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ABSTRACT

Motivation: Reverse-phase protein arrays (RPPAs) allow sensitive

quantification of relative protein abundance in thousands of samples

in parallel. Typical challenges involved in this technology are antibody

selection, sample preparation and optimization of staining conditions.

The issue of combining effective sample management and data ana-

lysis, however, has been widely neglected.

Results: This motivated us to develop MIRACLE, a comprehensive

and user-friendly web application bridging the gap between spotting

and array analysis by conveniently keeping track of sample informa-

tion. Data processing includes correction of staining bias, estimation

of protein concentration from response curves, normalization for total

protein amount per sample and statistical evaluation. Established ana-

lysis methods have been integrated with MIRACLE, offering experi-

mental scientists an end-to-end solution for sample management and

for carrying out data analysis. In addition, experienced users have the

possibility to export data to R for more complex analyses. MIRACLE

thus has the potential to further spread utilization of RPPAs as an

emerging technology for high-throughput protein analysis.

Availability: Project URL: http://www.nanocan.org/miracle/

Contact: mlist@health.sdu.dk

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Reverse-phase protein arrays are typically nitrocellulose-covered

glass slides on which crude lysates of tissue samples or treated
cell lines are spotted. Each single slide can carry several thousand

spots. Only small amounts of lysate in the range of a few cell
equivalents are required for each spot. Consequently, several

hundred slide copies can be created at minimal sample consump-
tion, each of which can be interrogated with a different protein-

specific antibody. This allows high-throughput measurement of
the relative abundance of proteins in up to several thousand

samples. Parallel processing of large sample numbers discerns
RPPAs from forward phase arrays, where probes are immobi-

lized on a slide, and mass spectrometry, which are suitable for
analysis of many proteins in small sample numbers.

The field of RPPAs has shown steady growth since its intro-

duction in 2001 (Paweletz et al., 2001) (Fig. 1). Several studies

applied this technology successfully to protein and signaling

pathway analyses in cancer (Leivonen et al., 2009; Sevecka and

MacBeath, 2006; Uhlmann et al., 2012; York et al., 2012), as well

as for cancer subtype classification and prognosis of disease pro-

gression (Gonzalez-Angulo et al., 2011; Sonntag et al., 2014;

Wiegand et al., 2014). The relevance of RPPA data for multi-

OMICS and high-throughput projects is also highlighted by its

inclusion into the Cancer Genome Atlas, where, for instance,

measurements of 171 antibodies for 4400 samples of breast

cancer patients are available (Atlas, 2012).

1.1 Challenges

Experimental challenges involved in this technology, such as

antibody selection, sample preparation and optimization of

staining conditions, have been addressed successfully in the

past (Hennessy et al., 2010; Mannsperger et al., 2010b;

Mircean et al., 2005; Spurrier et al., 2008). The subsequent

image analysis can be handled by established methods and soft-

ware developed for traditional microarrays, such as the commer-

cial tool MicroVigene2. RPPA-specific challenges arise in the

further processing of the quantified signal, which, in a first step,

should be corrected for bias introduced through uneven staining

(Neeley et al., 2012). Another concern is the dynamic range of

signal detection, which can be described as a sigmoidal curve due

to limitations in sensitivity in the lower range and signal satur-

ation in the upper range (Tabus et al., 2006). Through adjusting

each sample for the total protein amount a priori, measurement

is possible in the linear range of this curve. However, this is often

not feasible for high-throughput experiments, due to the trade-

off between large sample numbers, feasibility and costs. To over-

come this problem, samples are typically spotted multiple times

in a dilution series to cover a broad dynamic range of protein

concentrations, where each sample gives rise to a response curve.

In a process called quantification, an estimate of relative protein

abundance is created by merging these values (Supplementary

Fig. S1). The resulting relative concentration estimates still

need to be normalized for the total amount of protein, before

they can be evaluated statistically. Statistical analysis comprises

assessing significance of relative differences in protein concentra-

tion estimates, as well as their correlation between slides and

*To whom correspondence should be addressed.
yThe authors wish it to be known that, in their opinion, the first two
authors should be regarded as Joint First Authors.

� The Author 2014. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits

non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

http://www.nanocan.org/miracle/
mailto:mlist@health.sdu.dk
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu473/-/DC1
Reverse 
; Leivonen etal., 2009
; Uhlmann etal., 2012
more than 
; Mannsperger etal., 2010b; Hennessy etal., 2010
In order t
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu473/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu473/-/DC1
XPath error Undefined namespace prefix


other types of readout. Finally, the large number of samples

involved in each experiment poses a significant challenge in

terms of sample management.

1.2 Quantification

Mircean et al. (2005) proposed a linear model for merging the

signal originating from individual response curves. One draw-

back of this approach is that a linear model cannot deal with

samples close to saturation or close to the detection limit.

Consequently, Tabus et al. (2006) compared a variety of para-

metric models and found that a logistic model was most suitable

to reflect the sigmoidal shape of the response curve.

Furthermore, a joint response curve based on all samples

increased the confidence of the model fit, as similar chemistry

can be assumed for all samples. Hu et al. (2007) showed that a

more flexible non-parametric model yields more accurate esti-

mates at the cost of robustness. Finally, Zhang et al. (2009)

proposed a simplified robust parametric model called serial dilu-

tion curve based on the Sips model for DNA binding. In contrast

to other parametric models, this method is based on meaningful

and intuitive parameters like the detection limit, the dilution

factor and the saturation level.

1.3 Normalization

If the total protein amount of each sample is not determined

a priori, protein levels have to be normalized, to guarantee a

meaningful comparison between samples. This can be achieved

by either normalizing to a slide stained for total protein with, for

instance, Sypro Ruby (Leivonen et al., 2009) or Fast Green

(Loebke et al., 2007), or by using additional antibody stainings.

For the latter approach, one can rely on either a selection of

‘housekeeping’ proteins that are assumed to be constantly

expressed or on incorporating the entire panel of anti-

body-generated signals, where all antibodies are first centred

and scaled before the median value is used for normalization.

This so-called median loading normalization has been improved

by Neeley et al. (2009) in a method called variable slope normal-

ization. Here, a correction factor is included to take into account

that additional bias arises due to independent slide

measurements.
Finally, Neeley et al. (2012) also proposed an additional nor-

malization step called surface adjustment that is applied to the

raw data. As customary for all microarray data, the background

signal is determined for each spot and subtracted from the fore-

ground signal. This approach, however, does not correct for

signal bias due to uneven antibody staining, which is an issue

specific to RPPA technology. Positive control spots on the slide
can be utilized for creating a smoothing surface mirroring the

staining bias. A correction factor can then be calculated from a

generalized linear model for each individual spot.

1.4 Sample tracking

A single RPPA experiment may comprise thousands of samples

distributed over large slide sets. Precise sample tracking is a chal-

lenge that grows with the number, size and complexity of the

RPPA experiments. To date, the only documented solution to

address this critical issue is an integrated platform called RIMS

(Stanislaus et al., 2008), which provides features for uploading

and annotating sample information, data visualization, correl-

ation and pathway analysis. Notably, the authors also propose

a XML standard called RPPAML to overcome the lack of a data

exchange format for RPPA data and a standardized annotation.

Unfortunately, however, none of the project URLs are accessible

(last access attempt March 20, 2014), indicating that the project

is no longer under active development and has not been adapted

by the community. Being implemented for the commercial soft-
wareMATLAB, RIMS also lacks integration of R methods com-

monly used for RPPA analyses. Finally, RIMS only supports

sample tracking at the slide level and not at the level of the

plate formats that form the basis for all experimentation. This

leaves the most difficult step of sample tracking to the user:

Samples are taken up by an extraction head configured to gen-

erate a slide in multiple extractions, thereby producing a complex

spotting pattern that does not permit researchers to locate their

samples in a straight-forward fashion.

1.5 Existing solutions

Implementations for both, parametric and non-parametric meth-

ods are available through the R packages SuperCurve (Hu et al.,

2007) and RPPanalyzer (Mannsperger et al., 2010a). A major

challenge in analysing RPPA data is, however, that end users

are often not familiar with R. SuperCurve overcomes this prob-

lem partly by offering an tcl/tk-based graphical user interface,

making both analysis and experimental design more accessible.

Sample management on a larger scale, however, is neglected.
RIMS addresses some of these issues, but does not cover more

complex data analysis (see Table 1).

1.6 Microarray R-based analysis of complex lysate

experiments (MIRACLE)

This motivated us to develop MIRACLE, a comprehensive

and user-friendly open-source web application providing an

end-to-end solution covering experimental design, sample track-

ing, data processing, normalization, as well as visualization and

statistical analysis of the results. MIRACLE conveniently keeps
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Fig. 1. Number of RPPA publications per year. Data were extracted for

2001–2013 from PubMed, using the search term ‘reverse phase protein’

OR ‘reverse-phase protein’
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track of sample information, starting with the source plates,

throughout array generation and down to the signal data, in a

process called virtual spotting.
MIRACLE allows biological researchers without any know-

ledge of R to process and analyse RPPA data efficiently, grasp-

ing back to established methods by interacting directly with R in

the background. This interface will also allow future methods to

be added in a straight-forward fashion. Results are directly visua-

lized and can be investigated interactively with regards to statis-

tical significance, as well as to correlation to primary plate based

readout data.

MIRACLE is designed with user approachability in mind, but

also supports R data analysts by offering a convenient data

export/import interface with R. While the data analysis part of

MIRACLE is particularly laid out for handling RPPA data, the

sample management functionality is suitable for any kind of

customized array design.
With its deep integration of sample management and data

analysis, MIRACLE separates itself from existing solutions

that only cover parts of the RPPA work-flow shown in

Figure 2. See Table 1 for an overview of existing solutions and

MIRACLE.

2 SYSTEM AND METHODS

2.1 Sample management

2.1.1 Plate and slide layouts In a typical RPPA experiment,
lysate samples are stored in 96-well or 384-well microtiter

plate, before they are subjected to microarray generation using

a bioarrayer, -printer or -spotter. Already at this stage,

MIRACLE supports experimental design by offering an inter-

active web interface for creating so-called plate layouts. To avoid

cryptic and long sample names, several layers of information can

be included, for instance regarding cell material, treatments,

applied compounds, lysis conditions, etc. (Fig. 3). A lot of this

information is shared by samples and is therefore redundant.

MIRACLE stores information in relational databases, where

each layer corresponds to a single property, keeping the data

concise through use of ids and mapping tables (Supplementary

Fig. S2). By relying on linked tables of a relational database,

changes of layout properties are immediately available to all

samples and experiments, thereby ensuring data consistency

and comparability in the analyses.
Similar to plate layouts, users can also define slide layouts, in

which sample properties for each individual spot of the slide can

be edited using the aforementioned sample layers. The format of

the slide is determined through specifying the number of rows

and columns, as well as blocks where applicable, e.g. when using

spotters, where each pin of the extraction head gives rise to a

different block.

2.1.2 Virtual spotting As previously mentioned, it is not always
trivial to determine the location of a sample on the slide, since a

large number of samples originate from different plates.

Furthermore, repetitive spotting of samples with various dilu-

tions and varying number of depositions per spot has to be con-

sidered, as well as the format of the extraction head. MIRACLE

addresses this issue in a feature called virtual spotting, where

previously created plate layouts are combined with information

about the operation mode of the spotter, such as format of the

extraction head, column or row-wise extraction, top-to-bottom

or left-to-right spotting, to determine the final layout. The selec-

tion and order of the plates can be manipulated via drag-

and-drop and for each plate individual extractions can be

excluded. If a so-called deposition pattern is used, in which

Fig. 2. Schematic exemplary work-flow of RPPA construction and ana-

lysis via MIRACLE. (A) Larger sample sets are stored in multiple source

plates, with individual and partly complex sample information.

Optionally primary plate readout data can be included. (B) The individ-

ual sample lysates are diluted (indicated by the colour gradient) in a first

reformatting step and subsequently spotted onto slides in a customized

pattern. (C) Multiple array copies are generated and stained with differ-

ent antibodies, adding to the sample tracking demands. (D) An array

scanner yields signal intensities for all spots, which need to be further

processed to obtain the final results.MIRACLE offers a user interface for

data analysis under automated mapping of samples on the RPPAs to

plate- and slide-based data

Table 1. Features of MIRACLE and other open-source solutions for

processing RPPA data

Feature SuperCurve RPPanalyzer RIMS MIRACLE

Platform R, tcl/tk R MATLAB,

PHP

R, Grails

GUIa � � � �

Plate layouts � � � �

Plate readouts � � � �

Slide layouts � � � �

Virtual spotting � � � �

Visualization � � � �

Surface adjustment � � � �

Quantification � � � �

Normalization � � � �

Significance � � � �

Correlation � � � �

Timecourse analysis � � � �

Network analysis � � � �

aGraphical user interface.

i633

MIRACLE

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu473/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu473/-/DC1


several adjacent spots originate from the same sample, but are

spotted with varying depositions, the layout can be simplified.

Because these samples are otherwise identical, the respective col-

umns of the layout can be merged.

2.1.3 Projects and experiments MIRACLE offers a quick
search field to locate sample information quickly using full text

search. However, to keep experimental data organized, projects

and experiments can be created, linked to layouts and subse-

quently be used for filtering.

2.2 Data processing

2.2.1 Slides Slide layouts can be linked to an arbitrary number
of slides, which correspond to the copies created during spotting.

For each slide, additional information such as a barcode, the

antibody that was used for staining and scanner settings, such

as the wavelength of the readout can be specified. Three types of

files can be uploaded, including the output file from the scanner

containing signal intensities, an image of the slide and an experi-

mental protocol.

2.2.2 Supported file formats The experimental protocol can be
of any file type (e.g. doc, pdf or txt), while for images the most

common file types, such as jpg, png and tiff, are supported.

MIRACLE processes each image into a zoomable format for

visual detection of quality issues, such as clogged tips, scratches

or uneven stainings. With regards to the array scanner output,

MIRACLE is not limited to certain file types, but has a flexible

system supporting import of comma, semicolon, tab-separated

or Microsoft Excel 2 files without requiring a specifc format.

2.2.3 Processing raw data After successfully reading the scan-
ner file, MIRACLE will offer to add all spots to the database.

During this process, the signal of each spot is linked to the

sample information stored in the slide layout. Subsequently,

users can create heatmaps to visualize the data to detect

quality problems. One example are block shifts introduced by

the scanner software that can then be corrected for

(Supplementary Fig. S3).

2.2.4 Plates and readouts Similar to how slides can be added to
slide layouts, plates can be added to plate layouts, where

Fig. 3. Sample management of plate layouts illustrated for an exemplary 96-well plate layout. Several layers of information are accessible
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additional information, such as plate and well type, barcode and

replicate number are stored. If a readout is performed before

plates are subjected to spotting, for example, fluorescence-

based measurement of cell viability or colourimetric analysis of

total protein amount, MIRACLE allows for adding these results

for each plate, utilizing the aforementioned file upload

mechanism.

2.3 Data analysis

When sample management and data processing are complete,

users can begin with data analysis. After selecting a slide

layout, the user is presented with a list of all slides linked to

this layout. In case the slide layout was created through virtual

spotting, readouts linked to the source plates are also shown. By

starting the analysis, the user will be forwarded to an R-based

web application called Rmiracle, which will automatically

begin to fetch the selected slides and readouts from the database.

2.3.1 Processing of raw signal Rmiracle offers data analysis in

several steps (Fig. 4):

� A heatmap for visual inspection and correction of block

shifts (Supplementary Fig. S3).

� Positive control spots can be used to correct for uneven

staining using the method proposed by Neeley et al. (2012).

� If a dilution series has been spotted, a quantification method

can be selected for merging these samples. Rmiracle cur-

rently supports SuperCurve, as well as implementations of

a logistic model (Tabus et al., 2006), serial dilution curve

(Zhang et al., 2009) and a non-parametric model (Hu

et al., 2007).

� Slides can be normalized for total protein amount by select-

ing between median loading, variable slope (Neeley et al.,

2009) or housekeeping normalization. For the latter, one or

several of the slides have to be marked as loading controls.

� Significance of relative sample differences can be assessed by

selecting a sample reference for performing Dunnett’s test

(Hothorn et al., 2008).

2.3.2 Protein concentration estimates and sample grouping With

the above settings, Rmiracle computes protein concentration

estimates that allow assessment of relative differences between

samples. To this end, we grasp back to the multi-layer sample

information model of MIRACLE to group samples. Users can

select horizontal and vertical grouping categories, for example

cell-lines tested or treatments applied, which will then be reflected

by different facets of a bar plot. Users can also select an add-

itional category called ‘fill’ for separating bars by colour to

achieve a third grouping dimension to compare, for instance,

replicates with different numbers of depositions. The results are

also shown in tabular form, including a download option, and

are further accompanied by diagnostic plots specific for the

selected quantification method. Figure 5 depicts the user inter-

face of the Rmiracle analysis. Beyond data visualization and

computation of protein concentration estimates, the analysis

comprises additional features introduced below.

2.3.3 Comparison across slides and readouts The comparison
tab provides a bar plot (Fig. 5F), in which an average is calcu-

lated for the previously selected colour fill category, since colours

are here reserved for comparing protein concentration estimates

across slides. It is also possible to include plate readouts.

2.3.4 Correlation An important aspect of quality control is
signal correlation. In the correlation tab (Fig. 5G), all pairwise

Pearson correlation coefficients are calculated for both, protein

concentration estimates and raw signal intensities, and presented

as a heatmap. Correlation is also shown between slides and plate

readouts. This can be an important factor, e.g. in case a plate-

based readout provides information about the total protein

amount and should therefore correlate with the RPPA signal

used for normalization.

Fig. 4. Processing of raw data in Rmiracle: Signal intensities are dis-

played in heatmaps (A) for visual inspection. Subsequently, a surface

adjustment based on control spots may be performed to correct for

uneven staining (B). In case of serial sample dilutions, quantification

can be applied (C) to obtain a single protein concentration estimate

(D). Furthermore, data can be normalized to negative controls

(A_NC1) and total protein amount, e.g. using protein data from separate

slides, which enables the identification of effector samples (E, depicted

by arrows). Significance of the sample differences is finally assessed

in comparison to a selected negative control by applying Dunnett’s test

(F)
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2.3.5 Significance The significance of relative differences be-
tween samples or between samples and a control is of great inter-

est for experimental researchers. Traditionally, t-tests are used to

obtain the necessary P-values, often neglecting multiple compari-

sons correction and issues arising from low replicate numbers. To

address these issues, MIRACLE applies Dunnett’s test (Fig. 5H),

which is a t-statistic based multiple comparison method compar-

ing each sample with a pre-defined control. In contrast to other

methods, the variance is pooled across all samples, thereby

dealing with low replicate numbers (Hothorn et al., 2008).

2.3.6 Import and export Convenient import functions allow

experienced R users to download RPPA data directly from

MIRACLE by specifying ids or barcodes, respectively. R meth-

ods to process or visualize these data are directly available,

allowing data analysts to perform deeper analysis not covered

by the proposed work-flow. Each slide, as well as the resulting

protein concentration estimates can be downloaded as tab- or

comma-separated file, in which all layout information is

included.

3 IMPLEMENTATION

3.1 MIRACLE web application

MIRACLE was built using Grails (http://grails.org/), a Groovy/

Java based web application framework that allows for rapid de-

velopment with a convention over configuration approach.

Grails provides web application critical functionality through

industry-proven projects and plug-ins. This includes, for

instance, Hibernate for abstracting data access by modelling

database tables through java classes and Apache Lucene

(http://lucene.apache.org/core/) for efficient database search.

Using hibernate allows MIRACLE to operate with any JDBC

compatible SQL database, such as Microsoft 2 SQL Server or

Oracle 2 MySQL. Data export to R is realized through a web

service, in which efficient conversion between database content

and JSON objects is facilitated using Jackson (https://github.

com/FasterXML/jackson). Furthermore, the SpringSecurity pro-

ject (http://projects.spring.io/spring-security/) limits access with a

role-based user model. In case data should be accessible to users

without an account, MIRACLE provides an alternative access

(A) (F) (H)

(G)

(E)

(D)(C)

(B)

Fig. 5. Analysis using Rmiracle: A heatmap visualizes different slide properties, such as signal intensities (A). Users can change various parameters, for

example inclusion of surface adjustment, selection of methods for quantification and normalization for total protein amounts. Specific samples can be

selected and grouped based on different properties of the data set (B). Depending on the quantification method, diagnostic plots are shown (C). The

results are displayed in an interactive table and in a bar plot (D and E). A global overview of protein concentration estimates is available for all slides and

plate-based readouts (F). Pearson correlation coefficients are calculated for all slides, as well as for plate-based readouts (G). Significance is assessed by

comparing sample groups to negative controls through Dunnett’s test (H)
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model through universal unique identifiers called security tokens.

These are generated automatically for each slide and plate read-

out. In the current version (v. 0.8), all data are accessible to all

users. With the next release, we will change this such that data

are private for each user unless selected otherwise. To efficiently

deal with large image files in MIRACLE, we created the Grails

OpenSeaDragon plug-in (http://grails.org/plugin/open-seadra-

gon) for generating and displaying pyramide representations of

slide images in the Microsoft 2 deep zoom format.

3.2 Rmiracle R package

All R functions have been wrapped in the R open-source pack-

age Rmiracle. This includes user and security token based

authentication for downloading data from MIRACLE, methods

for RPPA data processing, e.g. surface adjustment, various

methods for quantification and normalization, as well as meth-

ods for visualization and statistical analysis using functionality

implemented in the R package multcomp.

In addition, all of these features are accessible through two

web applications developed directly on top of R utilizing Shiny

(http://www.rstudio.com/shiny/). Both Shiny applications are

included in the Rmiracle package and can be used independent

of MIRACLE via uploading files in a MIRACLE compliant

format (see Suppl. File 1 for an example).

4 DISCUSSION

RPPAs are a promising technology that finds growing applica-

tion in both, basic and clinical research. While many of the chal-

lenges of this technology are similar to those of traditional

microarrays, RPPA-specific challenges arise and have to be

addressed. In our efforts to adapt this technology as secondary

readout to high throughput genome-wide RNAi screens,

we identified a lack of a comprehensive tool incorporating all

necessary tasks, such as experimental design, sample tracking

and data analysis. To fill this gap, we developed MIRACLE, a

web-based tool with deep integration of R for efficient data

analysis.
Using a database-driven web application, such as MIRACLE,

for sample management offers a number of advantages. Due to

relational tables, all data are kept in a concise and consistent

format, where changes and updates are automatically propa-

gated. In contrast to file-based storage solutions, no experimental

information is lost upon turnover of laboratory staff and no

problems arise from cryptic and inconsistent sample termin-

ology. Collaboratively creating experimental data is significantly

more convenient in web-based applications, as concurrency

issues, such as file locks, can be avoided. In addition, all infor-

mation can be located quickly, using full text search, which add-

itionally increases efficiency.
With regards to sample management, both the SuperCurve

package and RIMS provide a graphical user interface for spe-

cifying slide layouts, but it does not address sample tracking

from plate to slide level and does not allow for multiple levels

of sample information. Moreover, they lack the virtual spotting

and layout editing features ofMIRACLE that enable researchers

to enter all sample-related information already on the plate level

and before the complexity of the layout is increased by the array

generation. This saves a significant amount of time and effect-

ively avoids mistakes due to manual data processing.
The R packages SuperCurve and RPPanalyzer provide experi-

enced R users with a wealth of options to analyse RPPA data.

The results of these methods are relative protein concentration

estimates. A logical next step could be to investigate how signifi-

cant relative differences in protein levels are and how well results

correlate, e.g. between slides used for normalization or between

individual slides and plate-based readout. Only RPPanalyzer

reports on slide to slide correlation (Mannsperger et al.,

2010a). Significance analysis is not part of any existing solution.

Moreover, replicates are typically merged during data processing

to increase confidence of the results, but thereby making them

unavailable for subsequent significance analysis. In contrast,

Rmiracle processes replicates individually and offers a compre-

hensive evaluation of significance and correlation. A number of

analysis methods, such as serial dilution curve (Zhang et al.,

2009) have been published as R code, but have not been adapted

to a user-friendly format, thereby limiting their application for

experimental researchers. Experienced R users, on the other

hand, need the flexibility of the R environment to perform

deeper analysis of the data. Rmiracle strives to serve both

target groups by incorporating a broad number of published

methods on RPPA data analysis in both, command line and

web interface. Additionally, Rmiracle can be used completely

independently of the MIRACLE web application, requiring

only a local installation of R.

Notably, the web application RIMS followed similar goals as

MIRACLE, but did not include scenarios where more sophisti-

cated data processing, e.g. quantification and normalization of

the signal intensities, is necessary (Neeley et al., 2009). Moreover,

RIMS is not actively developed or available at the moment,

stressing the need for a solution like MIRACLE.

4.1 Outlook

While MIRACLE has been designed to handle RPPA data, the

sample tracking issues addressed here are in general common for

researchers constructing customized microarrays, allowing adap-

tion of MIRACLE to serve other array formats.
RPPA data are particularly suited for unraveling complex pro-

tein signaling mechanisms. Therefore, we plan to integrate

MIRACLE with suitable tools for network and pathway

analysis.
The minimum information about a micorarray experiment

(MIAME) standard (Brazma et al., 2001) and platforms like

the gene expression omnibus (GEO) (Edgar et al., 2002) offer

an effective method for standardized data exchange of gene

expression array data. In GEO, users can export data to R or

utilize a web-based application called GEO2R (https://www.ncbi.

nlm.nih.gov/geo/geo2r/) for basic analysis.
MIRACLE has the potential to deliver similar features to the

RPPA community. We therefore intend to continue development

towards an RPPA web portal for published data. In addition, we

envision that MIRACLE could serve as a framework for

comparing the performance of various methods for RPPA data

processing.
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5 CONCLUSION

In recent years, the application of RPPA technology has matured
considerably. Along with this progress, suitable computational

methods have been developed to address issues in data process-
ing. To further promote acceptance of this technology, fully inte-
grated tools like MIRACLE are indispensable. Furthermore, it

can be expected that standardization of RPPA data in a common
framework can substantially aid the development of novel
algorithms and allow better integration at the level of network
biology and other multi-OMICS data. It is our hope that

MIRACLE will attract contributions from both, users and
developers, which will help to strengthen the entire field. To
this end, we have established a github repository (https://

github.com/NanoCAN/MIRACLE) and established a demo
application (http://www.nanocan.org/miracle/demo) containing
biological sample data. Further documentation and a step-

by-step user guide are available online (Supplementary File 2).
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