyses predicted log10 NPP from 1985 to 2015 using gam2 based on water-quality properties as 
data inputs. An alternate model to gam2 was developed as gam3 to address data limitations for historical periods, 
using the term log10 chl-a for biomass in place of log10 euphotic-layer chl-a. gam3 was further modified to gam4 
by omitting the term KPAR and to gam5 by omitting the term for season. These models were applied to input data 
from the 1960s and 1970s as log10 euphotic-layer chl-a, KPAR, or season were either absent or too sparse to support 
model predictions with reasonable sample sizes.

Figure 4. (a–c) Mean, monthly (±SE) observed NPP (g C m−2 d−1) (left ordinate) and euphotic-layer chl-a  
(mg m−2) (right ordinate) for oligohaline (OH), mesohaline (MH), and polyhaline (PH) salinity zones.
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Water-quality time series. Observed mean, monthly log10 chl-a (mg m−3) (Fig. 9a–c), log10 euphotic-layer 
chl-a (mg m−2) (Fig. 9d–f), and model predictions of log10 NPP (mg C m−2 d−1) (Fig. 9g–i) are presented for OH, 
MH, and PH salinity zones from 1985 to 2015. Corresponding statistical properties for these water-quality data 
are compiled in Table 6. Simple, linear regressions showed upward trends of log10 chl-a for OH and MH salinity 
zones (Fig. 9a,b), but no trend for the PH salinity zone (Fig. 9c); log10 euphotic-layer chl-a showed upward trends 
for OH, MH, and PH salinity zones (Fig. 9d–f); log10 NPP increased for OH and MH salinity zones (Fig. 9g,h), 
and decreased for the PH salinity zone (Fig. 9i).

Climatic effects. Climatic effects on log10 euphotic-layer chl-a and log10 NPP are expressed as model predic-
tions for low-flow, “dry”, mean-flow, and high-flow, “wet” conditions for OH, MH, and PH salinity zones from 
1985 to 2015 (Fig. 10a–f). Simple, linear regressions showed consistent upward trends of log10 euphotic-layer 
chl-a for all three salinity zones (Fig. 10a–c). Low-flow conditions did not affect log10 euphotic-layer chl-a for 
the OH salinity zone but led to decreased log10 euphotic-layer chl-a for MH and PH salinity zones. High-flow 
conditions led to decreased log10 euphotic-layer chl-a for the OH salinity zone, did not affect log10 euphotic-layer 
chl-a for the MH salinity zone, and led to increased log10 euphotic-layer chl-a for the PH salinity zone. NPP was 
less sensitive to climatic effects than euphotic-layer chl-a, documented as time series of log10 NPP for low-flow, 
mean-flow, and high-flow conditions (Fig. 10d–f). Simple, linear regressions of mean-flow predictions of log10 
NPP showed upward trends for OH and MH salinity zones, but no trend for the PH salinity zone.

euphotic-layer chl-a, Appp. Time series of mean, annual euphotic-layer chl-a based on observations from 
1985 to 2015 showed upward trends for OH and MH salinity zones, but not for the PH salinity zone (Fig. 11a–c). 
Corresponding APPP estimates from mean-flow model predictions of NPP showed upward trends from 1985 to 
2015 for all three salinity zones. APPP ranged from ~200 to 300 g C m−2 yr−1 for the OH salinity zone, ~250 to 
550 g C m−2 yr−1 for the MH salinity zone, and 280 to 350 g C m−2 yr−1 for the PH salinity zone. Using Nixon’s 
trophic classification3, APPP corresponded to “eutrophic” conditions for OH and PH salinity zones, and “hyper-
trophic” conditions for the MH salinity zone. APPP based on mean-flow model predictions of NPP with sim-
ulated 40% reductions of euphotic-layer chl-a or TN and NO2 + NO3 loadings showed reductions for all three 
salinity zones (Fig. 11a–c). These reductions of biomass or nutrient loadings changed APPP to mesotrophic con-
ditions for OH and PH salinity zones, and to eutrophic conditions for the MH salinity zone.

Figure 5. (a,b) Relationships of log10 PB
opt (net) and (gross) to binned sea-surface temperature (SST). Time-

series observations included additional measurements from 2002 to 2004 to update three-order polynomial 
regressions of Son et al.31.
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Historical reconstructions. Archival data on water-quality properties, including PB
opt from polynomial 

regressions on SST (Fig. 5a), log10 chl-a, and other predictor variables (Table 3), supported model predictions of 
log10 NPP in the 1960s and 1970s (Fig. 12a–f). Model predictions from gam4 supported historical reconstruc-
tions of log10 NPP for low-flow, “dry”, mean-flow, and high-flow, “wet” conditions to capture climatic effects 
(Table 5). APPP based on mean-flow predictions of NPP for the OH salinity zone reached 555 g C m−2 y−1 in 
the 1960s, compared to 288 g C m−2 y−1 in the 1970s (Fig. 12a,d). APPP for MH and PH salinity zones showed 
similar patterns, ranging from 392 to 504 g C m−2 y−1 in the 1960s, and from 132 to 334 g C m−2 y−1 in the 1970s 
(Fig. 12b,c,e,f). Mean-flow predictions of log10 NPP in the 1960s showed summer maxima for OH and MH 
salinity zones (Fig. 12a,b), while sparse data for the PH salinity zone limited resolution for that period (Fig. 12c). 
Observed log10 chl-a showed summer maxima for OH, MH, and PH salinity zones, and an absence of a spring 
maximum for the MH salinity zone (Fig. 12b).

Discussion
npp and Gpp models. Important advances in NPP and GPP models for estuarine-coastal waters were made 
possible by increasingly sophisticated approaches and availability of calibration data. Common elements of pro-
duction models dating to the 1950s include terms for photosynthetic efficiency, phytoplankton biomass, and light 
availability41–52. Light-utilization models specific to estuarine-coastal ecosystems, such as Chesapeake Bay, San 

Figure 6. (a–f) Simple, linear regressions of observed vs predicted log10 NPP and GPP (mg C m−2 d−1) for OH, 
MH, and PH salinity zones using generalized additive models (GAM). Source data for GAM were obtained in 
measurements of simulated in-situ 14C-bicarbonate assimilation and ancillary properties from 1982 to 2004 
(n = 723). Closed circles = log10 NPP; open circles = log10 GPP; crosses = residuals, dashed lines = simple, linear 
regressions of residuals vs model-fitted NPP or GPP.
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Francisco Bay, and mid-Atlantic coastal waters, relied on observations of euphotic-layer chl-a, incident irradiance 
(E0), light attenuation coefficient (KPAR), NPP, and GPP11,14,48–50. In 1997, Behrenfeld and Falkowski developed 
VGPM, a depth-integrated model applied to ocean-color data from SeaWiFS (Sea-viewing Wide Field of View 
Sensor) and MODIS (Moderate Resolution Imaging Spectroradiometer) that provide global coverage of NPP8. 
In 2002, we developed the Chesapeake Bay Production Model (CBPM) as the published form of VGPM overes-
timated NPP and GPP for the bay7. Stepwise regressions of log-transformed variables from VGPM led to CBPM 
that supported estimates of NPP from aircraft and satellite ocean-color data31,53.

Here, we departed from VGPM and CBPM to develop production models for the bay using GAM. Selection 
of predictor variables for NPP and GPP models was informed by earlier studies on a subset of these data from 
LMER TIES cruises (Table 1). Analysis of variance (ANOVA) showed that season and region explained most of 
the variability of phytoplankton properties, including NPP, chl-a, and floral composition54. Long-term (six-year) 
means of NPP were negatively correlated with the fraction of chl-a in diatoms, a property stimulated by high-flow, 
“wet” conditions. Multiple linear regression and principal component analysis identified SRF as a ‘master variable’ 
driving inter-annual variability of these properties. An important advantage of transitioning to GAM was the 
flexibility to include predictor variables such as SRF to adjust for climatic effects on hydrology and distinguish 
variability from trends.

Model forms developed here were guided by these findings, leading us to include predictor variables for salin-
ity zone, salinity, month, season, year, and flow terms log10 SRF and log10 SUM (Table 3). These models proved 
effective to estimate NPP and GPP, exemplified by simple, linear regressions of observed vs. modeled log10 NPP 
from gam2 with R2 > 0.96 (Fig. 6a–c), and log10 GPP from gam2 with R2 > 0.80 (Fig. 6d–f). These fits are com-
parable to NPP estimates using CBPM with measured values of PB

opt, and GPP estimates using CBPM with esti-
mated values of PB

opt
7. Predictor variables in models of NPP for OH, MH, and PH salinity zones consistently 

showed highest F-values and lowest p-values for log10 PB
opt and log10 euphotic-layer chl-a (Table 3). Several other 

terms were also significant predictor variables, i.e., TN and NO2 + NO3 loadings (OH salinity zone), salinity, 
month (MH salinity zone), and salinity, KPAR, SRF, and month (PH salinity zone).

Climatic effects. Our group has focused on climatic effects on hydrology impacting water quality and phy-
toplankton in recent studies of Chesapeake Bay16–19. Adolf et al.54 explored this theme previously, reporting pre-
dictable consequences of SRF on phytoplankton dynamics. Statistical models based on long-term data extended 
these findings, documenting climatic effects on chl-a, floral composition, and NPP16–19. A logical sequence 
emerged from these studies wherein seasonal to interannual variability of freshwater flow and N loading regulates 
spatio-temporal distributions of phytoplankton16–19, consistent with the conclusion by Malone et al.22 that P plays 
a limited, transient role in the OH salinity zone of the bay, while N limits phytoplankton biomass and production 
on the ecosystem scale.

Figure 7. (a–d) Probability distributions of observed and predicted daily log10 NPP and GPP (g C m−2 d−1).
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Despite evidence from shipboard, aircraft, and satellite data linking freshwater flow to phytoplankton dynam-
ics in land-margin ecosystems, previous NPP and GPP models did not contain explicit terms for climatic effects 
on hydrology12–14,51,52,54–60. Analyses described here addressed this shortcoming, based on observations in 
Chesapeake Bay spanning several decades. Specifically, low-flow, “dry” conditions produce a landward shift of 
N-limitation toward OH and MH salinity zones, lower chl-a, lower NPP, and a lower proportion of diatoms in 
the phytoplankton flora; high-flow, “wet” conditions extend the area of N sufficiency seaward to MH and PH 
salinity zones, leading to higher chl-a, higher NPP, and a higher proportion of diatoms16–19,54,60. Climatic effects 
on bio-optically active constituents similarly affect light-limitation as higher inputs of dissolved and suspended 
materials occur for high-flow, “wet” conditions than for low-flow, “dry” conditions16,18. This latter observation 
may contribute to lower sensitivity of NPP than chl-a to climatic variability reported here (Fig. 10a–f).

Development of numerical water-quality criteria followed this logic, leading to model predictions that dis-
tinguished long-term trends from spatio-temporal variability18. Freshwater flow from the Susquehanna River, 
and frequencies of predominant weather patterns defined “dry” and “wet” conditions53,60–62, and statistical models 
conditioned on specific input terms for flow and salinity supported predictions of mean, monthly chl-a, Secchi 
depth, and NO2 + NO3

19. Here, we extended this approach to NPP and GPP models by including terms to adjust 

Figure 8. (a–c) Comparisons of log10 NPP using predictions from generalized additive models (GAM) from 
1985 to 2015; gam1 included an predictor variable for the time term “Seq-year” and gam2 omitted this variable 
(see Table 4).
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for climatic effects on hydrology (Tables 3, 5; Fig. 10a–f). This approach benefited from the flexibility of GAM to 
incorporate predictor variables traditionally used in production models, i.e., PB

opt, chl-a or euphotic-layer chl-a, 
Zp, and SST, and to add variables for salinity zone, salinity, season, SRF, and TN and NO2 + NO3 loadings.

Appp. Cloern et al.4 published a synthesis of APPP for estuarine-coastal ecosystems based on a comprehensive 
survey of the scientific literature. APPP for 131 ecosystems ranged from 105 to 1890 g C m−2 yr−1, with a mean of 
252 g C m−2 yr−1. Ten-fold variability occurred within ecosystems and five-fold from year to year, with only eight 
time-series covering longer than a decade. One of the best-studied ecosystems in the survey was the Rhode River, 
a small sub-estuary adjacent to the MH salinity zone of Chesapeake Bay. Long-term measurements of photosyn-
thesis by Gallegos63 supported estimates of APPP ranging from 152 to 612 g C m−1 y−1 in the Rhode River, with a 
mean of 328 g C m−1 y−1. APPP maxima occurred in years with dense spring blooms of Prorocentrum cordatum 
(formerly P. minimum) a dinoflagellate species that commonly forms “mahogany tides”. Complex interactions of 
local and remote nutrient inputs affected the relationship of APPP in the Rhode River to SRF. High-flow condi-
tions displaced the turbidity maximum, usually located in the OH salinity zone, south of the Rhode River mouth, 
causing elevated turbidity in the sub-estuary, washout of phytoplankton, suppression of the spring bloom, and 
decreased APPP.

Models of NPP calibrated with long-term measurements in Chesapeake Bay from 1982 to 2004 supported 
multi-year estimates of APPP, based on water-quality properties from 1985 to 2015 as model inputs. These 
estimates of APPP allowed us to resolve inter-annual variability for a three-decade span, rarely possible for 

Figure 9. (a–i) Mean, monthly surface chl-a (mg m−3), euphotic-layer chl-a (mg m−2) and NPP (mg C m−2 
d−1) for OH, MH, and PH salinity zones from 1985 to 2015. Source data for chl-a and euphotic-layer chl-a 
were semi-monthly to monthly cruises of the EPA Chesapeake Bay Program (CBP). Model predictions of NPP 
from gam2 applied to water-quality data from CBP using GAM calibrated with measurements of simulated 
in-situ 14C-bicarbonate assimilation (n = 713) and ancillary properties from 1982 to 2004. Climatic effects 
incorporated using 10th, mean, and 90th percentiles of freshwater flow, salinity, and nutrient (TN, NO2 + NO3) 
loading as inputs. Amber dashed lines = low-flow conditions; black solid lines = mean-flow conditions; blue 
dashed lines = high-flow conditions. Black solid lines = simple, linear regression of model predictions in mean-
flow conditions vs time (months), with regression equations superimposed on each panel.
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estuarine-coastal ecosystems per Cloern et al.4. Seasonal to inter-annual variability of NPP and thus APPP can 
be traced to euphotic-layer chl-a, a predictor variable that is highly sensitive to climatic effects on hydrology. We 
previously related inter-annual variability of APPP to TN and TP loadings, based on the supply of new nutrients 
from the Susquehanna River during the winter–spring freshet7. Stepwise regressions tested time lags between 
the seasonal pulse of nutrients and maximum NPP in summer, identifying mean, monthly TN and TP loads in 
February and March as predictors of APPP. Models of NPP developed here used a different approach to capture 
climatic effects on hydrology, explicitly accounting for variability of freshwater flow and nutrient loadings with 
predictor variables. The resulting model predictions of NPP supported estimates of APPP, resolving inter-annual 
variability and long-term trends from 1985 to 2015 (Fig. 11a–c).

Nixon’s trophic classification, historical context. Mean-flow predictions of NPP were used to estimate 
APPP from 130 to >600 g C m−2 y−1 for OH, MH, and PH salinity zones, with increases from 1985 to 2015 match-
ing euphotic-layer chl-a (Fig. 11a–c). APPP of this magnitude corresponds to “eutrophic” for OH and PH salinity 
zones, and “hypertrophic” for the MH salinity zone using Nixon’s3 trophic classification (Fig. 1). According to 
Cloern et al.4, Chesapeake Bay ranks among estuarine-coastal ecosystems that are heavily impacted by nutrient 
over-enrichment (their Fig. 4). We evaluated prospects for changing trophic classification based on APPP by 
simulating 40% reductions of biomass or nutrient loadings in models of NPP. These reductions of euphotic-layer 
chl-a or TN and NO2 + NO3 loadings led to decreased APPP and changed trophic status from “hypertrophic” 

Figure 10. (a–f) Model predictions of log10 euphotic-layer chl-a and log10 NPP from 1985 to 2015 using GAM. 
Flow adjustments were obtained as described in the Fig. 8 caption. Amber dashed lines = low-flow conditions; 
black solid lines = mean-flow conditions; blue dashed lines = high-flow conditions. Black solid lines = simple, 
linear regressions of model predictions in mean-flow conditions vs time (months), with equations 
superimposed on each panel.
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to “eutrophic” for the MH salinity zone, and from “eutrophic” to “mesotrophic” for OH and PH salinity zones 
(Fig. 11a–c).

Simulated 40% reductions of euphotic-layer chl-a or TN and NO2 + NO3 loadings were based on goals estab-
lished by the 1987 Chesapeake Bay Agreement64 to reduce phytoplankton biomass sufficiently to reverse summer 
anoxia. Several interventions by management began in the 1980s when states bordering the bay banned phos-
phate in laundry detergents. Subsequent nutrient-management legislation was adopted by Maryland, Virginia, 
and Pennsylvania in the 1990s, aimed at reducing the over-application of commercial fertilizers and manure on 
agricultural lands. In 2004, the six states in the watershed, the District of Columbia, and U.S. EPA reached an 
agreement on comprehensive wastewater treatment permits, leading to numerical annual loading limits for over 

Figure 11. (a–c) Time series of APPP and euphotic-layer chl-a from 1985 to 2015 for OH, MH, and PH salinity 
zones. Crosses = model predictions in ambient conditions; black solid lines = model predictions in mean-flow 
conditions; amber solid lines = model predictions in mean-flow conditions with 40% reduction of euphotic-layer 
chl-a; blue solid lines = model predictions with 40% reductions of nutrient (TN, NO2 + NO3) loadings; green 
dashed lines = mean, annual euphotic-layer chl-a.
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470 municipal and industrial wastewater treatment facilities. In December 2010, total manageable daily loads 
(TMDL) were adopted by U.S. EPA in collaboration with the six states and the District of Columbia. These agree-
ments committed to significant reductions of nutrient and sediment loads by 2025, development of locally based 
watershed implementation plans, and an accountability system including annual milestones and public reporting 
of progress.

Together, these actions have led to modest progress toward improved water quality and changes in phyto-
plankton ecology in the bay16, although additional nutrient reductions must be reached to decrease APPP and 
change trophic classification. Our analyses of long-term trends showed flow-adjusted TN and NO2 + NO3 load-
ings doubled from 1945 to 1981, followed by decreases of 19.2% and 5.3% from 1981 to 201216. The slow, upward 
trajectory of flow-adjusted chl-a for the MH salinity zone is consistent with shallow, downward trends of TN and 
NO2 + NO3 loadings in recent years16,18. We point out that simulated 40% reductions of euphotic-layer chl-a or 
nutrient loadings exceed actual progress since the 1980s, explaining the continuing increases of APPP based on 
mean-flow model predictions of NPP (Fig. 11a–c).

Decadal contrasts of NPP and APPP in the 1960s and 1970s (Fig. 12a–f) reflected a combination of 
water-quality management and climatic effects: (1) lower inputs of bio-optically active constituents in the 1960s 
accompanied a sequence of low-flow, “dry” years compared to the 1970s, reducing light-limitation for OH, MH, 
and PH salinity zones and enhancing NPP and APPP; (2) removal of orthophosphate (PO4

3−) from detergents 
enhanced P-limitation in the OH salinity zone, leading to increased N-throughput to MH and PH salinity zones, 

Figure 12. (a–f) Mean, monthly log10 NPP (left y-axis) and log10 chl-a (right y-axis) in the 1960s and 1970s for 
OH, MH, and PH salinity zones. NPP derived using gam5 (Table 4).
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and reductions of NPP and APPP from the 1960s to the 1970s; (3) model predictions of NPP for low-flow, “dry”, 
mean-flow, and high-flow, “wet” conditions were based on predictor variables for flow and salinity that adjusted 
for climatic effects, with mean-flow predictions of NPP and APPP reflecting these adjustments in the 1960s and 
1970s.

Model predictions of NPP from historical reconstructions and recent years led to comparable estimates of 
APPP for the MH salinity zone. Mean-flow model predictions of NPP produced estimates of APPP >500 g C m−2 
y−1 from 2010 to 2015 (Fig. 11b), similar to APPP for the same salinity zone in the 1960s (Fig. 12b). Analogous 
estimates for OH and PH salinity zones showed a similar pattern, with APPP in the 1960s higher than in recent 
years. APPP was lower for all three salinity zones in the 1970s than in the 1960s (Fig. 12d–f). These observations 
and predictions provide historical context for comparison with contemporary conditions, suggesting APPP today 
is not appreciably different from past rates. We found evidence of lower APPP for MH and PH salinity zones in 

Salinity
Zone 
(units) Season

Zp
(m)

SST
(°C) Salinity

log10 chl-a
(mg m−3) chla L CI, U CI

log10. 
Euchl-a
(mg m−2) Euchla L CI, U CI

log10 NPP
(mg C 
m−2 d−1) NPP L CI, U CI

log10 GPP
(mg C 
m−2 d−1) GPP L CI, U CI

OH Spring 3.45 12.3 3.16 0.764 5.81 (4.57, 7.05) 1.23 17.0 (15.7, 18.3) 2.34 219.9 (218.6, 221.3) 2.51 323.6 (322.2, 325.1)

OH Summer 4.10 26.4 5.23 0.978 9.50 (8.27, 10.7) 1.56 36.5 (35.2, 37.7) 3.07 1175 (1174, 1176) 3.30 1973 (1971, 1974)

OH Fall 4.25 16.2 4.65 0.657 4.53 (3.20, 5.87) 1.21 16.0 (14.6, 17.4) 2.47 295.7 (294.3, 297.2) 2.56 363.5 (362.0, 365.0)

MH Spring 7.15 13.1 11.1 1.13 13.4 (12.2, 14.6) 1.95 88.1 (87.0, 89.3) 2.85 711.7 (710.5, 712.9) 3.07 1180 (1179, 1181)

MH Summer 6.62 26.7 12.2 1.07 11.8 (10.6, 12.9) 1.85 71.4 (70.3, 72.5) 3.28 1909 (1908, 1910) 3.51 3267 (3266, 3268)

MH Fall 8.11 18.3 15.0 0.952 8.96 (7.82, 10.1) 1.83 68.1 (66.9, 69.2) 3.02 1056 (1055, 1057) 3.11 1279 (1278, 1280)

PH Spring 8.74 12.5 19.2 0.823 6.66 (5.40, 7.92) 1.70 49.7 (48.5, 50.9) 2.66 458.9 (457.7, 460.1) 2.85 701.7 (700.5, 702.9)

PH Summer 9.64 26.4 21.1 0.719 5.24 (4.00, 6.48) 1.58 37.6 (36.5, 38.8) 3.07 1164 (1163, 1165) 3.25 1767 (1765, 1768)

PH Fall 7.41 18.2 22.8 0.844 6.97 (5.82, 8.13) 1.67 47.1 (45.9, 48.2) 2.90 798.8 (797.8, 799.9) 3.00 1001 (999.8, 1002)

Table 2. Statistical properties of shipboard data from 1982 to 2004 used to calibrate models of net and gross 
primary production (NPP, GPP). Zp = euphotic-layer depth, SST = sea-surface temperature; chl-a = chlorophyll 
a; Euchl-a = euphotic-layer chl-a; L CI = lower 95% confidence interval; U CI = upper 95% confidence interval.

Predictor variables

log10 PB
opt (net or gross)

log10 euphotic-layer chl-a (or log10 chl-a)

Salinity zone (categorical)

Sea-surface temperature (SST)

Salinity

KPAR or Zp (light attenuation coefficient or euphotic-layer depth)

Month (numerical, 1–12)

Season (categorical)

Year (sequential from start of time-series)

log10 SRF (mean, monthly Susquehanna R. flow)

log10 SUM (cumulative, monthly Susquehanna R. flow)

TN loading (monthly or annual)

NO2 + NO3 loading (monthly or annual)

Table 3. Predictor variables for generalized additive models (GAM) of net and gross primary production (NPP, 
GPP) in Chesapeake Bay.

Property Time frame N R2 (adjusted)
% Deviance 
explained GCV AIC RMSE

NPP

OH 1982–2004 183 0.985 98.9 0.00736 −373.1 0.0757

MH 281 0.971 97.6 0.00537 −663.5 0.0661

PH 259 0.955 96.5 0.00807 −478.8 0.0825

GPP

OH 1995–2004 125 0.961 97.5 0.0217 −141.8 0.1191

MH 210 0.783 82.0 0.0263 −172.4 0.1472

PH 190 0.740 79.5 0.0318 −124.9 0.1575

Table 4. Statistics for generalized additive models (GAM) of net and gross primary production (NPP, GPP) in 
Chesapeake Bay using predictor variables (Table 3) as detailed for gam2 (Table 5). GCV = generalized cross-
validation score; AIC = Akaike information criterion; RMSE = root mean square error.
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contemporary estimates, and sensitivity of APPP to reductions of euphotic-layer chl-a or TN and NO2 + NO3 
loadings. These findings show promise for future reductions of APPP in response to improvements of water qual-
ity that would be required to change trophic classification.

Summary
Statistical models of NPP and GPP were developed for Chesapeake Bay with adjustments for climatic effects on 
hydrology, calibrated with 100 s of shipboard measurements from 1982 to 2004. Model predictions of NPP based 
on water-quality properties in the 1960s and 1970s and 1985 to 2015 as inputs supported computations of APPP. 
Simulated reductions of euphotic-layer chl-a or TN and NO2 + NO3 loadings led to decreased APPP sufficient to 
change the trophic classification of the bay. Summarizing:

•	 Statistical models of NPP and GPP calibrated with long-term data included explicit terms to adjust for cli-
matic effects.

•	 These models supported predictions of NPP using historical and monitoring data as predictor variables.
•	 Model predictions of NPP using historical (1960s, 1970s) and monitoring (1985 to 2015) data as predic-

tor variables supported computations of APPP.
•	 Simulated 40% decreases of euphotic-layer chl-a or TN and NO2 + NO3 loadings reduced APPP and changed 

trophic classification.
•	 Improved water quality is attainable with a reversal of nutrient over-enrichment of the bay sufficient to 

decrease phytoplankton biomass, but progress to date has been modest compared to goals, exemplified by 
continuing, high APPP in recent years.

gam1.pp.net.oh <- gam(log_PP_net ~ s(log_Pbopt_net) + s(log_Euchl) + s(Kpar) + s(Temp) + s(Salin) + s(Month, 
bs = “cc”, k = 8) + s(Seq_year) + Seq_year + Season + s(LOG_SRF) + s(LOG_SUM) + s(TN_LDG) + s(NO23_LDG), 
data = PP_OH)a,b

gam2.pp.net.oh <- gam(log_PP_net ~ s(log_Pbopt_net) + s(log_Euchl) + s(Kpar) + s(Temp) + s(Salin) + s(Month, 
bs = “cc”, k = 8) + Season + s(LOG_SRF) + s(LOG_SUM) + s(TN_LDG) + s(NO23_LDG), data = PP_OH)c

gam3.pp.net.oh <- gam(log_PP_net ~ s(log_Pbopt_net) + s(log_Chl) + s(Kpar) + s(Temp) + s(Salin) + s(Month, 
bs = “cc”, k = 8) + Season + s(LOG_SRF) + s(LOG_SUM) + s(TN_LDG) + s(NO23_LDG), data = PP_OH)d

gam4.pp.net.oh <- gam(log_PP_net ~ s(log_Pbopt_net) + s(log_Chl) + s(Temp) + s(Salin) + s(Month, bs = “cc”, 
k = 8) + Season + s(LOG_SRF) + s(LOG_SUM) + s(TN_LDG) + s(NO23_LDG), data = PP_OH)e

gam5.pp.net.oh <- gam(log_PP_net ~ s(log_Pbopt_net) + s(log_Chl) + s(Temp) + s(Salin) + s(Month, bs = “cc”, 
k = 8) + s(LOG_SRF) + s(LOG_SUM) + s(TN_LDG) + s(NO23_LDG), data = PP_OH)d,e

Table 5. GAM models of net primary production (NPP) for the oligohaline (OH) salinity zone. agam models of 
NPP for MH and PH salinity zones had the same structures as these models, using input data PP_MH and PP_
PH; models based on the all calibration data (1982 to 2004) used input data PP_ALL and added a categorical 
term for Salzone (OH, MH, PH); bgam models to predict GPP had the same structure as those for NPP with 
log_Pbopt_gross substituted for log_Pbopt_net; bgam2 models applied to water-quality data from 1985 to 2015 
were used to predict NPP from data files WQ_OH, WQ_MH, and WQ_PH; the explanatory variable Seq_year 
was omitted from these models to avoid extending trends in calibration data (1982 to 2004) to years outside that 
time frame; cSubstituted log_Euchl with log_Chl in gam models to predict NPP to test models using input data 
that lacked euphotic-layer chl-a; dAnnual TN and NO2 + NO3 loadings were replaced with monthly loadings 
in gam models to predict NPP for historical data, based on the lack of data on Kpar or monthly loadings for 
the 1960s and 1970s; eSeason was omitted as a categorical variable in gam models to predict NPP due to small 
sample sizes for historical data.

Salinity 
Zone 
(units) Season Zp (m)

Temp 
(oC) Salinity

log10 chl-a 
(mg m−3) chl-a L CI, U CI

log10. 
Euchl-a (mg 
m−2) Euchl-a L CI, U CI

log10. NPP FIT 
(mg C m−2 d−1) NPP FIT L CI, U CI

log10 NPP MNS 
(mg C m−2 d−1) NPP MNS L CI, U CI

OH Winter 4.04 3.73 5.60 0.630 4.30 (3.17, 5.43) 1.21 16.1 (14.9, 17.3) 1.84 69.8 (68.6, 71.0) 1.83 67.4 (66.2, 68.6)

OH Spring 3.42 11.6 4.76 0.910 8.09 (6.99, 9.19) 1.42 26.4 (25.2, 27.5) 2.53 341.2 (340.0, 342.4) 2.56 361.9 (360.7, 363.1)

OH Summer 3.54 26.7 6.90 1.09 12.3 (11.3, 13.4) 1.63 42.8 (41.8, 43.9) 3.10 1264 (1263, 1265) 3.09 1239 (1238, 1240)

OH Fall 4.25 17.3 7.78 0.780 5.99 (4.89, 7.09) 1.39 24.4 (23.3, 25.5) 2.59 386.9 (385.7, 388.2) 2.71 510.6 (509.4, 511.8)

MH Winter 5.87 11.7 13.6 0.869 7.40 (6.31, 8.49) 1.66 45.7 (44.6, 46.8) 2.47 291.6 (290.4, 292.7) 2.46 290.6 (289.4, 291.7)

MH Spring 5.39 9.40 12.1 0.957 9.06 (7.94, 10.2) 1.71 50.9 (49.8, 52.0) 2.87 746.3 (745.2, 747.5) 2.91 812.2 (811.1, 813.4)

MH Summer 5.88 18.2 12.5 1.01 10.2 (9.12, 11.3) 1.70 50.5 (49.4, 51.6) 3.24 1739 (1738, 1740) 3.22 1669 (1668, 1670)

MH Fall 6.32 18.3 15.5 0.876 7.51 (6.44, 8.58) 1.30 45.9 (44.8, 47.0) 2.93 852.8 (851.7, 853.9) 3.05 1116 (1115, 1117)

PH Winter 6.89 5.95 20.4 0.740 5.55 (4.55, 6.55) 1.57 36.9 (35.9, 38.0) 2.27 187.6 (186.5, 188.7) 2.21 163.5 (162.4, 164.6)

PH Spring 7.10 12.2 18.2 0.780 6.03 (5.03, 7.03) 1.62 41.3 (40.2, 42.4) 2.83 672.5 (671.4, 673.7) 2.84 688.8 (687.6, 689.9)

PH Summer 6.40 26.6 19.8 0.820 6.65 (5.65, 7.65) 1.62 41.8 (40.8, 42.9) 3.17 1489 (1488, 1490) 3.14 1370 (1369, 1371)

PH Fall 6.71 18.6 21.9 0.770 5.89 (4.83, 6.95) 1.59 38.7 (37.6, 39.7) 2.89 779.7 (778.6, 780.8) 3.09 925.2 (924.1, 926.3)

Table 6. Statistical properties and predicted net primary production (NPP) for water-quality data from 1985 
to 2015. NPP FIT = model-fitted NPP using observed flow and salinity; NPP MNS = flow-adjusted NPP using 
long-term means of freshwater flow and salinity.
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