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Abstract

Worldwide, there is an unprecedented and ongoing expansion of both the proportion of older adults in society and innovations
in digital technology. This rapidly increasing number of older adults is placing unprecedented demands on health care systems,
warranting the development of new solutions. Although advancements in smart devices and wearables present novel methods for
monitoring and improving the health of aging populations, older adults are currently the least likely age group to engage with
such technologies. In this commentary, we critically examine the potential for technology-driven data collection and analysis
mechanisms to improve our capacity to research, understand, and address the implications of an aging population. Alongside
unprecedented opportunities to harness these technologies, there are equally unprecedented challenges. Notably, older adults may
experience the first-level digital divide, that is, lack of access to technologies, and/or the second-level digital divide, that is, lack
of use/skill, alongside issues with data input and analysis. To harness the benefits of these innovative approaches, we must first
engage older adults in a meaningful manner and adjust the framework of smart devices to accommodate the unique physiological
and psychological characteristics of the aging populace. Through an informed approach to the development of technologies with
older adults, the field can leverage innovation to increase the quality and quantity of life for the expanding population of older
adults.

(JMIR Aging 2019;2(1):e10019)   doi:10.2196/10019
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Introduction

Exponential growth in technological innovations, alongside
improvements in the accessibility and usability of these devices,
has made technology a ubiquitous feature in daily life.
Consequently, older adults now have increasing access to
information and communication technology (ICT) devices, such

as smartphones and wearables [1]. Globally, there is increasing
interest in ICT for older adults, highlighted by numerous
research and development initiatives, with 2 notable ones
including (1) Aging Gracefully across Environments using
technology to Support Wellness, Engagement, and Long Life,
a Canadian Network of Centres of Excellence [2], and (2) the
Active Assisted Living Joint Program [3], a European initiative
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that has invested over 700 million Euros in improving ICT
access to groups such as older adults. As the proportion of older
adults increases at an unprecedented rate, greater demands are
being placed on already heavily burdened health care systems
[4]. Therefore, it is imperative to address the needs of this
expanding population and ensure that care provision meets the
evolving needs of older adults.

However, new projects and national investments belie the fact
that the role of technology in geriatric health is not new.
Beginning in the late 1990s, the field of gerontechnology began
as a convening point for gerontologists, geriatricians, and ICT
experts to discuss the potential for integrating technologies that
supported older adults [5]. During the formation of the field of
gerontechnology, older adults were generally not the targets of
technological innovation; however, the intersection of
demography and technology seemed inevitable given the growth
in both areas [5]. Since these early years, there has been
considerable expansion in the depth and breadth of research and
development in the areas of older adults and technology, from
early investigations into aging in place (c. 1990 onward), to
experimental houses (c. 2000 onward), to biorobotics (c. 2005
onward), and beyond [5]. This innovation and collaboration
continues today as the field of gerontechnology expands to
accommodate a burgeoning population of older adults and an
influx of new technologies.

A more recent trend in gerontechnology is to collect multiple
streams of data from users to capture self-reported survey data
alongside capturing functional outcomes, such as physical
activity. Complementing innovations in the capacity to collect
data are mobile health (mHealth) technologies that have lowered

the barrier to entry for more complex means of analysis.
Although there is no consensus definition of mHealth, the World
Health Organization has defined mHealth as mobile devices
used in the health service and/or provisions such as smartphones,
smartwatches, and other wearable technologies [6]. Data can
now be analyzed in real time at a level of sophistication that has
not been previously possible and using platforms that are
increasingly user-friendly and often open-sourced. Even in 2012,
gerontechnology was leading health care with the use of personal
sensors in smartphones for fall detection and prevention, and
now in 2019, gerontechnology is leading health care by using
a myriad of sensors to help understand how everyday social and
physical environments can be used to promote well-being [7,8].

Although rates of technology use among older adults are rising,
these levels fall short of younger demographic groups [9].
Contributing to this discrepancy are access issues, that is, uptake,
representing a first-level digital divide, as well as lack of skills,
that is, usage, representing a second-level digital divide [10].
For example, in a study of cognitively intact older adults using
a tablet device to report symptoms in an emergency department,
only 56% correctly reported their age to the tablet [11].
However, digital technology use and literacy is not strictly age
dependent, and innovative efforts to teach older adults, even
those with memory impairments, to use smartphones will only
increase rates of engagement [12]. Once these digital divides
have been overcome, issues concerning the input and analysis
of these data must be addressed. In this commentary, we
highlight some of the challenges involved in uptake, usage,
input, and analysis of mHealth and mHealth data alongside the
opportunities provided by these innovations and suggestions as
to where the field may be headed next (Figure 1).

Figure 1. Challenges and opportunities in mhealth–driven data collection.
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Uptake (First-Level Digital Divide)

Older adults may encounter challenges that are not common to
younger age groups, such as financial and physiological
limitations, inhibiting access to innovations in technology [13].
For older adults living on a fixed pension or who are otherwise
financially restricted, the prospect of investing in a device that
they are unfamiliar with, do not necessarily see the value of,
and that may seem dauntingly complex is not an appealing one.
Similarly, physiological limitations faced by older adults, such
as a decline in visual acuity and manual dexterity, may preclude
the use of certain devices such as tablets or smartphones.
Individuals with greater physical limitations, for example, frailty,
have been observed to have lower technology uptake than
prefrail or nonfrail peers [14]. Consequently, there is a
movement toward simplified devices that accommodate these
limitations of older adults as well as the desire for simplified
interfaces and functionality. For example, apps designed to
decrease the number of functions and increase the simplicity of
use have been developed for the newest iPhones. This does not,
however, necessarily indicate that older adults will be more
motivated to purchase and use these devices [15]. Moving
forward, highlighting the value of technological innovations
and the potential benefits of their uptake may persuade even
greater engagement with ICT among older adults.

Usage (Second-Level Digital Divide)

The level of skill required to actively engage with newer
technologies also contributes to the reduction in the use of smart
devices when compared with younger cohorts [1]. For older
adults, integrating these devices into lifestyles may be difficult
or simply unwanted, particularly for those who have functional
deficits or who are not as technologically savvy. For example,
a primary application of many sensor-based technologies among
older adults is to quantify behavior among persons with
dementia. These persons are unlikely to reliably interact with
or carry smart devices, and the often-overlooked burden of
regular charging may pose an additional use challenge. As such,
there are unique physiological and psychological barriers
inhibiting both individuals’ access to and use of these
technologies.

Input

For older adults who may be unfamiliar with the ways in which
their data are collected, stored, and used, apprehension about
the collection of these data may be a significant barrier. Studies
examining older adults’ perspectives on the use of technology
as data collection mechanisms indicate that they are much more
amenable to releasing their data if they believe that these data
are going to be used to improve their health and well-being [16].

Although, in principle, the collection of data via paper and pen
is the same as using a passive data collection device, for
example, a pedometer, in practice, older adults may perceive
this differently. For example, in a study of unobtrusive home
monitoring technology, such as motion sensors, 60% of the
participants reported concerns related to privacy or security
after 1 year [17]. Addressing the complex issues surrounding

the ethical implications of mHealth data collection, with respect
to data privacy, security, and ownership, will be imperative to
the successful integration of these technologies into older adult
populations [18]. To ensure data anonymity, deidentification
of users’ information will be required. Furthermore, third-party
access to these data will need to be tightly regulated in
conjunction with the deidentification processes [18].
Consequently, it will be imperative for researchers to
provide—in addition to traditional informed consent—a
comprehensive explanation of how the devices used in the study
function, what types of data they do (and do not) collect, and
how these data will be used.

Technology does not remain static, and the recent popularity of
conversational agents, often referred to as chatbots, offers the
potential of a new generation of devices where the input is
through voice instead of touch. The implications of this new
user interface for digital health devices could remove one of the
chief barriers for geriatric patients today and usher an era of
easier digital engagement for older adults.

Of course, technology alone will never be useful unless it is
paired with the right clinical use cases. This raises the important
issue of considering what the newest wave and future iterations
of smart technologies can offer clinical research and care. Below,
we explore details of mHealth data collection for the field and
how to help reduce the two digital divides outlined above.

The primary advantages of mHealth data collection mechanisms
stem from the four big data V's: velocity, volume, variety, and
veracity [19]. The velocity of data refers to the capability of
devices to collect and analyze data on a continuous basis. Smart
devices can collect active and/or passive information throughout
the day for as many days as required, providing a near-constant
stream of information [20]. As a result of the velocity of these
data collection mechanisms, the volume of data that is collected
is immense. Alongside the expansion of the volume of data, the
variety of variables captured has, similarly, expanded. Modern
smart devices and wearables have a range of hardware suited
for objective data collection, for example, global positioning
system (GPS) and accelerometer, that enable a breadth of data
collection that expands beyond the scope of what can be
accomplished in a face-to-face interview.

For researchers, the most important component of data collection
is the final big data V —Veracity. The veracity of a data source
refers to the quality (or validity) of the data in capturing the
phenomena intended to be captured. Within the context of
mental health data collection, the veracity of data collection via
traditional methods may be compromised by external factors
that may bias these results, for example, social desirability or
recall bias. Study participants may demonstrate conscious (or
unconscious) bias in what they are willing to reveal based on
the characteristics of the survey administrator [21]. Recall bias
in trying to recount symptoms and past experiences, especially
for those who may have even mild memory impairments, creates
yet another methodological concern [22]. In addition, survey
administrators may record what they expect to hear rather than
what is actually reported by the participant [23]. As a result,
these data may not accurately reflect what an individual is
actually feeling. Similarly, the subjective retrospective recall

JMIR Aging 2019 | vol. 2 | iss. 1 | e10019 | p.3http://aging.jmir.org/2019/1/e10019/
(page number not for citation purposes)

Cosco et alJMIR AGING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


may not be completely accurate; for example, physical activity
is generally over-reported [24].

An active method of data collection that demonstrates many of
the advantages afforded by mHealth data collection mechanisms
is ecological momentary assessment (EMA). EMA involves the
collection of data, for example, thoughts, behaviors, and
experiences, in the participant’s natural setting and in real time
[25]. Study designs can utilize event- or time-based designs,
that is, having a data collection triggered by an event, for
example, panic attack; or at a set time interval, every morning;
or using a combination of these designs, for example, every
morning and in the event of a panic attack. Some of the issues
faced by traditional data collection methods alongside more
novel techniques, such as EMA, include reactivity, that is,
influence on behavior caused by assessing that behavior, and
compliance, that is, the degree to which a participant complies
with the data collection schedule. Studies employing EMA
capturing a variety of outcomes, for example, chronic pain [26],
problem drinking [27], and coping [28], have demonstrated low
levels of reactivity [25]. Issues of compliance, however, are a
limitation of EMA. As with traditional methods, such as
paper-and-pen diaries, if participants do not complete the data
collection activity, particularly in a nonrandom manner, this
can heavily skew the results. Another consideration is whether
reports are being completed on time or being pushed aside until
they are due, at which point they are completed in bulk,
effectively invalidating the data. Although EMA may not be
able to foster greater compliance, it is possible to avoid the
invalidation of data due to participants who hoard and backfill
surveys and it is possible to time-stamp data collection to flag
a potential instance in which this has occurred [25]. Although
EMA is not a perfect method, it highlights some of the
advantages afforded by mHealth data collection.

Passive sensing permits data collection without a study
participant having to exert extra effort to input data. A major

advantage of this type of data collection method is that there is
little to no effort required, increasing compliance. Primary tools
for passive data collection methods include smartphones and
wearables. A recent systematic review of the use of smartphones
employing passive data collection in health research contexts
found 35 studies published using these data [29] on topics
ranging from bipolar disorder [30] to sleep [31] to addiction
[32]. The review reports multiple benefits of passive data
collection demonstrated in these studies, notably regarding the
precision of measures, such as predicting bipolar state change
with 94% accuracy [33], ease of use [34], and the objectivity
of the measurements [35]. The potential of passive data
collection for older adults is clear, particularly given the absence
of needing to directly interact with smart technology.

However, passive data can only be a proxy of behavior when
the device is nearby the older adult, which as outlined above is
not always true. Thus, recent work into passive sensing has
moved beyond smartphones and smartwatches and explored an
approach relying on radio waves. This approach may represent
true passive sensing, in that it requires almost no engagement
with the device on the part of the research subject, whereas
smartphones or wearables must be carried by the user to collect
data. Such an approach effectively facilitates watching but
without requiring cameras. Thus, it may be less intrusive, and
by mapping motion, it may shed light on several behavior
patterns. Preliminary research has demonstrated how this
technology may be used to map behavioral symptoms in
dementia [36]. A growing body of literature describes how the
ability to map motion using an array of sensor approaches
including GPS and accelerometry in mobile and wearable
devices as well as more passive sensors can impact the care of
older adults with a range of psychiatric diagnoses [36,37]. Thus,
new and evolving technological innovations will continue to
reduce digital divides and may offer a new approach to the field,
as outlined below in Figure 2.
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Figure 2. mhealth data collection inputs. GPS: global positioning system; SMS: short message service.

Analysis

The ways in which data are being processed include increasingly
sophisticated techniques. Advanced computational strategies,
such as machine learning, go beyond the a priori testing of
hypotheses generally performed by humans to have a computer
learn from the data in an exploratory manner to identify
relationships [38]. Although these approaches are largely
data-driven, many of these analytic technologies involve the
use of algorithms that may introduce bias. For example, feature
selection can involve interpretation and input from analysts,
which have the potential to be biased and/or misdirected [39].
This can also introduce issues where a computer learns on a
training dataset but cannot generalize these findings to other
studies, that is, overfitting [20]. Despite these limitations, when
appropriately used as a supplement (rather than as a crutch) in
clinical and research settings, the potential for exploiting these
techniques for the betterment of older adults’ lives is immense.
As new methods are developed to handle the increasingly
complex data new sensors can generate, it will be imperative
for the geriatrics field to work closely with data scientists.

Conclusions and Next Steps

With population aging placing unprecedented demands on
various aspects of health care, it is becoming increasingly
important to capitalize on new technologies to meet these

demands, and thus, there is an urgent need to address these
physiological and psychological barriers currently faced by
older individuals with respect to the uptake of smart devices.
Given the considerable opportunities and challenges of this
integration and rather than waiting until the demographic shift
is fully upon us, getting ahead of the curve will enable a
smoother transition and increased potential for harnessing the
advantages of these data collection mechanisms. If the
proliferation and innovation in smart devices, wearables, and
sensing devices is any indication of the increasingly
sophisticated ways in which we will be able to collect data, the
need to mobilize mHealth data collection strategies toward
integration of older adults has never been greater. Traditional
data collection methods remain invaluable resources in the study
of aging, establishing the vast majority of existing literature.
We do not suggest that these methods be replaced by mHealth
technologies but rather to be used to expand the breadth of
questions that can be asked and the depth of evidence that can
be extracted from these questions. By supplementing traditional
approaches to research with nontraditional methods, it is hoped
that we can make greater strides toward the improvement of
older adults’ lives.

In the context of increasing technological complexity, we will
need to address both first- and second-level digital divides.
Failure to simultaneously mitigate challenges in both digital
divides could inhibit or prevent the capacity to harness emerging
technologies. The progression of the field of gerontechnology
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in the last several decades suggests that there will be continued
integration of technology into older adults’ lives. This
integration will, however, need to be conducted in a manner
that addresses the limitations of emerging technologies and the
acceptability and utility of these innovations in the lives of older
adults. In particular, new devices must be developed with input
directly from older adults, using user-driven principles, for
example, human-centered design [40], and methods, for

example, codesign and cocreation [41]. These approaches allow
stakeholder perspectives to inform the relationship between a
device and the user. Through an informed approach to the
development of technologies with older adults in mind, the hope
is that we can leverage these innovations to increase the quality
and quantity of life experienced by the growing population of
older adults.
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