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Abstract: Dysregulation of neural stem cells (NSCs) is associated with several neurodevelopmental
disorders, including epilepsy and autism spectrum disorder. The mammalian target of rapamycin
(mTOR) integrates the intracellular signals to control cell growth, nutrient metabolism, and protein
translation. mTOR regulates many functions in the development of the brain, such as proliferation,
differentiation, migration, and dendrite formation. In addition, mTOR is important in synaptic
formation and plasticity. Abnormalities in mTOR activity is linked with severe deficits in nervous
system development, including tumors, autism, and seizures. Dissecting the wide-ranging roles
of mTOR activity during critical periods in development will greatly expand our understanding
of neurogenesis.
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1. Introduction

Neurogenesis from the embryonic brain throughout adulthood requires a well-regulated
interaction of inductive cues and secreted signals that guide the development of neural stem cells
(NSCs). For a stem cell to transition into a properly functioning neuron it must process complex
external and internal signals to divide, differentiate, migrate, and integrate properly. These stages are
guided by extrinsic factors that promote the transcription of genes to define the cell through maturation.
Many extracellular signals converge on the mammalian target of rapamycin (mTOR) pathway, which is
a chief regulator of cell growth, proliferation, and protein translation. Several studies have shown that
mTOR is involved in many aspects of neurogenesis. Activation of mTOR alters NSC differentiation,
neural progenitor migration, dendrite development, and neuron maturation.

Disruption in mTOR pathway activity leads to a host of neurodevelopmental disorders, including
the congenital multisystem disorder tuberous sclerosis (TS) [1–3]. Cortical malformations form in most
TS patients during fetal and early postnatal development, and they contribute to the development
of seizures and cognitive deficits [4,5]. More than 50% of TS patients develop varying degrees of
Autism Spectrum Disorder (ASD) [6]. ASD patients exhibit impaired social interactions, repetitive
behaviors, and diminished interests. Hyperconnectivity of neuronal circuits by the disruption in
protein synthesis is thought to drive these altered behaviors [7]. As ASD is comorbid with TS,
hyperactivity of the mTOR pathway is strongly implicated in driving both pathologies. Studies in
mouse models of autism that alter the upstream elements of the mTOR pathway recapitulate cortical
malformations [8–11]. In addition, many cortical neurons exhibit enlarged dendrites, altered dendritic
spines, and hyperactivity, which can result in seizure episodes [12–14]. Additionally, increasing mTOR
activity in neurons can result in ASD-like behaviors in mice [15]. Because mutations upstream of the
regulators of the mTOR pathway in NSCs lead to hyperactivity in mature neurons, it is important
to understand mTOR signaling during nervous system development. In this review, we describe
our current understanding of the role of mTOR and related pathways at each stage of neurogenesis,
focusing on embryonic cortical and postnatal development.
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2. Overview of Cortical and Postnatal Neurogenesis

NSCs arise from the ectoderm with their fate being influenced by the timely activation of
transcription factors and development mediated through the Akt/mTOR pathway. As development
of the neural tube progresses, the rostral regions enlarge to form three primary vesicles, including
the early prosencephalon [16]. The population of NSCs from the anterior neural tube develops into
multipotent radial glia progenitors in the telencephalic vesicle. These divide to form radial glial cells
(RGCs) at the most apical layer of the ventricular zone.

The majority of corticogenesis occurs in rodents from embryonic day 10.5 to embryonic day
18.5 where RGCs give rise to the majority of excitatory neurons in the cerebral cortex [16]. Primary
divisions of RGCs are asymmetric and form a new RGC and intermediate progenitor. With continued
development, intermediate progenitors of RGCs migrate from the apical ventricular zone and comprise
the subventricular zone (SVZ), which is a second zone of proliferation [17]. Intermediate progenitors
migrate along the apical processes of RGCs, delaminate, and begin to form the cortical plate where
they continue to differentiate into post-mitotic glutamatergic neurons. Each cortical layer is produced
sequentially in an inside-out manner where progenitors that are produced earlier populate the deepest
layers of the cortex and neurons that will be in superficial layers are produced later [16]. In addition,
NSCs in the ventral ganglionic eminences produce progenitors that migrate tangentially into the
developing cortex where they establish the network of inhibitory interneurons [18,19]. Upon reaching
their final location in the cortex, both types of neurons begin to extend dendrites, as well as a single
axon in order to form synaptic connections necessary for mature neural circuits.

The postnatal SVZ is a transient state in the first week of postnatal life, during which the embryonic
SVZ transitions to the adult SVZ [20,21]. RGCs begin to retract their apical processes that contact
the pia, and their rates of proliferation slow [22,23]. Neurogenesis in the SVZ is a tightly regulated
event where the NSCs expand their population and differentiate into neuroblasts that incorporate into
developing circuits [24]. NSCs contact the lateral ventricles and blood vessels in the SVZ exposing
them to important guidance molecules, such as IGF-1 and EGF, which can influence the downstream
signaling cascades, like Akt and mTOR [25]. NSCs differentiate into daughter cells, called transit
amplifying cells (TACs), which are highly proliferative. TACs, in turn, differentiate into neuroblasts
that then migrate through the SVZ, into the rostral migratory stream (RMS) and become mature
neurons in the olfactory bulb (OB). In addition, postnatal NSCs contribute to both neuron and glia
populations, with the majority of newly born neurons migrating to the OB [26–28]. Newly born
neurons mature and form connections that are stereotypic of their position in the OB. For example,
newly born granule neurons extend a single apical dendrite that branch in the external plexiform layer
to form dendro-dendritic connections with mitral cells. These cells form extensive dendritic arbors in
the first three weeks of their development before pruning dendrites and spines as they mature [29].

3. The mTOR Signaling Network

Increasing protein synthesis in responses to growth and proliferation is essential to maintain
homeostasis in all cell types. mTOR is a large serine/threonine protein kinase that is a part of the
phosphoinositide 3-kinase (PI3K)-related kinase family with two divergent complexes, mTOR complex
1 (mTORC1) and 2 (mTORC2). mTORC1 integrates highly intracellular ATP, glucose, and certain amino
acid signaling to regulate cellular processes (Figure 1). Low ATP levels indirectly inhibit mTORC1
by promoting TSC1/2 complex formation [30]. The TSC1/TSC2 complex normally suppresses the
GTPase Rheb [31]. GTP-bound Rheb then activates mTORC1, which is a complex containing mTOR,
Raptor, MLST8, and PRAS40 [32,33]. In addition to PI3K/ Akt activation, Ras-MAPK signaling can
activate mTORC1 through the phosphorylation of TSC2 and PRAS40 [34–36]. Activation of mTORC1
results in increased protein translation by phosphorylating 4E-BP (including 4E-BP1/2/3) and p70 S6
kinases [37,38]. 4E-BPs and S6K1/2 inhibit the formation of 5’ translation initiating complex by binding
eIF-4E. mTORC1-mediated phosphorylation of 4E-BPs and S6K1/2 liberates their respective binding
partners, facilitating preinitiation complex formation and initiating translation [39,40].
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Figure 1. Overview of the mammalian target of rapamycin (mTOR) signaling pathway. mTOR signaling
is activated in several ways, including growth factors, amino acids, and increased cellular
energy. Growth factors can activate both mTOR complexes or PI3K and ERK signaling. mTORC2
phosphorylates Akt at S473 to enhance activation. In turn, Akt suppress TSC2, which suppresses Rheb.
Additionally, ERK can inhibit TSC2 to promote mTORC1 activation. Phosphorylation of 4E-BPs and
S6K1/2 by mTORC1 promote cap-dependent translation.

In TS, a loss of function mutation in TSC1 or TSC2 leads to the hyperactivity of mTOR [41].
In animal models of TS, the hyperactivation of mTORC1 by TSC1 or TSC2 ablation increases cell
size, cell survival, and the production of slow-growing tumors, which is consistent with unrestrained
protein translation [42–44]. In addition to protein translation, mTORC1 activation also dampens the
levels of autophagy via ULK1 [45]. Autophagy plays a critical role in the degradation and recycling of
cellular components. Deletion of TSC2 increases both AMPK and mTORC1 inhibition of autophagy,
thus promoting tumorigenesis in TS patients [46,47].

Both mTOR complexes share the binding partners DEPTOR and mLST8 in common; however,
the rapamycin-insensitive Rictor is unique to mTORC2. Upstream regulators of mTORC2 are not
well defined; however, growth factor signaling is known to activate mTORC2 [48]. Like mTORC1,
there are multiple downstream targets of mTORC2, including PKC, SGK1, MST1, and Akt. Through
PKC and MST1, mTORC2 can increase cell survival and proliferation [49]. Activation of mTORC2
results in phosphorylation of protein kinase B/Akt at serine 473, which, in turn, positively regulates
mTORC1 activity [48,50]. Akt is a key regulator of survival during cellular stress, and dysfunction can
promote the development of tumors. The mTORC2 binding partner mSin1 localizes the complex to the
plasma membrane near Akt [51]. Deletion of the pleckstrin homology (PH) domain of mSin1 leads
to constitutive mTORC2-AKT signaling. Recent studies have shown that the PH domain of mSin1
can inhibit mTORC2 complex formation and reduce Akt signaling [52]. Akt has several downstream
targets that can affect both transcription and protein translation. Akt phosphorylates both forkhead
box class O (FOXO) transcription factors and MDM2, leading to increased transcriptional activity
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and cell survival. Additionally, TORC2 activation in yeast, via Ypk1, regulates G2/M cell cycle entry,
as well as actin organization and endocytosis [53,54].

4. mTOR Complexes in Cell Cycle Regulation

Proper development requires the maintenance of cell growth and cell cycle progression in stem
cells, factors that are mediated by mTOR [55–57]. Insulin and growth factor signaling pathways
activate PI3K through tyrosine kinase receptor activation. PI3K, in turn, stimulates Akt activation [58].
Akt also leads to GSK-3 phosphorylation, which allows for β-catenin and cyclin D1 activation to
promote transcription and cell cycle progression [59,60]. There are three mammalian homologous
isoforms of Akt. While the functions of each isoform overlap, it has been reported that Akt1 and
Akt3, in particular, contribute to cell survival and nervous system development [61–63]. Increased
levels of both Akt and mTOR have been observed in tumors; however, driving mTORC1 activity alone
is not sufficient for cancer progression in cells due to the possible negative feedback on Akt from
downstream mTOR targets [56].

The effects of mTOR activation on cell cycle and cell growth vary during the developmental
time points. Blastocyst-stage mouse embryos that are treated with rapamycin display decreased
trophoblast proliferation without affecting the pluripotent inner cell mass cells [64]. During the
gastrulation stage, rapamycin treatment can reduce proliferation rates in primary germ layers.
However, complete deletion of the kinase domain of mTOR shortly after implantation leads to
embryonic lethality [64,65]. Additionally, the role of mTOR on cell cycle progression could be mediated
through positive neurometabolic-vascular coupling in an increased number of G1–S cycling cells in
the SVZ [66]. These data illustrate the importance of mTOR interaction amongst early developmental
lineages and timing specificity.

Akt activity can regulate cell cycle progression, a process that is essential to the maintenance
or the differentiation of stem cells. Levels of cyclin D1 is required for progression through G1 and
could lead to complete mitosis [67]. Akt has been shown to stabilize the cell cycle regulatory protein
p21Cip1/WAF1 through phosphorylation, which inhibits proliferating cell nuclear antigen (PCNA)
and further promotes the assembly of the cyclin D1: cyclin-dependent kinase 4 (CDK4) complex [68].
Cell growth is reliant on nutritional availability and sensing environmental cues, mediated by insulin
signaling to mTORC1 and further downstream signaling to S6K1 and 4E-BP1. The downstream effect
of these signaling when nutrient and growth factor availability is high is the promotion of translation
initiation [69].

Previous studies have shown that the alteration of upstream elements in mTORC1 signaling can
lead to the enhanced proliferation in NSCs [70]. Conditional deletion of PTEN not only increases soma
size and aberrant migration, but also increases cortical thickness from overproduction of neurons [71].
Deletion of PTEN in human neural progenitors cultured in brain organoids enhances proliferation
and can stimulate cerebral folding [72]. UTX, a histone demethylase, promotes PTEN expression, and
deletion of UTX during neural development enhances Akt and mTOR phosphorylation, increasing
NSC proliferation [73]. Overexpression of Akt1 can induce proliferation in cortical progenitors [74].
Inhibition of mTORC1 activity in PTEN conditional knockout mice rescues soma hypertrophy and
seizure frequencies [75,76]; however, mTORC1 inhibition only partially reverses morphological
abnormalities, suggesting that Akt activation by PTEN deletion may exert pathological effects
independent of mTORC1 [77]. These results suggest that cell proliferation is enhanced by Akt activation
via mTORC1-independent mechanisms.

Although fewer studies have examined mTORC2 in NSC physiology, recent research has shown
a role for mTORC2 in promoting NSC proliferation. IGF1 induces PI3K and mTORC2 activation in
cortical progenitors, promoting proliferation [78]. Phosphorylation of Akt at S477 and T479 residues
by mTORC2 promotes Akt activation and cell survival and cell cycle entry [79]. Notch is a key
regulator of NSC self-renewal, proliferation, and differentiation [80]. Previous studies have shown
that non-canonical notch signaling activates mTORC2/Akt signaling cascade, promoting both cell
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proliferation and tumor formation [81,82]. Recent studies have shown that the activation of mTORC1 at
targets downstream of Akt do not promote NSC cell cycle entry [43,83,84]. Taken together, these studies
suggest that mTORC2 can promote NSC proliferation through Akt activation, but mTORC1 activation
alone is insufficient to promote cell cycle entry (Figure 2).
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Figure 2. Effects of mTOR activation during neurogenesis. Neural stem cells (blue)
undergo proliferation and either give rise to more stem cells (self-renewal) or daughter cells
(green, differentiation). Activation of mTORC2 promotes neural stem cells (NSC) cell cycle entry
through Akt. Hyperactivation of mTORC1 results in diminished self-renewal, favoring differentiation
and lineage expansion. Daughter cells then migrate (red) from proliferation zones to their terminal
positions. Activation of mTORC1 results in aberrant migration of daughter cells. Upon reaching
their terminal positions, newly born neurons (gray) extend neurites and properly form dendritic
arbors. Cells with high levels of mTORC1 activity can severely alter dendrite formation and synaptic
integration. Upward pointing arrows indicate increased activity of designated genes or proteins.
Downward pointing arrows indicate decreased activity or knockdown of designated genes or proteins.

5. Activation of mTOR Complexes Promotes Neural Stem Cell Differentiation

The role of the two mTOR complexes vary in stem cell maintenance due to their different
downstream targets. mTORC1/p70S6K is maintained at lower levels than mTORC2 in embryonic
stem cells (ESCs) through TSC1/2 activation [85]. ESCs display reduced global translation rates and
subsequently lower p70 S6K to maintain their undifferentiated state. Elevations in mTORC1 signaling
through knockdown of TSC2 display an increase in protein synthesis and loss of stemness [85].
Complete blocking of global translation resulted in cell death, which suggests that mTORC1 is
essential in low signaling environments [85]. The function of the higher levels of mTORC2 is
not as clear but thought to be related to cytoskeletal functioning and its interaction with Akt [85].
Additionally, DEP domain-containing mTOR interacting protein (DEPTOR), which is an endogenous
mTOR inhibitor, is upregulated in undifferentiated stages. The role of mTORC1 inhibition through
DEPTOR has been shown as a critical factor in the maintenance of stemness, and it is downregulated
upon differentiation [86].

Disrupting mTOR signaling during cortical development presents pathological defects. mTORC1
is critical for NSC differentiation into daughter cells, as reduced activity reduces neural progenitor
cell populations [87]. This regulation is accomplished by the targeting of the translational repressor
4E-BP2 [83]. Additionally, insulin signaling promotes neuronal differentiation in NSCs via mTORC1
activation [88]. Deletion of Raptor in cortical progenitors results in microcephaly presenting around
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E17.5, indicating a strong role for mTORC1 in maintaining proper cell size and number. In this study,
dense cortical layering was observed when compared to controls, but the positioning of neurons was
not disturbed. Thus, the loss of Raptor is suggested to be specific to differentiation and migration
in corticogenesis [89]. Furthermore, TSC1 deletion and Rheb activation promotes the differentiation
and the misplacement of cortical progenitors in the embryonic brain [43,90]. Additionally, the role
of mTORC2 in corticogenesis could be perturbed by the deletion of Rictor in development. Rictor
deletion resulted in smaller cell size, yet not as profound as Raptor deletion, and altered neuron
morphology when limited to purkinje cells [91]. Normalizing protein translation of hyperactive
mTORC1 by blocking mTORC1-dependent phosphorylation of 4E-BPs is sufficient to prevent neuronal
misplacement and cell enlargement [90].

In the first week of postnatal life, the embryonic ventricular zone (VZ) transitions to the adult SVZ
with mTOR activity driving self-renewal or differentiation. The proliferation of RGCs slows and these
precursors differentiate into astrocytes, ependymal cells, and adult NSCs in the SVZ. NSCs give rise to
TACs that give rise to neuroblasts [66]. Forming a chain-like arrangement, the neuroblasts migrate
through the rostral migratory stream to the olfactory bulb [25]. Postnatal and adult NSCs in the SVZ
predominantly give rise to olfactory bulb interneurons and also some oligodendrocytes in corpus
callosum, fimbria, and striatum [92]. mTORC1 activity in the SVZ is linked to neural lineage expansion,
resulting in proliferative cells and newborn neuroblasts. Hyperactivation mTORC1 has been shown to
induce symmetric differentiation of NSCs into proliferative daughter cells [84]. Sustained activation of
mTORC1 by TSC1 deletion eventually leads to a reduction of proliferative stem cells in the SVZ [43].
This effect appears to be mediated directly by cap-dependent translation as knockdown of 4E-BP2
promotes the differentiation of NSCs into daughter cells [83]. Based on these studies, mTORC1 control
of cap-dependent translation modulates the balance between self-renewal and differentiation in NSCs.

6. Hyperactivation of mTORC1 Results in Aberrant Migration

In the VZ, RGCs are responsible for generating the vast majority of excitatory and projections
neurons of the cortex [93,94]. Proliferation of RGCs eventually produce intermediate progenitor
cells that migrate into the SVZ and typically undergo at least one round of cell division to produce
immature neurons [95,96]. The generation of Tbr2+ intermediate progenitors is sustained by mTORC1
activation [97]. In addition to intermediate progenitors in the SVZ, populations outer radial glial
cells undergo successive rounds of division and contribute to the expansion of the neocortex in
primates [98,99]. As additional neurons arise, they migrate into the preplate to form the cortical plate.
Neurons that are generated in the proliferative zones of the cortex abruptly change in shape and
direction as they populate the cortical plate [17]. Additional migrating neurons arrive in the cortical
plate, bypassing earlier-generated neurons to form the cortical layers in an inside-out sequence [100].
Inhibitory GABAergic interneurons that populate the cortex arise from proliferation zones in the
ventral ganglionic eminences, and tangentially migrate into the cortex [101]. These neurons migrate
long distances that are guided by chemical cues in the external environment, which are likely secreted
from endothelial cells of the developing vasculature [102].

The PI3K-Akt-mTOR pathway plays an essential role in the proper development of cortical layers
and differentiation. Hyperactivation of this axis recapitulate pathology present in developmental
disorders. Mutations of mTOR result in cortical delamination and dysmorphic neurons [103].
The formation of tubers and micro nodules are the most pronounced symptoms associated with
mTOR pathway dysregulation. Enhanced mTOR activity in TS often leads to cortical malformations
during development, slow-growing astrocytomas, and cognitive deficits [6]. Mouse models of TS
exhibit similar aberrant migration during cortical development, enhancing the cortical thickness and
tuber-like lesions [42,43,104]. Rapamycin treatment in animal models of cortical dysplasia rescue these
cortical aberrations [61]. The conditional deletion of mTOR in progenitors of the ganglionic eminences
led to a reduction in overall interneurons in the cortex [105]. Disrupted-in-Schizophrenia 1 (DISC1)
suppresses Akt and mTOR activation, negatively regulating neuron development and migration in the
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adult hippocampus [106]. In addition, DISC1 knockdown reduces tangentially-migrating interneurons,
reaching the embryonic cortex [107,108].

In the postnatal SVZ, NSCs give rise to migrating neuroblasts that navigate long distances to
reach the OB. Upon reaching the OB, these newly born neurons tangentially migrate from the RMS to
reach their final destinations in the granule and glomerular layers [109]. Deletion of TSC1 in postnatal
NSCs leads to aberrant migration and heterotopias, mirroring results that were observed in embryonic
mutations [110]. Similarly, the constitutive activation of Rheb enhances neurogenesis, producing
greater numbers of neurons in the OB, while also generating ectopic neuronal differentiation in the
RMS and olfactory micronodules [111]. Taken together, studies of both embryonic and postnatal
neurogenesis reveal a critical role for mTORC1 in regulating the migration of newly born neurons to
their proper destinations.

7. Role of mTORC1 in Neurite Development and Synapse Formation

Activation of mTOR complexes exerts profound effects on all the processes of neurogenesis,
including dendrite formation. NSCs give rise to diverse populations of neurons, each of which had
dendritic trees with disparate morphologies. The dendritic arborization established during maturation
determines how the neuron integrates thousands of synaptic inputs during its existence. Although
individual neuronal subtypes have specific programs during the formation of the dendrites, there are
common features and steps that are shared by all populations of neurons. Upon reaching their terminal
position, neurons extend dendrites away from the soma towards their target are guided by external
signals. Next, dendrites grow in length and diameter, and they develop the branching characteristic
of their subtype. Third, dendritic growths are spatially restricted by repulsive signals [112]. Fourth,
dendrites typically start to form specialized structures, such as dendritic spines to enhance synaptic
communication. Finally, dendrites and spines are pruned through retraction and elimination to form
mature circuits [113].

Upon reaching the cortical plate, all of the excitatory cortical neurons share a similar morphology,
which is a single apical dendrite that branches within layer 1 of the cortex. Over time, basal dendrites
sprout from the soma and the apical dendrite branches. Dendritic differentiation only occurs after
cells completed their migration. PTEN deletion enhances mTOR signaling and increases dendritic
aborization in cortical neurons [77]. Similarly, PTEN deletion in hippocampal granule neurons
increased dendritic branching and synaptic excitation [114]. In addition, driving mTORC1 via TSC1
knockout or Rheb activation also produces greatly enhanced dendritic branching [42,115]. Inhibition of
cap-dependent translation through the overexpression of 4E-BP1 can partially rescue mTORC1-driven
dendritic hypertrophy [90].

Granule neurons comprise the largest population of interneurons in the olfactory bulb. Their soma
resides in the granule cell layer, and they extend both basal dendrites and a single apical dendrite
that branch extensively in the external plexiform layer. Granule neurons are unique in that they are
anaxonic, forming dendrodentritic synapses via spiny processes [116]. Several studies have shown
that mTORC1 activation increases dendritic complexity in olfactory granule neurons. Postnatal
deletion of TSC1 drives dendritic hypertrophy in granule neurons [110,117]. Moreover, Rheb activation
increases dendritic branching of granule neurons, particularly basal dendrites [111,118]. Interestingly,
the knockdown of global mTOR inhibits apical dendrite branching, but mTORC1-specific inhibition
does not reduce dendrite complexity [119]. These results suggest that different mTOR complexes could
regulate the apical and basal dendritic trees individually.

Sprouting from newly established dendrites, filopodia begin to emerge during synaptogenesis
and form new synapses with nearby neurons. During this period of synaptic development, filopodia
can recruit axons, making contacts that drive morphological changes in the young spine. Pruning
occurs as synaptic activity matures, thus reducing the overall density of spines. TSC1/2 deletion in
neuronal cultures show reduced spine formation with the remaining spines demonstrating an immature
filopodia morphology [120,121]. These results were not duplicated when being tested in the postnatal
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hippocampus [122]. In addition, studies in the animal models of TS have not reached a clear
consensus [14,90,123]. However, TSC2 heterozygous mice do display an increase in dendritic spine
density at 1 month of age. As removal of unnecessary spines begin around three weeks following
birth, this result could reflect a deficit in pruning rather than increased formation of filopodia-like
projections. Indeed, rapamycin treatment rescues spine elimination in TSC2 heterozygous mice by
enabling autophagy [124]. Reduction in autophagy could disrupt the synaptic transmission. Deletion
of Atg7 decreases neurotransmission and ASD model mice have disrupted synaptic plasticity that is
associated with glutamate signaling [125,126].

Long-term maintenance and the adaptability of the synapse is crucial for neuron survival
and function. Long-term synaptic plasticity requires the expression of new proteins, which are
produced both in the soma and locally in the dendrite. Activation of mTORC1 is central to the
regulation of translation initiation in the dendritic spine. Glutamate signaling through mGluR and
N-methyl-D-aspartate (NMDA) receptors upregulates mTORC1 activation, suggesting an important
role for mTOR in synaptic plasticity [127,128]. While mTORC1 activation alone seems to be
insufficient to alter dendritic spine shape and function, paired activation of synaptic stimulation, and
mTORC1 increases synapse volatility [129]. Increased activation at synapses resulting from mTORC1
dysregulation has been observed in mouse models of TS [42,43]. Additionally, epilepsy is prevalent
in patients with TS, and more than 50% of patients are comorbid with ASD. Hyper-connectivity
of neuronal circuits by disruption in protein synthesis is thought to drive behavior and cognitive
impairment in autism patients [7]. Additionally, a mouse model presented ASD-like behavioral deficits
with hyperactivity of mTOR through TSC1/2 mutations. Rapamycin administration was successful in
ameliorating the behavioral and the pathological phenotype in the mutant mice [15]. Dysregulation
of mTORC1 appears to be integral to the formation and maintenance of synapses, foundational
dysfunction that can result in epilepsy and ASD.

8. Conclusions

Throughout development of the nervous system, mTOR plays crucial roles in proliferation,
differentiation, and neurite outgrowth and synaptic formation. Many of the recent studies into the
role of the mTOR complexes have focused on mTORC1 and control of cap-dependent translation.
Proper regulation of protein translation is critical in maintaining self-renewal of stem cells, dendrite
formation, and synaptic plasticity. While good evidence exists that mTORC2 phosphorylates Akt,
very few studies have demonstrated upstream regulators of mTORC2. Even fewer in vivo studies
have examined the role of mTORC2 in neurogenesis. Future studies are needed to elucidate the role
of mTORC2.

Regulation of synaptic development and activity is critical for circuit formation and function.
To date, the disruption of mTOR signaling has resulted in varying degrees of dendrite alterations.
Many studies have demonstrated that activation of mTORC1 leads to increased dendrite length
and complexity, but there is still conflicting evidence regarding spine formation and density.
These disparities could be due to differences in method of mTOR activation, neuronal subtype,
or temporal activation of mTOR. More studies are needed to understand the mechanisms that control
mTOR complexes during synapse formation. The mTOR complexes are essential to neurogenesis
and the establishment of neural circuits. A multitude of external signals and transduction pathways
modulate mTOR activity. Understanding the role of these kinase complexes is necessary to developing
future therapies for current neurodevelopmental disorders.

Author Contributions: F.L and N.H. wrote the paper.

Acknowledgments: This work was funded in part by the US National Institutes of Health through a grant to
Nathaniel W. Hartman (R15NS092026-01A1).

Conflicts of Interest: The authors declare no conflict of interest.



Int. J. Mol. Sci. 2018, 19, 1544 9 of 16

Abbreviations

4E-BP1 Translation initiation factor 4e binding protein
4E-BP2 4E- protein phosphatase 2
Akt Protein Kinase B
ASD Autism Spectrum Disorder
CDK4 Cyclin-dependent kinase 4
DEPTOR DEP domain-containing mTOR interacting protein
DISC1 Disrupted-in-Schizophrenia 1
EGF Epidermal growth factor
eIF-4e Eukaryotic translation initiaton 4e
Erk Extracellular signal related kinase
ESC Embryonic stem cells
FOXO Forkhead box class O
Gsk-3β Glycogen synthase kinase 3 beta
IGF Insulin-like growth factor
MDM2 Mouse double minute 2 homolog
MLST8 mTOR associated protein LST8
mSin1 Mammalian stress-activated protein kinase-interacting protein
mTOR mammalian target of rapamycin
mTORC1 mammalian target of rapamycin complex 1
mTORC2 mammalian target of rapamycin complex 2
NMDA N-methyl-D-aspartate
NSC Neural stem cell
OB Olfactory bulb
P21Cip1/WAF-1 Cyclin dependent kinase inhibitor 1
PCNA Proliferating cell nuclear antigen
PDK1 Phosphoinosidite-dependent kinase 1
PH
PI3K

Pleckstrin homology
Phosphoinositide 3 kinase

Pras40 Proline-rich AKT substrate
PTEN Phosphatase and tensin homolog
Raptor Regulatory-associated protein of mTOR
RGC Radial glial cell
Rheb Ras homolog enriched in brain
Rictor Rapamycin-insensitive companion of mTOR
RMS Rostral migratory stream
S6k1 S6 Kinase 1
SVZ Sub ventricular zone
TAC Transit amplifying cell
Tbr2 T-box brain protein 2
TS Tuberous sclerosis
TSC1 Tuberous sclerosis complex 1
TSC2 Tuberous sclerosis complex 2
UTX Ubiquitously transcribed tetratricopeptide repeat, X chromosome
VZ Ventricular zone
Ypk1 Yeast serine/threonine protein kinase 1
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