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ABSTRACT
Platycodin D (PD) is a major active component of the roots of Platycodon grandiflorum (Jacq.) A.DC.
and possesses multiple biological and pharmacological properties, including anti-cancer activity.
The aim of this study was to characterize PD-induced cytoplasmic vacuolation in human cancer
cells and investigate the underlying mechanisms. PD-induced cancer cell death was associated
with cytoplasmic pinocytic and autophagic vacuolation. Cellular energy levels were decreased by
this compound, leading to the activation of AMP-activated protein kinase (AMPK). Additionally,
compound C, an inhibitor of AMPK, completely prevented PD-induced vacuolation. These results
suggest that PD induces cancer cell death, associated with excessive vacuolation through AMPK
activation when cellular energy levels are low. Therefore, our findings provide a mechanistic
rationale for a novel combinatorial approach using PD to treat cancer.

Abbreviations: AMPK: AMP-activated protein kinase; PARP: poly ADP ribose polymerase; PD:
Platycodin D; siRNA: small-interfering RNA
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Introduction

Cancer poses a significant worldwide health problem in
both economically developing and developed countries
despite advances in its treatment (Torre et al. 2015).
Therefore, new anticancer agents with better efficacy
and fewer side effects are required. A large number of
plant-derived natural chemicals possess anticancer prop-
erties and have been implicated in cancer prevention
and treatment (Nobili et al. 2009).

Platycodin D (PD) is one of themain saponins extracted
from the root of Platycodon grandiflorum (Jacq.) A.DC.,
which has been used for decades as a traditional prescrip-
tion to eliminate phlegm, relieve cough, reduce inflam-
mation, lower blood pressure and blood sugar levels,
and for weight loss; it has also been used to treat tumors
and improve human immunity (Nyakudya et al. 2014;
Zhang et al. 2015). PD possesses immunostimulatory (Xie
et al. 2008), anti-inflammatory (Ahn et al. 2005), anti-
obesity (Lee et al. 2010), and anti-atherogenic (Wu et al.
2012) activities. Particularly, PD exerts potent anti-cancer
activity against many types of cancers (Khan et al. 2016).

In a preliminary study, we observed the development
of profuse, lucent cytoplasmic vacuoles that were readily

detected by phase-contrast microscopy (Figure 1(a)) in
PD-treated cells, followed by cell death (Figure 1(b +
1c). PD has been suggested to induce autophagy (Li
et al. 2015; Zhao et al. 2015); consequently, PD-induced
cytoplasmic vacuoles are considered autophagic (Li
et al. 2015). However, detailed characterization of these
cytoplasmic vacuoles and the mechanisms underlying
their development remain unclear.

In this study, we found that PD-induced cancer cell
death, associated with the development of pinocytic
and autophagic vacuoles, occurs because of AMP-acti-
vated protein kinase (AMPK) activation. Our results
reveal the mechanisms underlying PD-induced cell
death and highlight the potential for developing PD as
an anti-cancer agent.

Materials and methods

Materials

Platycodin D was obtained from Sigma-Aldrich (St. Louis,
MO, USA). Anti-PARP, anti-LC3B, anti-beclin1, anti-
phospho-AMPKα (Thr172), and anti-AMPKα antibodies
were obtained from Cell Signaling Technology
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(Danvers, MA, USA), and the anti-β-actin antibody was
obtained from Santa Cruz Biotechnology (Dallas, TX,
USA).

Cell culture
RKO human colorectal cancer cells, A549 human lung
adenocarcinoma epithelial cells, and MCF7 human
breast adenocarcinoma cells were kindly provided by
Dr. Heon Joo Park (Department of Microbiology, Inha
University College of Medicine, Incheon, Republic of
Korea) and cultured in Dulbecco’s modified Eagle’s
medium (HyClone Laboratories, Logan, UT, USA) sup-
plemented with 10% fetal bovine serum (HyClone Lab-
oratories) and 1% antibiotics (Thermo Fisher Scientific,
Waltham, MA, USA). Cells were incubated at 37°C in a
humidified atmosphere containing 5% CO2.

Cell viability assay
Cell viability was assessed using the Cell Titer 96®
AQueous One Solution cell proliferation assay kit
(Promega Corporation, Madison, WI, USA) according to
the manufacturer’s instructions. Absorbance was
measured at 490 nm with a Multiskan™ GO microplate
spectrophotometer (Thermo Fisher Scientific).

Western blot analysis
Cells were washed with ice-cold phosphate-buffered
saline and lysed on ice in RIPA lysis buffer [50 mM Tris-
HCl (pH 7.5), 150 mM NaCl, 1% Nonidet P-40, 0.1%
sodium dodecyl sulfate, and 0.5% sodium deoxycholate]
supplemented with protease and phosphatase inhibi-
tors. Aliquots containing equal amounts of protein
were loaded and separated by SDS-PAGE. The proteins

Figure 1. PD induces cytoplasmic vacuole formation and death in human cancer cells. (A) RKO colorectal cancer cells were
treated with vehicle or PD (10 µM) and then examined by phase-contrast microscopy after 48 h. (B + C) RKO colorectal cancer cells,
A549 lung adenocarcinoma epithelial cells and MCF7 breast adenocarcinoma cells were treated with different concentrations of PD
for 24 h. Cell death was assessed with a CellTilter 96 Aqueous One Solution Cell Proliferation Assay kit and by PARP cleavage. Cell via-
bility was significantly different from the control: *p < 0.05; **p < 0.01.

ANIMAL CELLS AND SYSTEMS 119



were then transferred to nitrocellulose membranes (Bio-
Rad, Hercules, CA, USA) and probed using the indicated
antibodies. Protein bands were detected by chemilumi-
nescence on a ChemiDoc gel imaging system (Bio-Rad).

Small-interfering RNA (siRNA) transfection
Synthetic beclin-1-specific siRNA, siBeclin1 (5′-GAGAU-
CUUAGAGCAAAUGA-3′), was purchased from Bioneer
(Daejeon, Republic of Korea). Non-specific siRNA
(Bioneer) was used as a negative control. RKO cells
were seeded in 60-mm dishes, grown to ∼80% conflu-
ence, and transfected with the siRNA duplexes using
Lipofectamine® RNAiMAX (Thermo Fisher Scientific)
according to the manufacturer’s recommendations. To
determine the extent of siRNA inhibition, expression of
beclin-1 in the transfected cells was assessed by
western blotting.

Uptake of fluorescence-labeled dextrans
The dextran-Alexa Fluor 594 (10,000 MW) tracer was pur-
chased from Thermo Fisher Scientific. To evaluate the
cellular uptake of the tracer, the cells were washed
twice with phenol red-free DMEM containing 10% fetal
bovine serum and then incubated with the tracer
(0.5 mg/mL) in the same medium for 8 h (Overmeyer
et al. 2008). The cells were washed twice with the same
medium without the tracer, and then images of live
cells were acquired by laser-scanning confocal
microscopy (TE2000-E, Nikon, Tokyo, Japan).

Adp/ATP ratio assay
The ADP/ATP ratio was measured based on a luciferin-
luciferase reaction using an ADP/ATP ratio assay kit
(Sigma-Aldrich) following the manufacturer’s instruc-
tions. Luminescence was read on a VICTOR X Light lumi-
nescence plate reader (PerkinElmer, Waltham, MA, USA).

Electron microscopy
Thin sections of cells embedded in EMbed 812 (Electron
Microscopy Sciences, Hatfield, PA, USA) were counter-
stained with uranyl acetate and lead citrate, and then
examined under a Hitachi H-7100 transmission electron
microscope (Tokyo, Japan).

Statistics
Data were analyzed using analysis of variance (Sigma
Stat 12.0, Systat Software, San Jose, CA, USA) with para-
metric or nonparametric post hoc analysis, and multiple
comparisons were made by using the least significant
difference method. All data are presented as the mean
± SE of at least three independent experiments. The
results were considered statistically significant if p < 0.05.

Results

Pd induces development of both autophagic and
pinocytic vacuoles

PD-induced cytoplasmic vacuoles are considered autop-
hagic (Li et al. 2015). Further, we observed an increase in
LC3 conversion (from LC3-I to LC3-II) (Figure 2(a)). There-
fore, we examined whether PD-induced cytoplasmic
vacuolation occurred solely because of autophagy. We
knocked-down beclin1, one of the first mammalian
autophagy effectors (Sinha and Levine 2008), with a
specific siRNA in RKO cells (Figure 2(b)) and assessed
PD-induced vacuolation. As shown in Figure 2(c),
beclin1 knockdown failed to prevent cytoplasmic vacuo-
lation, indicating that most vacuoles were not
autophagic.

Moreover, electron microscopy of PD-treated cells
revealed numerous electron-lucent vacuoles (Figure 2
(d)) that were generally devoid of cytoplasmic com-
ponents or organelles. However, unidentified membra-
nous inclusions or small quantities of amorphous
electron-dense material were observed in some cells
(Figure 2(d)). The electron-lucent vacuoles were clearly
distinct from the description of ‘classic’ autophagosomes
described previously (Mizushima et al. 2010).

Several molecules induce cell death associated with
the development of macropinocytic vacuoles in cancer
cells (Overmeyer et al. 2008; Sun et al. 2017; Lertsuwan
et al. 2018). These macropinosomes typically appear as
phase-lucent vesicles. To further confirm that the PD-
induced vacuoles originated from pinosomes, we inves-
tigated fluid-phase endocytosis using Alexa Fluor 594-
labeled dextran. As shown in Figure 2(e), PD-induced
vacuoles were labeled with fluorescent dextran. These
findings, coupled with the morphologic evidence in
Figure 2(D), support the identification of PD-induced
vacuoles as pinosomes mixed with autophagosomes.

Pd decreases cellular energy levels, leading to
AMPK activation

To explore the molecular pathways underlying the cyto-
plasmic vacuolation induced by PD, we tested an Erk1/2
inhibitor (PD98059), p38 MAPK inhibitor (SB203580), and
JNK inhibitor (SP600125), as Zhao et al. reported that PD
induces autophagy through JNK and p38 MAPK acti-
vation (Zhao et al. 2015). However, we observed no sig-
nificant decrease in PD-induced vacuoles (data not
shown).

AMPK plays critical roles in autophagy (Mihaylova and
Shaw 2011) and pinocytosis (Guest et al. 2008). More-
over, it has been reported that PD containing butanol
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fraction of P. grandiflorum enhances autophagic cell
death via AMPK activation, whereas co-treatment with
Compound C, an inhibitor of AMPK, decreases LC3-II
level (Yim et al. 2016).

Therefore, we examined whether PD activates AMPK
in cancer cells and observed that PD significantly
increased the level of active AMPK (Figure 3(a)) at 1 h
and maintained this level for 24 h (Figure 3(b)).

AMPK, a well-known sensor of cellular energy status
(Hardie 2011), is activated when intracellular ATP levels
decrease (Mihaylova and Shaw 2011). Therefore, we
examined whether PD decreases cellular energy levels
by measuring the ADP/ATP ratio. An increase in the
ADP/ATP ratio, which indicates a decrease in cellular
energy status, displaces the adenylate kinase reaction
towards ATP and AMP production (Hardie et al. 2012).

Figure 2. PD induces development of both autophagic and pinocytic vacuoles. (A) RKO cells, A549 cells, and MCF7 cells were
treated with different concentrations of PD for 24 h, and LC3B protein levels were analyzed by western blotting. (B) RKO cells were
transfected with nonspecific siRNA (siControl) or beclin1-specific siRNA (siBeclin1), and the protein expression of beclin1 was analyzed
by western blotting. (C) Percentage of vacuolated cells was determined by counting 500 cells in random photomicrographs of the
control and beclin1-knockdown cultures. Results shown are the mean ± SE of four independent experiments. (D) Cells were treated
with PD (5 µM) to induce vacuolation and observed by electron microscopy after 24 h. Some vacuoles contained unidentified inclusions
or small quantities of amorphous electron-dense (A) or electron-lucent (*) material. Nu, nucleus. Bar, 500 nm. (E) Cells preincubated
with PD (5 µM) for 16 h were incubated for 8 h with fluid-phase tracer dextran-Alexa Fluor 594 (red). Merged images of the phase-
contrast and fluorescence micrographs are also presented. Bar, 20 µm. The data shown are representative of 3 experiments.
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As expected, PD treatment significantly increased the
ADP/ATP ratio (Figure 4(a)). In addition, low ATP levels
were maintained for 24 h in PD-treated cells (Figure 4
(b)), indicating that PD decreased cellular energy levels.

To further confirm that PD-induced vacuolation was
mediated by AMPK activation, we pre-treated the
cancer cells with compound C (10 µM for 1 h), a well-
known AMPK inhibitor, before treatment with PD (5 µM
for 24 h); compound C completely prevented PD-
induced vacuolation (Figure 4(c)). In addition, inhibition
of AMPK activation markedly suppressed PD-induced
cell death (Figure 4(d)). These findings strongly suggest
that PD decreases cellular energy levels, which activates
AMPK and results in the accumulation of pinocytic and
autophagic vacuoles (Figure 5).

Discussion

Although chemotherapy is one of the most common
treatments for cancer, its effectiveness is limited by
drug resistance (Holohan et al. 2013) that results from
the high adaptability of cancer cells (Debatin and
Krammer 2004). Therefore, combination therapy to
block multiple pathways is a cornerstone of cancer

therapy (Yap et al. 2013). Although a combinatorial
approach with natural compounds is a promising
approach for preventing drug resistance (by affecting
more than one target) and enhancing the potency of
chemotherapy (through chemosensitization), it is impor-
tant to define the mechanisms of action of these natural
compounds.

PD is a potential anti-cancer compound that has been
shown to exhibit broad-spectrum cytotoxicity against a
wide range of cancer cell lines (Khan et al. 2016).
However, further studies are required to establish its
mechanism of action for effective combination therapy.

Autophagy is an evolutionarily highly conserved cata-
bolic process that plays a vital role in the degradation of
misfolded proteins and damaged organelles (Yang and
Klionsky 2010; Sui et al. 2014). It plays a very important
role in various physiological and pathological conditions
such as cancer (Yang et al. 2011; Panda et al. 2015).
Numerous studies have shown that autophagic cell
death or type II programed cell death is an alternative
mechanism of cancer cell death in apoptosis-resistant
cells. The effect of PD-induced autophagy is controver-
sial. Li et al. reported that PD induces protective autop-
hagy in HepG2 hepatocellular carcinoma cells (Li et al.

Figure 2 Continued
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2015), whereas Yim et al. suggested that PD enhances
autophagic cell death in human lung cancer cells (Yim
et al. 2016). The present study showed that PD promotes
cancer cell death by accumulating not only autophagic
but also pinocytic vacuoles. The characteristic feature
of autophagic cell death is the proliferation of autopha-
gosomes and autolysosomes that engulf cytoplasm
and organelles and cannibalize the cell (Gozuacik and
Kimchi 2004; Lockshin and Zakeri 2004). In PD treated
cells, the large pinocytic vacuoles that eventually fill
the degenerating cells are morphologically distinct
from autophagosomes. Specifically, the vacuoles were
phase and electron lucent, and were bound by a single
membrane (Figure 2(d)), rather than the typical double
membrane of autophagosomes. Although autophago-
somes seem to accumulate in parallel with the pinocytic
vacuoles, our studies with beclin-1 knockdown cells
suggest that excessive vacuolation and cell death
induced by PD can occur independent of the autophagy
machinery. Thus, in this case, autophagy may reflect the
attempt of the cells to survive under the adverse

metabolic conditions created by rampant pinocytic
vacuole accumulation rather than being a direct cause
of cell death (Mathew et al. 2007).

Methuosis is one of the most recent additions to the
list of nonapoptotic cell death phenotypes. The name,
which is derived from the Greek methuo (to drink to
intoxication), was selected because the most prominent
attribute in cells undergoing this form of death is the
accumulation of large fluid-filled cytoplasmic vacuoles
that originate from macropinosomes (Overmeyer et al.
2008; Overmeyer et al. 2011, Sun et al. 2017). Although
methuosis is distinct from autophagy and other non-
apoptotic forms of death, the amount of LC3-II increases
on Western blots (Overmeyer et al. 2008). This could
reflect either an increase in autophagosome biogenesis
(stimulation of cellular macroautophagy pathways) or a
decreased lysosomal turnover of LC3-II. Taken together,
our results suggest that PD-induced cell death with
excessive vacuoles is methuosis.

Rab7 GTPase has been suggested as a common
modulator in endocytosis and autophagy (Hyttinen

Figure 3. PD decreases the cellular energy level. (A) Cells were treated with PD (5 µM) for 1 h, after which the activation of AMPKα
was evaluated by western blot analysis. Results shown are the mean ± SE of 3 independent experiments. *p < 0.05, **p < 0.01 vs
control. (B) Cells were treated with different concentration of PD for 24 h. Activation of AMPKα was assessed by western blotting.
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Figure 4. PD induces sustained activation of AMPKα and PD-induced vacuoles are AMPK-dependent. (A) Cells were treated with
PD (5 µM) for 1 h, ADP/ATP ratios were determined using an ADP/ATP ratio assay kit. (B) Cells were treated with vehicle or PD (5 µM) for
24 h. Cellular ATP levels were measured. Results shown are the mean ± SE of 3 independent experiments. **p < 0.01 vs vehicle control.
(C) Cells were pre-treated with or without 10 µM compound C (CC) for 1 h before exposure to 5 µM PD for an additional 24 h. Percen-
tage of vacuolated cells was determined by counting 500 cells in random photomicrographs. Results shown are the mean ± SE of 4
independent experiments. **p < 0.01 vs PD only. (D) Cells were pre-treated with or without 10 µM compound C (CC) for 1 h before
exposure to 5 µM PD for an additional 48 h. Cell death was assessed with a CellTilter 96 Aqueous One Solution Cell Proliferation
Assay kit. *p < 0.05; **p < 0.01.
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et al. 2013) because Rab7 designates the maturation of
endosomes and autophagosomes (Maday et al. 2012,
Hyttinen et al. 2013) and participates in the fusion step
with lysosomes (Agola et al. 2012). We therefore exam-
ined Rab7 levels in PD-treated cancer cells, but no
changes were detected (data not shown).

The AMPK signaling cascade has gained attention in
vitro and in vivo anti-cancer studies (Kim & He 2013,
Zadra et al. 2015). Consistent with this, PD activated

AMPK, which mainly regulated vacuolation and cell
death (Figures 3 and 4c+d) even though decrease of
ATP levels was only about 20–25% by PD treatment
(5μM, 24 h) (Figure 4(b)). Suggesting that sustained acti-
vation of AMPK by loss of ATP balance might be more
important than absolute ATP decrease in PD-induced
cell death.

Interestingly, the chemotherapeutic agent sunitinib
has been shown to inhibit AMPK (Laderoute et al.

Figure 4 Continued
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2010), suggesting that combinatorial treatment of suniti-
nib and PD would be ineffective. Therefore, this study
provides a rationale for combining PD with conventional
anticancer agents to target AMPK for improving che-
motherapy in various cancers.
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