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Abstract

Sugarcane biomass has been used for sugar, bioenergy and biomaterial production.

The majority of the sugarcane biomass comes from the culm, which makes it

important to understand the genetic control of biomass production in this part of

the plant. A meta-transcriptome of the culm was obtained in an earlier study by

using about one billion paired-end (150 bp) reads of deep RNA sequencing of

samples from 20 diverse sugarcane genotypes and combining de novo assemblies

from different assemblers and different settings. Although many genes could be

recovered, this resulted in a large combined assembly which created the need for

clustering to reduce transcript redundancy while maintaining gene content. Here,

we present a comprehensive analysis of the effect of different assembly settings

and clustering methods on de novo assembly, annotation and transcript profiling
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focusing especially on the coding transcripts from the highly polyploid sugarcane

genome. The new coding sequence-based transcript clustering resulted in a better

representation of transcripts compared to the earlier approach, having 121,987

contigs, which included 78,052 main and 43,935 alternative transcripts. About

73%, 67%, 61% and 10% of the transcriptome was annotated against the NCBI

NR protein database, GO terms, orthologous groups and KEGG orthologies,

respectively. Using this set for a differential gene expression analysis between

the young and mature sugarcane culm tissues, a total of 822 transcripts were

found to be differentially expressed, including key transcripts involved in sugar/

fiber accumulation in sugarcane. In the context of the lack of a whole genome

sequence for sugarcane, the availability of a well annotated culm-derived meta-

transcriptome through deep sequencing provides useful information on coding

genes specific to the sugarcane culm and will certainly contribute to

understanding the process of carbon partitioning, and biomass accumulation in

the sugarcane culm.

Keywords: Bioinformatics, Computational biology, Genetics, Plant biology

1. Introduction

Sugarcane is a major source of sugar (sucrose) and a key energy crop used to pro-

duce ethanol and generate electricity. Sugarcane biomass could play a very impor-

tant role in supporting second generation biofuel production, reviewed in [1, 2, 3].

Developing sugarcane as a crop for a wider range of industrial use could be aided

by improved understanding of the genetic and environmental control of biomass

composition. Our knowledge of sugarcane genomics is hindered by the complexity

of this highly polyploid crop, the lack of a full genome sequence or complete tran-

scriptome and proteome databases. Characterization of the transcriptome will

contribute directly to understanding the molecular basis of key traits and will also

support the generation of a well annotated genome sequence.

Sugarcane transcriptome studies have been based on limited resources including the

sorghum genome [4], sugarcane EST database [5] and Saccharum officinarum gene

indices [6]. Due to the lack of a well-represented transcriptome and a reference

genome, the de novo transcriptomes derived directly from the samples of each study

are still considered to be the best option for representing the samples in transcrip-

tome profiling studies. In transcriptome construction, the de novo assemblers, pa-

rameters and clustering techniques significantly affect the assembly results. For

data generated from short-read technologies, i.e., those from Illumina, the widely

used assemblers include Trinity [7], CLC Genomics Workbench (CLC-GWB,

CLC Bio-Qiagen, Aarhus, Denmark), Velvet/OASES [8], SOAPdenovo-Trans [9]

and TransAbyss [10]. Trinity, Velvet/OASES, SOAPdenovo-Trans and TransAbyss
on.2018.e00583
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were designed for transcriptome assembly in addition to recovering the transcript

isoforms; while CLC-GWB has been mostly used for genome assembly but has

also been used in transcriptome assembly [11, 12], which allows flexibility in its pa-

rameters of word size and bubble size. Sugarcane transcriptomes have been assem-

bled using mostly Illumina RNA-Seq short-read data of different tissue types and

genotypes; and employing different transcriptome assemblers, including Trinity

package [13, 14], and Velvet/OASES pipeline [15, 16]. Recently, we have used

the long-read Iso-Seq technology for sugarcane [17] and showed recovery of

more full-length transcripts compared to that from short-read Illumina technology.

However, it is still costly to produce a high quality transcriptome at a sufficient depth

using the long-read technologies at the moment, while short-read technologies offer

lower cost per base and thereby a high depth of coverage. To date, most transcrip-

tome assemblies in sugarcane using short-read technology were based on a single

assembly or setting strategy. Various studies, (e.g. [18,11]), have shown that

combining assemblies of different settings and assemblers improved the assembly

and identified a greater gene content compared to the use of a single assembler or

setting. This however, generates a need to cluster the resultant assembly to reduce

the redundancy using tools such as CD-HIT-EST [19] or OASES [8].

The high ploidy and complex structure of the sugarcane genome suggests that every

sugarcane cross may have a distinct chromosome combination and resulting gene set

[20]. The gene expression in any given cross may be unique to that particular cross

[21]. The sugarcane genome contains 80e130 chromosomes and up to ~14 ho-

mo(eo)logous gene copies, originating from two different progenitors [22, 23].

While the total number of genes predicted for sugarcane is about 35,000, the chal-

lenge in transcriptome assembly resides in the number of transcript isoforms result-

ing from the different homo(eo)logous chromosomes and alternative splicing of each

of the gene families. It is still unknown how many transcript isoforms the many gene

families in the sugarcane genome produce; however, this could be in the hundreds of

thousands. In Arabidopsis, about 300,000 transcripts were found to result from

25,000 genes [24]. A total of w107,000 non-redundant sugarcane transcript iso-

forms have been generated [17], but the actual total number of isoforms could be

much higher for the complex sugarcane genome, depending upon the genotype,

developmental stage and growth condition. Recovering transcript isoforms from

short-read data is a challenging task for a non-model species such as sugarcane,

given that these isoforms could be present in the samples at different levels of abun-

dance with potential to introduce errors and mis-assemblies into the resultant

contigs.

Advances in sequencing technologies in recent years, allows a great amount of data

to be generated. However, it is crucial to use this data to construct high quality tran-

scriptomes representing well the genes expressed in the genotypes and samples
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studied [25]. Assessment of transcriptome quality needs to be standardized. It was

suggested in [12] that the transcriptome quality can be assessed based on the rate

of reads mapping back, recovery of widely conserved and expressed orthologs,

N50 length statistics and the total number of unigenes. More importantly, erroneous,

mis-assembled and chimeric contigs can be estimated and removed by several anal-

ysis tools like Detonate [26] and Transrate [27], using a contig impact score obtained

from read mapping (i.e., a good contig is the one that has pairs of reads mapped to it,

in the right mapping direction, with a high expression value). Additionally, more

biological or real contigs can be retained by using the protein metrics obtained

from programs such as TransDecoder [28] or Evidence Directed Gene Construction

for Eukaryotes [29] (hereafter referred to as Evigen). BUSCO [30] and CEGMA [31]

can be used to assess the recovery of the highly conserved orthologs in the

transcriptome.

Meta-transcriptome assembly combines the total content of gene transcripts in a

community (or of different genotypes) considered as a unique entity, at different

developmental stages and conditions, in order to obtain the whole expression profile

of the community [32]. This approach is an important frontier, however it requires

careful validation of the new methods or workflows associated with it. The meta-

transcriptome assembly strategy has been shown to have worked well for Nicotiana

benthamiana [18] and for Eleusine indica [11] using assemblies of different settings

from different assemblers. A sugarcane meta-transcriptome surveyed on 20 diverse

genotypes derived from Illumina short-read sequencing and described in an earlier

report [17], was utilized for this study.

In the current study, we evaluated the influence of different assemblers, settings and

clustering approaches on the quality of transcriptome assembly through different

metrics including contig statistics (number, contig average length and N50), read

mapping scores (RSEM-EVAL) and comparative metrics against a sugarcane tran-

script database through Conditional Reciprocal Best BLAST (Transrate), BUSCO/

CEGMA alignment and protein metrics. A transcript clustering approach employing

the Evigen tool, based only on the coding fraction, was used to generate a more us-

able sugarcane culm-derived transcript set for transcript profiling analysis, compared

to the initial de novo set generated in our earlier report [17]. Further characterization

including an improved annotation and a gene expression analysis were performed to

evaluate the resultant meta-transcriptome assembly specific to the sugarcane culm,

representing sugarcane varieties of different genetic backgrounds and tissues of

different developmental stages. The newly clustered transcript set reported here,

together with the PacBio long-read transcriptome (SUGIT) [17], will provide useful

information on coding genes specific to the sugarcane culm and contribute toward

understanding the process of carbon partitioning, and biomass accumulation in the

sugarcane culm.
on.2018.e00583
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2. Materials and methods

2.1. Samples collection, RNA-Seq and read data processing

This study was based on 20 sugarcane genotypes of diverse genetic background

(provided in Table S1, which was adapted from [17, 33] with additional information

regarding the parental genotypes and cultivar types). For each of the 20 genotypes,

one top and one bottom internodal sample was collected, resulting in a final sample

set of 40. The RNA-Seq and read data processing were previously described [17]. In

brief, about 3 mg of RNA from each sample was used for library preparation (Illu-

mina TruSeq stranded with Ribo-Zero Plant Library Prep Kit for total RNA library),

indexed and sequenced to provide 2 � 150 bp paired-end (PE) reads, using an Illu-

mina HiSeq4000 instrument at the Translational Research Institute, The University

of Queensland, Australia. A total of 1,509,867,086 PE reads was generated. The read

quality score and adapter remaining in the reads were assessed by FastQC [34] and

trimmed using CLC-GWB v9.0. Only PE reads with a quality score of �0.001

(equivalent to Phred Q30 or the accuracy of the base calling of 99.9%),�2 of ambig-

uous nucleotides, and a length of �75 bp were retained. The rRNA content in the

data was checked by mapping reads (length fraction 0.9, similarity fraction 0.9, in

CLC-GWB) against a set of rRNA sequences extracted from the sugarcane chloro-

plast genome (rrn16 and rrn23) [35], mitochondrial genome (rrn18 and rrn26) [36];

and sugarcane cytoplasmic rRNA genes (RPS4, RPL17, RPS24 and RPS10) from the

SoGI database [6]. Table S2 showed the reads mapping onto these selected genes

estimated by using data from top and bottom internodal samples of one of the geno-

types (QN05-1509). Reads showing homology to the sugarcane chloroplast genome

and sorghum mitochondrial genome were removed using BBDuk, BBmap v36.02

[37], with a k-mer of 31. Prior to de novo assembly, the total clean trimmed read

data set (1,015,845,414 PE reads) from 20 genotypes was concatenated into one

interleaved file for downstream analysis including read digital normalization by us-

ing the perl script insilico_read_normalization.pl from Trinity package [38] and

BBnorm tool [37].
2.2. Influence of settings and assemblers on the quality of de novo
assembly output

Four assemblers including Trinity r2013-08-14 [7], CLC-GWB v9.0, Velvet/

OASES v1.2.10 [8] and SOAPdenovo-Trans v1.03 [9] were employed as described

in [17]. Additionally, different settings of word size (15e64) and bubble size

(50e5000) were used in CLC-GWB to study the effect of these settings on the as-

sembly quality statistics including contigs number, N50, contig average length; map-

ping and comparative metrics (details described in the next section). Three packages

CD-HIT-EST ver4.6 [19], OASES and CAP3 [39] were employed in redundancy

reduction of the assembly. The parameters of “-s 0.95 -c 0.95 -n 10” were used in
on.2018.e00583
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CD-HIT-EST to cluster those contigs of 95% identity and of at least 95% length of

the longest representative contigs in the cluster. The parameters “-merge yes -cov_

cutoff 1 -edgeFractionCutoff 0.01 -min_trans_lgth 300” were used in OASES for

contig merging, error correction and length filtering. The overlap percent identity

cutoff “-p 95” and other default parameters were used in CAP3 to assemble contigs

of defined identity into longer sequences.
2.3. Transcriptome quality assessment

A combination of different metrics was used in assessing the quality of the transcrip-

tome assemblies, including N50 length statistics, rate of reads mapping back, recov-

ery of widely conserved and expressed orthologs, full-length count and coding

potentials. The RSEM-EVAL scores obtained from Detonate v1.11 [26] were em-

ployed to assess the quality of the assemblies. This package offers a novel metric

based on a reference-free probabilistic model for quality assessment of de novo as-

semblies, using the assembly and the read data it is derived from. The SUGIT data-

base [17] was used to estimate the true transcript length distribution for sugarcane. A

subset containing w59 million normalized PE reads of data from 20 genotypes was

used to generate the RSEM-EVAL score based on the evidence that reads mapped to

the contigs in Detonate analysis. Additionally, Conditional Reciprocal Best BLAST

(CRBB) [40] by BLASTþ v2.2.29 from Transrate v1.0.3 [27] was utilized by align-

ing the contigs against the reference to count the number of CRBB hits against four

transcript reference databases including sorghum transcripts [41], SUGIT, SUCEST

[5, 42] and Saccharum officinarum Gene Indices (SoGI) [6]. Results in Table S3

suggested that the full-length SUGIT database had more CRBB hits and hence

was chosen for further analyses in this study.

The transcriptome assembly completeness was assessed by CEGMA [31] and

BUSCO [30]. Full-length transcript counting was done by BLASTX homology

search (BLASTþ v2.3.0, e-value ¼ �20, -max_target_seqs 1) against the UniProt

Viridiplantae database [43] and running perl script analyze_blastPlus_topHit_co-

verage.pl from the Trinity package. Coding potential was analyzed using Evigen

to obtain other protein metrics including number of primary/alternative transcripts

and the average length of the largest 1000 proteins. We included two transcriptome

datasets from [13] and SoGI as the reference group.
2.4. Transcript annotation

The final newly-clustered transcriptome assembly from this study was compared

against the UniProt Viridiplantae protein database using BLASTX (BLASTþ
v2.3.0, e-value ¼ �10), sorghum transcripts, SoGI, and SUCEST and SUGIT using

BLASTN (BLASTþ v2.3.0, e-value ¼ �10). The functional annotation of the final

transcript set was carried out in Blast2GO v4.0.2 [44] with default parameters on the
on.2018.e00583
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BLASTX result against the NCBI non-redundant (NR) protein database with 100

hits (e-value ¼ �10). The MapMan v3.5.1R2 program [45, 46] was used in visual-

izing the annotation, by employing the mapping files generated by Mercator

sequence annotator [45]. The Gene Ontology (GO) terms were extracted and plotted

using the program WEGO [47] for three categories, biological process, molecular

function and cellular component. Eukaryotic orthologous groups of the transcrip-

tome were identified by OrthoMCL 5 [48] with default settings using BLASTP of

translated protein sequences against OrthoMCL proteins with an e-value ¼ �5,

and 50% match.
2.5. Differential expression analysis

The pipeline for differentially expressed (DE) transcript identification was adapted

from the Trinity v2.2.0 package [7], employing R program v3.2.0 [49] and R pack-

ages including Bioconductor v3.4 [50], DESeq2 package [51], limma [52], ctc [53]

Biobase [54], cluster 2.0.4 [55], ape [56] and gplots [57]. To calculate the transcript

expression, the clean RNA-Seq reads (quality score �0.01 or Phred score �20 to

retain more reads in each sample, �2 ambiguous nucleotides, and length of �75

bp) from the top and bottom internodal tissue samples of three selected genotypes

(QC02-402, Q200 and KQB08-32953) were aligned against the transcriptome

with Bowtie v2.2.7 [58] with the following parameters “–no-mixed –no-discordant

–gbar 1000 –end-to-end -k 200”. A sorted alignment file in BAM format was gener-

ated by SAMtools-1.3.1 [59] and used for the program RSEM [60] in estimating the

transcript abundance in raw read counts for statistical models in differential expres-

sion analysis (counts.matrix files). The transcript expression was normalized as frag-

ments per kilobase of feature sequence per million fragments mapped (FPKM) [61]

and transcripts per million transcripts (TPM) [62]. Cross-sample normalization was

carried out by Trimmed Mean of M-values (TMM) to obtain TMM-normalized

FPKM values [63]. The transcript differential expression analysis was performed

on the matrix of raw read counts using a perl script run_DE_analysis.pl in Trinity

which employs a negative binomial model in DESeq2 package. DE transcripts

were identified, extracted and clustered by running the script analyze_diff_expr.pl

on the TMM-normalized value matrix. The cut-off for DE transcripts was at a false

discovery rate (FDR) adjusted p-value �0.05 and a fold-change �2. The up-

regulated and down-regulated transcripts were analyzed by MapMan v3.5.1R2.
2.6. Data analysis

Basic assembly statistics were determined by QUAST (Quality Assessment For

Genome Assemblies) [64]. Venn diagrams were created by the online tool Interac-

tiVenn [65]. All analyses in a Linux environment were conducted at the High
on.2018.e00583
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Performance Computer clusters (Euramoo, Flashlite and Tinaroo) at the Research

Computing Center, The University of Queensland, Australia [66]. All analyses in

CLC-GWB were run on a QAAFI CLC Genomics Server, the University of Queens-

land, Australia. Other analyses were conducted in Microsoft Excel 2013 including

XL Toolbox NG v7.3.12 [67] and RStudio v0.9.8/R v3.1.2.
3. Results and discussion

3.1. Read digital normalization

Despite the short read-length, RNA-Seq using Illumina sequencing technology has

been utilized widely in transcriptome assembly thanks to the greater depth of

coverage and a low error rate, compared to other sequencing platforms [68]. The to-

tal number of raw reads generated for this study was 1,509,867,086, with a pair dis-

tance estimated to be 64e302 bp, of which, 1,015,845,414 reads survived after

quality and length trimming, having a quality of Phred Q30 and above [17]. The

aim of having good depth of sequencing was to include more gene content and better

transcriptome completeness, yet it was challenging for the data processing and

computational steps, since this required high performance computing facilities for

transcriptome construction. Not all transcripts express at the same level, and as

shown in [12], the dynamic transcript abundance in the samples could result in an

incomplete transcriptome assembly, often by fragmentation of contigs or failure in

assembly of contigs. Sampling reads could help to reduce the size of the data, but

at the same time, this causes considerable loss in gene content as it would in turn

proportionally reduce the sequencing depth and affect the lowly expressed tran-

scripts. Highly expressed transcripts can be reduced by experimental normalization

employing a duplex specific nuclease enzyme (for examples, see [12, 17]) or digital

normalizations, and therefore simplify the assembly algorithm. Digital normalization

can be performed by khmer [69], BBnorm [37] or Trinity normalization [38]. The

digital normalization technique resized the read data by reducing the over-

representation of highly expressed transcripts (through highly abundant k-mers) to

a level defined by the user (termed as maximum coverage, MC), and retained the

reads that were originally from the less expressed transcripts which were below

the user-defined cut-off. This ensured that the gene content remained the same as

in the original data but the analysis required less computational resources and this

sped up the assembly process.

Apart from the total read dataset (non-normalized reads), this study was based on

four different normalized read datasets of different MC, having 59,054,880 reads

(6%) at a MC50, 213,165,230 reads (21%) at a MC2000 (by Trinity in silico normal-

ization); and 378,337,000 reads (w37%) at MC10,000 (by BBnorm), as described

previously [17].
on.2018.e00583

by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

censes/by-nc-nd/4.0/).

https://doi.org/10.1016/j.heliyon.2018.e00583
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 https://doi.org/10.1016/j.heliy

2405-8440/� 2018 Published

(http://creativecommons.org/li

Article Nowe00583
3.2. Influence of settings on the quality of de novo assembly
output

Changes in the settings (k-mer/word size, bubble size) affected the transcript statis-

tics and quality metrics. We tested the effect of word size and bubble size on the as-

semblies using those from CLC-GWB, since this assembler allowed both these

parameters to be changed. As shown in the Fig. 1A, an increase of the word size

from 15 to 64 (at a fixed bubble size of 50, hereafter, W denotes word size and B

for bubble size), generated more transcripts, while the assembly N50 and average

contig length were reduced. The lowest contig number obtained was at W15_B50,

which could be attributed to the word size being too short to resolve the repetitive

content and complexity of the sugarcane transcriptome. The reads from different
Fig. 1. Effect of word size and bubble size on de novo assembly, performed in CLC-GWB. (A) Effect of

word size on contig assembly. (B) Effect of word size on RSEM-EVAL score of assembly. (C) Effect of

bubble size on contig assembly. (D) Effect of bubble size on RSEM-EVAL score of assembly. (E) Contig

assembly in response to changes in word size and bubble size. (F) Assembly RSEM-EVAL score in

response to changes in word size and bubble size. W denotes word size and B denotes bubble size.
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transcripts might have been collapsed into one due to their high similarity when the

reads were broken down into short fragments at a word size of 15 bp. Table 1 and

Fig. 1B show that as the word size increased from 15 to 64, the Detonate RSEM-

EVAL score, the number of CRBB hits against the SUGIT database and percentage

(%) of good contigs increased. The result reported for setting W15_B50 was in

agreement with that for contig statistics, which had the lowest figures amongst the

tested settings (RSEM-EVAL score of �2.59 � 1010, CRBB hits of 9,089, number

of SUGIT sequences with CRBB of 8,300 and 82.4% good contigs). As the word

size increased from 20 to 64, the RSEM-EVAL scores were slightly increased

(�1.95 � 1010 to �1.87 � 1010), while that of assembly contigs with CRBB hit

against SUGIT database was increased from 55,894 to 91,486; the number of SU-

GIT sequences with a CRBB hit was increased from 33,773 to 43,405; and the %

of good contigs was increased from 93.2 to 97%. Assembly contig length and

N50 can be manually increased by using different assemblers or adjusting the assem-

bly settings, however, these metrics do not always reflect the transcriptome assembly
Table 1. Effect of word size and bubble size on assembly quality measured by

Detonate and Transrate.

Assembly RSEM_EVAL
scorea

SUGIT transcripts Good
contigsd

% Good
contigs

CRBB hitsb N refs with
CRBBc

Word size W15_B50 -25,925,250,958 9,089 8,300 13,242 82.42
W20_B50 -19,380,072,750 55,894 33,773 114,829 93.23
W25_B50 -19,421,340,895 57,372 34,013 128,286 94.07
W30_B50 -19,496,141,905 59,888 34,706 131,210 94.39
W35_B50 -19,281,907,606 67,973 37,144 140,335 94.99
W40_B50 -19,215,617,161 72,865 38,402 147,726 95.37
W45_B50 -19,097,783,732 76,624 39,741 154,954 95.71
W50_B50 -18,927,399,593 80,304 40,781 161,660 96.05
W55_B50 -18,835,828,725 84,991 42,022 168,938 96.43
W60_B50 -18,936,543,261 86,758 42,152 172,140 96.69
W64_B50 -18,759,903,834 91,486 43,405 178,809 96.96

Bubble size W20_B50 -19,380,072,750 55,894 33,773 114,829 93.23
W20_B150 -18,123,264,583 54,469 33,434 110,251 93.13
W20_B250 -17,676,552,772 52,661 32,806 106,413 92.96
W20_B350 -17,523,013,646 51,425 32,345 103,694 92.81
W20_B450 -17,418,564,960 50,285 31,884 101,551 92.77
W20_B550 -17,368,072,051 49,086 31,446 99,462 92.63
W20_B650 -17,346,490,818 48,440 31,061 98,611 92.67
W20_B1000 -17,274,641,924 47,491 30,905 97,653 92.55
W20_B2000 -17,241,940,468 45,698 30,354 94,482 92.36
W20_B3000 -17,208,740,562 45,491 30,241 92,987 92.17
W20_B4000 -17,240,401,414 44,233 29,750 91,388 92.15
W20_B5000 -17,250,943,232 43,935 29,550 90,434 92.18

a The higher the score, the better the assembly.
b Number of contigs in assembly with a Conditional Reciprocal Best BLAST (CRBB) hit.
c Number of sequences (out of 107,598 sequences in the SUGIT database) with a CRBB hit.
d Contig with a positive RSEM-EVAL impact score.
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quality [70,71]. The influence of word size on the contig assemblies has been studied

in previous studies on different assemblers including CLC-GWB, Velvet, OASES,

Bridger and SOAP [11,70]. Our results are in agreement with those in [70], in which

a higher N50 and lower contig number were obtained for a lower k-mer size. Taking

this together with the Detonate and Transrate results, it could be that for this dataset

of PE reads 2 � 150 bp, when only the single setting was used, a larger word size

could generate more contigs of lower N50 and average length, but with improved

mapping and comparative metrics. A large word size may respond more sensitively

to the differences in transcript abundance, i.e., reads from different transcripts iso-

forms of different expression levels, while a smaller word size may tend to assemble

reads from different transcripts isoforms into the same contig, and hence, reduce the

number of contigs in the assembly.

Fig. 1C indicates that when the bubble size was increased from 50 to 5000, a lower

number of contigs of a longer N50 and average contig length was obtained. The

RSEM-EVAL scores obtained ranged from �1.94 � 1010 to �1.72 � 1010, and

showed similar results to those from the settings of W20_B1000 to W20_B5000

(Fig. 1D); while the number of CRBB hits and number of good contigs were reduced

due to a lower total contig number at a higher bubble size. The number of contigs

with CRBB hit was reduced from 55,894 to 43,935; SUGIT sequences hits dropped

from 33,773 to 29,550; and good contigs from 93.2% to 92.2%. This could be due to

the fact that the longer bubble size resolved the conflict of bases (which could be

biologically true), and extended the contigs compared to a shorter bubble size.

From the above results, we performed another analysis, using a set of normalized

data (MC50, w59 million PE reads), at three different word sizes, 20, 40 and 64,

in combination with three different bubble sizes of 150, 2500 and 5000. Results pre-

sented in Fig. 1E were consistent with the previous separate observations using the

non-normalized read data (Fig. 1A and C). As the word size increased, more contigs

were generated but the N50 and the average contig length were reduced. When the

bubble size was increased, fewer contigs were generated with a longer N50 and

average contig length. In all cases, there were more differences between assemblies

obtained from bubble sizes of 150 and 2500 than from bubble sizes of 2500 and

5000. As a majority of the transcripts observed in the sugarcane cDNA library

were <3000 bp in length (see Figure S7 in [17]), it could be that at the bubble

size of 2500, the contig length obtained was longer as more read conflicts were

resolved in the majority of transcripts, while at a bubble size of 5000, only the con-

flicts in reads from those transcripts in the range of 2500e5000 were further

resolved. It was also shown that changes in bubble size at a word size of 20 (small)

or 64 (large) affected the assembly results more (N50, average contig length and con-

tig number) than that at a medium word size (40). The RSEM-EVAL scores were

increased from B150 to B2500 and did not show much difference between the

B2500 and B5000 (Fig. 1F and Table S4). These results suggest that, if only contig
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number, N50 and average contig length were considered, a small word size com-

bined with a large bubble size resulted in the best assembly with lower contig num-

ber of a longer N50 and average length. However, the results from Detonate and

Transrate suggested otherwise, a medium to larger word size (i.e. 25e64) combined

with a medium to large bubble size (1000e5000) would be better in obtaining

improved quality score and comparative metrics. Increasing bubble size in the lower

range (i.e., B50eB1000) could affect contig length statistics and quality score more

significantly than in a higher range (i.e., B1000eB5000). A larger bubble size, how-

ever, tends to incorporate more mis-assembled and chimeric transcripts (CLC-GWB

manual), and could explain the increase in contig size and the reduction of the contig

number.
3.3. Different assemblers and transcript assembly output

Different assemblers employ different algorithms in contig construction, therefore,

even when using similar parameters, they produce varied assemblies [70, 72, 73].

The analyses reported here were based on four different de novo assemblies assem-

bled by four assemblers, Trinity, CLC-GWB, Velvet/OASES and SOAPdenovo-

Trans, previously described in [17]; and are referred to as Trinity-assembly, CLC-

assembly, OASES-assembly and SOAP-assembly, respectively. A wide range of

settings (k-mer size and bubble size) and the usage of different assemblers were

applied to maximize the gene content and incorporate different transcripts into the

transcriptome assembly, as suggested by several studies, i.e., [11, 18]. The contig

number, N50, cumulative length and length distribution in the assemblies varied de-

pending upon assemblers. The total contig number from the Trinity-assembly was

431,255 (N50: 2,194 bp), while that of the CLC-GWB assembly, OASES-

assembly and SOAP-assembly were 508,239 (N50: 1,014 bp), 798,345 (N50: 516

bp) and 289,705 (N50: 674 bp), respectively, as reported earlier [17]. The Trinity-

assembly had the highest N50 amongst the assemblies, while the OASES-

assembly, despite having more contigs, had a shorter contig N50 length in general.

In this study, these contig sets were pooled together for clustering step using

different clustering packages. A more updated quality assessment of these four as-

semblies (referred to as single-assembler derived assemblies), is reported below, tak-

ing the protein metrics by Evigen and mapping metrics through Detonate and

Transrate packages into account.
3.4. Assembly clustering and redundancy reduction

Application of three strategies to reduce the redundancy of the pooled assembly,

employing CD-HIT-EST [74], OASES and CAP3 [39] programs, resulted in the to-

tal number of contigs being significantly reduced. The reduced assemblies in the

three cases were referred to as the CDHIT-clustered assembly, Oases-clustered
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assembly and CAP3-assembled assembly, respectively. The summary statistics for

the three clustered assemblies are presented in the Table 2, including only contigs

in the range of 300 bp to 10 kb. The CDHIT-clustered assembly had 906,566 contigs

with an N50 of 1,671 bp, while the OASES-clustered assembly had more contigs

(1,383,279 contigs) with a shorter N50 of 1,331 and CAP3-assembled assembly

had less contigs (839,331 contigs) with a longer N50 of 1,758 due to the overlapping

contigs merging together during scaffolding. Compared to CD-HIT-EST and OA-

SES, the assembly and scaffolding by the CAP3 program helped to reduce the num-

ber of contigs, however, it introduced an average of 92 ambiguous bases (Ns) per

100 kb (0.092%) into the sequences through the scaffolding process. All clustered

assemblies had about the same GC content of w43.6%. It is important to note

that, the CDHIT-clustered assembly was used as a representative of the de novo as-

sembly strategy for comparison against the SUGIT transcriptome database, showing

that the de novo assembly using Illumina short reads incorporated more gene content

compared to the PacBio long-read derived transcriptome [17].
Table 2. Comparison of three clustered assemblies used in this study.

Assembly CDHIT-clustered
assembly*

Oases-clustered
assembly

CAP3-assembled
assembly

Contigs �300 bp 906,566 1,383,279 839,331

Contigs �1000 bp 294,867 410,658 295,282

Contigs �2000 bp 130,095 155,453 131,443

Contigs �3000 bp 57,437 66,584 58,414

Contigs �4000 bp 23,416 27,110 24,080

Contigs �5000 bp 9,227 10,731 9,625

Total length (�300 bp) 966,867,516 1,392,306,487 940,125,432

Total length (�1000 bp) 646,818,455 842,812,564 651,587,956

Total length (�2000 bp) 412,768,843 489,235,645 418,538,133

Total length (�3000 bp) 235,893,013 273,427,809 240,741,264

Total length (�4000 bp) 119,115,268 137,864,255 122,879,692

Total length (�5000 bp) 56,369,155 65,423,551 58,916,716

Total contigs 906,566 1,383,279 839,331

Largest contig(bp) 9,990 9,991 9,990

Total length (bp) 966,867,516 1,392,306,487 940,125,432

GC (%) 43.67 43.61 43.67

N50 1,671 1,331 1,758

N75 745 691 812

L50 168,723 282,937 158,900

L75 385,929 654,771 354,745

Ambiguous bases (N) per 100 kb 0 0 92

*Adapted from [17].

on.2018.e00583

by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

censes/by-nc-nd/4.0/).

https://doi.org/10.1016/j.heliyon.2018.e00583
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 https://doi.org/10.1016/j.heliy

2405-8440/� 2018 Published

(http://creativecommons.org/li

Article Nowe00583
3.5. Transcriptome completeness based upon CEGMA/BUSCO
alignment

In this comparison, three groups of datasets, including the single assembler-derived

assemblies (Trinity-assembly, CLC-assembly, OASES-assembly and SOAP-

assembly), the clustered assemblies (CDHIT-clustered assembly, Oases-clustered

assembly and CAP3-assembled assembly) and the reference group (SoGI database

[6] and a unigene set from [13]) were included. The CEGMA and BUSCO align-

ments showed that, in all cases, the clustered assemblies exhibited a higher

completeness level than those from single assembler-derived assemblies, and the

reference datasets (Fig. 2, Tables 3 and 4). The three clustered assemblies had

97.6e98.4% CEGMA (when only the complete CEG proteins were counted) and

100% CEGMA (including all complete and partial CEG proteins). The single

assembler-derived assemblies hadw14.1e96.8% CEGMA when only the complete

CEG proteins were counted and 39.5e99.6% CEGMAwhen all complete and partial

CEG proteins were counted. Amongst the single assembler-derived assemblies, the

Trinity-assembly performed the best, incorporating 96.8% complete CEGMA, fol-

lowed by CLC-assembly (96.0%), and SOAP-assembly (62.5%), while the

OASES-assembly incorporated only 14.1% due to the short contigs in the assembly.

In the reference group, SoGI dataset had 62.9% CEGMA alignment (87.5%

including partial CEGMA alignment), while the unigene set had 90.3% CEGMA

alignment (95.6% including partial CEGMAs), respectively. There were no missing

CEGMA in the clustered-assemblies, while there was 0.4e60.5% missing CEGMA

in the single assembler-derived assemblies (with 0.4e2.8% of Trinity, CLC and

SOAP-assembly, while the OASES-assembly had a large 60.5% missing CEGMA)
Fig. 2. Transcriptome completeness based upon CEGMA and BUSCO alignment.
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Table 3. CEGMA alignment for assembly completeness between single assemblies, clustered assemblies and reference assemblies.

Assembly Contig count # CEGs
Protein

Complete CEGs
count

% Completeness Partial
CEGS

% Partials Missing
CEGs

% Missing Total
CEGs

% Total complete
and partial CEGs

Trinity-assembly 431,255 248 240 96.77 7 2.82 1* 0.40 247 99.60

CLC-assembly 508,239 248 238 95.97 9 3.63 1** 0.40 247 99.60

OASES-assembly 798,345 248 35 14.11 63 25.40 150 60.48 98 39.52

SOAP-assembly 289,705 248 155 62.50 86 34.68 7 2.82 241 97.18

CDHIT-clustered 906,566 248 244 98.39 4 1.61 0 0.00 248 100.00

Oases-clustered 1,383,279 248 242 97.58 6 2.42 0 0.00 248 100.00

CAP3-assembled 839,331 248 243 97.98 5 2.02 0 0.00 248 100.00

SoGI database 121,342 248 156 62.90 61 24.60 31 12.50 217 87.50

Unigene set 72,269 248 224 90.32 13 5.24 11 4.44 237 95.56

Missing CEGs: *KOG0434 **KOG1088.
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Table 4. BUSCO alignment for assembly completeness between single assem-

blies, clustered assemblies and reference assemblies.

Assembly BUSCO Notation Assessment

Total
BUSCO
groups
searched

Total
complete
(%)

Single-copy
BUSCOs
(%)

Duplicated
BUSCOs
(%)

Fragmented
BUSCOs
(%)

Missing
BUSCOs
(%)

% Total
complete and
fragmented
BUSCOs

Trinity-assembly 956 91.53 21.03 70.50 5.75 2.72 97.28

CLC-assembly 956 87.87 22.07 65.79 8.58 3.56 96.44

OASES-assembly 956 27.20 13.18 14.02 55.13 17.68 82.32

SOAP-assembly 956 74.37 35.15 39.23 19.14 6.49 93.51

CDHIT-clustered 956 92.99 10.04 82.95 4.71 2.30 97.70

Oases-clustered 956 92.68 3.35 89.33 4.92 2.41 97.59

CAP3-assembled 956 92.78 11.72 81.07 4.60 2.62 97.38

SoGI database 956 46.65 26.67 19.98 34.41 18.93 81.07

Unigene set 956 79.60 63.81 15.79 11.40 9.00 91.00
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and 4.4e12.5% missing CEGMA in the reference group. Similarly, in the BUSCO

alignment against 956 conserved proteins, the clustered-assemblies were shown to

have higher completeness levels, by having up to w93% (or 97.4e97.7% including

fragmented BUSCOs), compared to that of the single-assembler derived assemblies

(27.2e91.5% and 82.3e97.3%, respectively), and that of the reference group

(46.7e79.6% complete BUSCO proteins and 81.1e91% including complete and

fragmented BUSCO proteins).

Amongst all the compared assemblies, the OASES-assembly, SOAP-assembly and

SoGI had the largest proportion of partial/fragmented alignment, having 25.4%

CEGMA/55.1% BUSCO, 34.7% CEGMA/19.1% BUSCO and 24.6% CEGMA/

34.4% BUSCO, respectively. The OASES-assembly and SoGI database had the

highest level of missing proteins, 60.5% CEGMA/17.7% BUSCO and 12.5%

CEGMA/18.9% BUSCO, respectively. In the BUSCO alignment, the clustered-

assemblies were shown to have the highest duplication level. This could be due to

the fact that the clustered-assemblies were derived from a pooled assembly. In addi-

tion to the true biological transcript isoforms, these assemblers and settings might

have assembled the same transcripts or transcript isoforms into many contigs of

different lengths that were retained by the clustering process. The OASES-

assembly had more fragmented contigs which could explain a low CEGMA

completeness (required longer alignment length compared to BUSCO). The SoGI

contains sugarcane gene indices and ESTs (fragmented mRNAs) collected from

many experiments of various tissues, which could contribute to the low complete-

ness and more fragmented BUSCOs. This database represented w90% of the
on.2018.e00583
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predicted sugarcane genes in the forms of short ESTs and assembled tentative con-

tigs. All in all, pooling and clustering contigs from multiple assemblies improved the

protein metric assessment. This is in agreement with previous reports, such as that of

[18], in which the authors concluded that although the method required high compu-

tational and storage capabilities, the de novo assembly was more complete, repre-

senting the samples from which it was derived, better than that from individual

assemblies alone. This may be particularly useful for many polyploid crop species,

such as sugarcane.
3.6. Detonate RSEM-EVAL score and Transrate metrics

Using these novel metrics which take the mapping of reads against the contigs into

account in assessing the assembly quality, the RSEM-EVAL score and CRBB hits

against the SUGIT database were obtained (Tables 5 and S5). The higher the RSEM-

EVAL score, the better the assembly is considered, even though this score is always

negative [26]. In the group of single assembler-derived assemblies, the score ranged

from �1.997 � 1010 to �1.41 � 1010. The assemblies were ordered based on their

RSEM-EVAL from the highest to the lowest, as follows: CLC-assembly > SOAP-

assembly > Trinity-assembly > OASES-assembly. Amongst the clustered assem-

blies, the range was from �1.61 � 1010 to �1.43 � 1010, in which the order was

CDHIT-clustered assembly> CAP3-assembled assembly> Oases-clustered assem-

bly. Amongst the reference group, the SoGI and unigene set had RSEM-EVAL score

of �2.05 � 1010 and �1.83 � 1010, respectively. These reference sets were not

derived directly from the reads used in this study, therefore, lower RSEM-EVAL
Table 5. Quality assessment of assemblies by Detonate and Transrate.

Assembly RSEM_EVAL
scorea

SUGIT transcripts Contigs with
positive impact
scored

%Contigs with
positive impact
scoreCRBB hitsb N refs with

CRBBc

Trinity-assembly -15,240,221,881 229,152 44,765 274,889 63.74

CLC-assembly -14,103,274,074 257,035 59,991 384,245 75.60

OASES-assembly -19,974,094,466 376,082 61,612 459,890 57.61

SOAP-assembly -14,863,304,548 182,813 54,837 273,789 94.51

CD-HIT-clustered -14,369,832,453 465,467 68,603 511,561 56.43

Oases-clustered -16,058,124,749 655,184 70,611 549,043 39.69

CAP3-assembled -14,615,684,149 436,219 67,299 464,628 55.36

SoGI database -20,480,838,298 85,621 41,261 75,426 62.16

Unigene set -18,324,896,664 28,403 23,193 59,130 81.82

a The higher the score, the better the assembly.
b Number of contigs in assembly with a Conditional Reciprocal Best BLAST (CRBB) hit with the SU-
GIT database.
c Number of sequences in the SUGIT database with a CRBB hit.
d Contig with a positive RSEM_EVAL impact score.
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scores are expected. The result suggests that the low score of the OASES-assembly

could be due to the high number of fragmented contigs that resulted in broken read

pairs in mapping. The CLC-assembly and the CDHIT-clustered assembly were

found to have the highest scores of all assemblies compared. The number of se-

quences with a hit against the SUGIT database corresponded to the number of con-

tigs in each of the assemblies. The clustered assemblies had more sequences from

SUGIT database hits in general, with the OASES-clustered assembly having the

highest number of SUGIT sequence hits, however, it had the lowest % of good

contigs.
3.7. Full-length transcript counting against the Viridiplantae
proteins

Since it was shown in the previous analyses that the clustered assemblies performed

better in general (in CEGMA and BUSCO protein alignments, Detonate and Transrate

assessments), only the clustered assemblies were used in this full-length transcript

counting. The full-length transcript counting was done by comparing the assemblies

against the UniProt Viridiplantae protein database. The number of transcripts appear-

ing to be full-length (covering at least 90% of Viridiplantae proteins) or nearly full-

length (covering at least 70% of Viridiplantae proteins) was counted and compared

(Fig. 3). Among the three clustered assemblies, the CDHIT-clustered assembly
Fig. 3. Full-length transcript count against the Viridiplantae proteins. Purple, blue and red colors repre-

sent values for CDHIT-clustered assembly, Oases-clustered assembly and CAP3-assembled assembly,

respectively.
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includedmost full-length transcripts which covered at least 90% of the known proteins

from the Viridiplantae database. A total of 13,704 transcript counts was reported for

the CDHIT-clustered assembly [17], compared to 10,283 and 13,570 counts for the

OASES-clustered assembly and the CAP3-assembled assembly, respectively. At a

70% cut-off it was 24,983, 19,824 and 25,121 for the CDHIT-clustered assembly,

the OASES-clustered assembly and the CAP3-assembled assembly, respectively.

The CDHIT-clustered assembly and CAP3-assembled assembly had a higher number

of full-length transcripts compared to the OASES-clustered assembly, due to the

similar approach in retaining/extending the contigs that differed from theway that OA-

SES pipeline worked. CAP3, however, performed scaffolding by introducing ambig-

uous bases into the contigs, which could be the reason for the protein homology search

being lower than for the CDHIT-clustered assembly at a cut-off of 90% and higher at

70%.
3.8. Potential coding transcripts and protein prediction of
transcriptome

The results in Table 6 show that among three final assemblies, the OASES-clustered

assembly had the highest number of predicted transcripts and average length of 1,000

largest proteins, hereafter, referred to as AP-1000 (94,398 transcripts including main

and alternative, and AP-1000 of 304 aa), compared to that of CDHIT-clustered as-

sembly (83,041 contigs and 298 aa [17]) and CAP3-assembled assembly (73,885

contigs and 300 aa). Both SoGI and unigene sets gave a lower number of predicted

transcripts (41,042 and 13,205, respectively), which could be due to the lower dupli-

cation level/isoforms or short transcripts in these assemblies that was reflected in the

lower fraction of the predicted alternative transcripts. In relation to the main tran-

scripts, the CDHIT-clustered assembly had the highest number of main transcripts

among the three (56,766 compared to 40,617 in the OASES-clustered assembly
Table 6. Potential coding and transcript prediction based on the Evigen pipeline.

Assembly CDHIT-clustered
assembly

Oases-clustered
assembly

CAP3-assembled
assembly

SoGI
database

Unigene
set

Main transcripts 56,766 40,617 53,691 32,013 13,205

Alternate transcripts 26,275 53,781 20,194 9,029 e

Total (main D alternate) 83,041 94,398 73,885 41,042 13,205

Minimum length (aa) 64 64 64 42 64

Maximum length (aa) 616 580 616 534 620

Average length (aa) 139.3 138.4 141.2 165.2 155.2

AP-1000** 298 304 300 287 298

**Average length of 1000 largest proteins (length expressed as amino acid, aa).
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and 53,691 in the CAP3-assembled assembly), while the OASES-clustered assembly

had the highest number of alternative transcripts among the three (53,781 compared

to 26,275 in CDHIT-clustered assembly and 20,194 in CAP3-assembled assembly).

This shows the effect of using different approaches to processing transcript contigs,

since the three datasets resulted from the same initial pooled assembly by using three

different tools. It was found that Evigen performed better on only the coding fraction

of the assembly, which is discussed in the next section.

Considering together the transcript prediction and the CEGMA/BUSCO alignment

in the previous sections, the CDHIT-clustered assembly was chosen for down-

stream processing, as it had a good transcript length prediction and better

CEGMA/BUSCO alignment, more full-length transcripts matching with the Viridi-

plantae protein database and better RSEM-EVAL score as well as Transrate compar-

ative metrics.
3.9. Clustered de novo assembly, which assembler contributes
more?

As mentioned earlier, the CDHIT-clustered assembly had 906,566 contigs, ofw967

Mb, and having an N50 of 1,671 bp (Fig. 4A). Investigating the contig composition

in this assembly, it was found that 44% of the contigs originated from the CLC-

assembly, while 35%, 17% and 4% were from Trinity-assembly, OASES-assembly
Fig. 4. Length distribution and expression of transcripts from the CDHIT-clustered assembly. (A) Box-

plot of contig length of the CDHIT-clustered assembly. (B) Percentage of contig composition based on

the assembly origins. (C) Length distribution of the contigs in the CDHIT-clustered assembly based on

their assembly origins.
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and SOAP-assembly, respectively (Fig. 4B). The larger number of transcripts

derived from the CLC-assembly could be the result of more settings conducted using

the CLC-WB and the longer contigs it produced. The lower number of contigs

derived from the OASES-assembly (despite it having the highest contig number

before clustering) and especially from the SOAP-assembly, could be due to the

shorter contigs obtained in these assemblies compared to those from CLC-GWB

or Trinity. This resulted in the shorter contigs getting clustered and being removed

by CD-HIT at a similarity setting of 95%. The CLC-assembly contributed more con-

tigs to the final assembly, but Trinity contributed more contigs with longer length,

especially those that had a length >1,500 bp (Fig. 4C). This CDHIT-clustered as-

sembly was used for further generation and characterization of the final de novo as-

sembly by different coding-based clustering approaches, including comparison with

the initial clustered transcript set from the earlier report [17].

Transcriptome de novo assembly, particularly from short read data, is a challenging

task in higher plants due to the fact that the plant genome contains thousands of

genes, and the alternatively spliced transcripts from each gene [75]. More chal-

lenging is that the actual number of transcripts that are expressed in a certain situa-

tion does not correspond to the number of genes or known transcripts of that species.

The total number and nature of transcripts expressed in one condition is different

from that expressed under another condition. RNA-Seq has been used intensively

for transcriptome de novo assembly for many plant species, i.e., wheat [76], tobacco

[18], and sugarcane [13, 14, 15, 16, 77]. In sugarcane, most transcriptome studies

have been based on a single-assembler approach employing Trinity or Velvet/OA-

SES, which could be limited by the range of transcripts that the specific assembler

is designed to capture. In this study, we have presented further quality assessment

of the assembly including CEGMA/BUSCO completeness alignment, RSEM-

EVAL score, CRBB hits, full-length transcript counts, coding transcript prediction

and protein metrics, supporting the conclusion that the strategy using multi-

assemblers/multiple settings improved the transcript de novo assembly. The sugar-

cane meta-transcriptome was derived from combining several individual culms by

including several samples of diverse genetic backgrounds (for a wider representation

of variety-specific genes), in combination with multiple settings and assemblers (for

capturing transcript isoforms). The results are in agreement with studies on assembly

of the transcriptomes of diploid species [11] and especially of those from polyploid

species, including those for allo-tetraploid Nicotiana benthamiana [18], tetraploid

peanut [73] and hexaploid wheat [76].

As the Evigen pipeline clusters transcripts based on their protein sequences, we at-

tempted to run the program on only the coding fraction of the CDHIT-clustered as-

sembly which was first retained by using the Portrait package [78]. The Portrait-

retained set of 535,295 transcript contigs (59.05% of the total) was then clustered

by Evigen, resulting in an improved assembly compared to that clustered by Evigen
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on the total CDHIT-clustered assembly, as described earlier [17]. This new Evigen-

clustered set had 121,987 transcript contigs; which accounted for about 6% of the

total pooled transcripts, and w13.46% of the CDHIT-clustered assembly (Tables 7

and S5); and showed an RSEM-EVAL score of�1.74� 1010, had 55,093 sequences

(w46%) with a CRBB hit against 22,317 sequences in the SUGIT database. A total

of 99,680 contigs in this transcriptome (w82% of the final set) were validated by

mapping against a set of w59 million normalized PE reads, and categorized as

“good contigs with a positive impact score”, which had both PE reads mapped to,

in the correct orientation. Considering that the remaining 22,307 contigs (w18%

of the final set, classified as bad contigs with negative impact score) could be biolog-

ically functional transcripts (they exhibited ORFs and were categorized as biologi-

cally real by Evigen) but may have been expressed at a low level that might have

not been validated by the subset of normalized reads, we retained all 121,987 tran-

scripts for downstream analysis, and referred to this as the final de novo assembly.

This final set was composed of 78,052 main transcripts and 43,935 alternative tran-

scripts with an N50 of 1,669 bp, an improved AP-1000 metric of 1,372 aa, and a

CEGMA completeness level of 96.4%.
3.10. Comparative analysis against other databases

Of 121,987 sequences in the final de novo assembly, 88, 943 contigs (72.9%)matched

38,887 entries from the Viridiplantae protein database, 66,714 sequences (54.7%)

matched the sorghum transcripts, 68,789 contigs (56.4%) matched the SoGI database,

64,221 contigs (52.7%) matched the SUCEST dataset and 78,204 contigs (64.1%)

matched the SUGIT database. Taken together, a total of 106,527 (87.3% of the final

set) matched one of the five databases, as presented in Table 8, and Venn diagram in
Table 7. Summary statistics of the final de novo assembly.

De novo assembly summary

Total length of sequence (bp) 128,307,893

Total number of sequences 121,987

N25 (bp) 3,049

N50 (bp) 1,669

N75 (bp) 692

Total GC count (bp) 61,352,407

GC %: 47.82

RSEM-EVAL score -17,384,096,424

Contigs with positive impact score 99,680

%Contigs with positive impact score 81.71

CRBB hits 55,903

N refs with CRBB* 22,317

*Number of SUGIT sequences with hit.
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Table 8. Blast summary of the final de novo assembly.

Database De novo contigs
matched

% de novo
assembly

Database entries
matched

Viridiplantae protein 88,943 72.91 38,887

Sorghum transcripts 66,714 54.69 22,922

SoGI database 68,789 56.39 32,467

SUCEST database 64,221 52.65 23,284

SUGIT database 78,204 64.11 33,488

Total sequences matched 106,527 87.33 e
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Fig. 5.We found that 42,813 common contigs matched against all 5 databases used in

the BLAST analysis. There were more transcripts that were unique to Viridiplantae

(15,627 sequences), which is composed of protein sequences from all plant species.

There were 1,061 sequences that matched uniquely against the sorghum transcripts

and 3,132 sequences unique to the SUGIT database. These unique sequences could

be novel for sugarcane since these were not present in the SoGI or SUCEST data-

bases. The full-length transcript count of the final de novo assembly against the
Fig. 5. Comparative analysis of the final de novo assembly against the Viridiplantae protein database,

sorghum and sugarcane transcript database.
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SUGIT and Viridiplantae protein databases were 7,282 and 9,722 (at >90%

coverage) and 12,468 and 16,671 (at >70% coverage), respectively (Table S6).
3.11. Transcript functional annotation

The functional annotation of the final de novo assembly was done using the results

from BLASTX against the NCBI non-redundant (NR) protein database (100 hits,

e-value ¼ �10). A summary of the annotation results is presented in Fig. 6,

including sequence length distribution of the final set, data distribution, e-value dis-

tribution of the blast hits, and the species distribution. Of a total 121,987 sequences,

92,861 sequences (76.1%) matched the NCBI NR protein database. The majority of

e-values ranged from 1e-10 to 1e-50 (43%), followed by 27% hits with e-values from

�50 to �100, 18% hits with e-values from 1e-150 to 0, and 12% hits with e-value of

1e-100 to 1e-150 (Fig. 6A). The majority of hits (52%) were attributed to Sorghum

bicolor, the most closely related species to sugarcane, while 13% of the top hits were

from Zea mays, 6% from Setaria italica, 5% from Oryza sativa Japonica group, 2%

from Saccharum hybrid cultivar R570 and 1% from Oryza sativa Indica group

(Fig. 6B). In general, most of the top hits were attributed to the grass family, and

cultivar R570 was the most represented cultivar amongst sugarcane genotypes.

Fig. 6C shows GO terms distribution for 81,154 transcripts of the final de novo as-

sembly annotated by Blast2GO [44] and plotted by WEGO [47]. The most abundant
Fig. 6. Summary of functional annotation of the final assembly. (A) E-value distribution. (B) Top-hit

species distribution. (C) Gene ontology terms annotation.
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GO terms were cell/cell part, intracellular, intracellular part (cellular component);

binding, catalytic and transferase (molecular function); cellular process, metabolic

process and primary metabolic process (biological process). Of the total predicted

main transcripts, 8,089 transcripts (w10.4%) were annotated against 3,251 KOs

in the KEGG metabolic pathway. A total of 74,618 transcripts were assigned to

11,853 orthologous groups by the program OrthMCL5. The list of orthologous

groups is provided in the Table S7.
3.12. Transcript isoform estimation

In relation to number of transcript isoforms in the final de novo assembly, selected

genes were used to estimate the number of transcript isoforms predicted based on

the annotation result (Table S8). It is shown that there were 11 transcripts belonging

to cellulose synthase (CesA) and CesA-like that appeared to be full-length transcripts,

covering at least 90% of the transcript in the SUGIT database (and 16 transcripts

covering at least 70% of full-length SUGIT transcripts). A total of two transcripts of

cinnamyl alcohol dehydrogenase (CAD), three transcripts as 4-coumarate-CoA ligase

1 (4CL 1), one transcript as caffeoyl-CoA O-methyltransferase (CCoAOMT), nine

transcripts as cinnamoyl CoA reductase (CCR) and three transcripts as phenylalanine

lyase (PAL) were found covering at least 90% of the SUGIT full-length transcripts.

When only 70% full-length SUGIT transcripts were considered, there were four,

one, seven, two, 11 and eight transcripts found, respectively for CAD, Caffeic acid

O-3-methyltransferase (COMT), 4CL 1, CCoAOMT, CCR and PAL, repspectively.

Protein-wise, 18 CesA/CesA-like, three CAD, one COMT, five 4CL 1, two

CCoAOMT, 11 CCR and four PAL transcripts covered at least 70% of Viridiplantae

proteins.
3.13. Transcript differential expression analysis

To evaluate the usability of the final de novo transcriptome assembly, an experiment

was set up to investigate the differential expression of transcripts between the young

and mature tissues of the sugarcane culm. Three genotypes (QC02-402, Q200 and

KQB08-32953) were selected for testing the transcript expression between the young

and mature tissues in this analysis, in which, for each genotype, one top internodal and

one bottom internodal tissue sample was used. An average mapping back rate of RNA-

Seq read data against the final de novo assembly wasw71% (Table S9) suggesting this

is suitable for transcript profiling analysis. It is noteworthy that this final set contains

only coding transcripts, while the RNA-Seq data had reads originally from coding and

also non-coding RNAs. The assemblies before Evigen clustering (CDHIT-clustered

assembly and Portrait-retained set) had 96e98% and 95e97% reads mapping back,

respectively, however they also had 94e97% and 92e96% reads that mapped more

than 1 times, indicating the high transcript redundancy.
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Fig. 7 shows the result analysed by the MapMan Image Annotator module for the top

and bottom internodal samples from the three genotypes. In this analysis, we included

only transcripts with a log2(TMM-normalised FPKMþ1)> 0.3 for visualization and

comparison between the two groups of samples. It was observed that the top inter-

nodal samples had a higher expression level of the transcript compared to the bottom

internodal samples. This is expected as the top internode represents the young and

growing tissues where the metabolism is active whereas in the bottom internodal tis-

sues some of the metabolic processes might have ceased or slowed down.

When top and bottom internodal tissues were compared in the differential expression

analysis using the DESeq2 package at a FDR-corrected p-value �0.05 and fold

change �2, it was found that a total of 822 transcripts were differentially expressed
Fig. 8. Differential expression analysis of transcripts between the top and bottom internodal tissue sam-

ples. (A) MA plot. (B) Volcano plot. (C) Up- and down-regulated transcripts between the top and bottom

internodal tissues. (D) Comparison between samples in each groups of tissues. T denotes top tissue, and

B denotes bottom tissue. 01, 09 and 12 are codes for genotypes QC02-402, Q200 and KQB08-32953,

respectively.
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(DE). This included 504 down-regulated transcripts and 318 up-regulated transcripts

in the bottom internodal tissues (or up-regulated and down-regulated in the top tissues,

respectively, details provided in Tables S10 and S11). It is important to mention that

the transcripts/genes “down-regulated” in the bottom internode (mature tissue) are

actually transcripts/genes that are down-regulated during maturation and those “up-

regulated” transcripts/genes in the mature tissue are up-regulated during maturation.

Summary of the differential expression analysis includes the MA (Fig. 8A) and vol-

cano plots where the DE transcripts are highlighted (Fig. 8B), clustered DE transcripts

between the top and bottom internodal tissues (Fig. 8C), and sample correlation

(Fig. 8D). The identified DE transcripts and functional classifications are illustrated

in Fig. 9A, including transcripts related to carbohydrates (CHO)/cell wall metabolism

(function classifications 1, 2 and 10) and phenylpropanoid pathway (in secondary

metabolism category, functional classification 16) which includes the monolignol
Fig. 9. Differentially expressed transcripts between the top and bottom tissues. (A) Summary of identi-

fied differentially expressed transcripts annotated as different MapMan functional classifications. (B)

Cell-wall precursor metabolism. (C) Secondary metabolism e phenylpropanoid pathway. Log2FC was

used in generating this figure, red color denotes the up-regulated transcript while blue color denotes

the down-regulated transcripts in top internodal tissue (or down-regulated/up-regulated in the bottom tis-

sues, respectively). Each heatmap is representative of one of the identified differentially expressed

transcripts.
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metabolism. Notably, the identified DE transcripts involved in major/minor CHO

metabolism include: fructose-bisphosphate aldolase, chloroplast precursor (EC

4.1.2.13) (ALDP), sucrose phosphate synthase 3F (SPS3F), cytosolic fructose-1,6-

bisphosphatase (EC 3.1.3.11), NADP-dependent oxidoreductase phosphofructokinase

3 (PFK3), and glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12). Transcripts

related to cell wall precursor metabolism (Fig. 9B) include: UDP-D-glucose/UDP-D-

galactose 4-epimerase 2 (UGE2), sucrose synthase 2 (EC 2.4.1.13), UDP-glucose 6-

dehydrogenase (EC 1.1.1.22), CesA (EC 2.4.1.12) and CesA-like, COBRA-like 5 pro-

tein precursor (protein BRITTLE CULM1), IRX9 gene and pectin lyase-like super-

family protein. Transcripts involved in the lignin biosynthesis (Fig. 9C) include:

PAL (EC 4.3.1.5), CAD (EC 1.1.1.195), cinnamic acid 4-hydroxylase (C4H, EC

1.14.13.11), 4CL 2 (EC 6.2.1.12), hydroxycinnamoyl-Coenzyme A shikimate/quinate

hydroxycinnamoyl transferase (HCT, EC 2.3.1.106), coumarate 3-hydroxylase (C3H,

E.C. 1.14.14.1), CCoAOMT (EC 2.1.1.104), CCR1 (EC 1.2.1.44) and ferulate 5-

hydroxylase (F5H, EC 1.14.13). This result is consistent with the earlier reports on

DE transcripts in the immature, maturing and mature internodes of the sugarcane

plant [79, 80] and also in our other studies using the SUGIT database [81]. The

down-regulation of some of the transcripts including the COBRA-like 5 protein pre-

cursor, CAD, CCR, CesA, CesA-like C5 and IRX9 during maturation was validated

by quantitative real-time PCR (qPCR) [81] on RNA samples from two out of three

genotypes used in this study (QC02-401 and Q200).
4. Conclusion

Due to the tissue- /genotype-specificity of the sugarcane transcriptome and in the

context of sugarcane lacking a reference genome, it is widely agreed that the best

transcriptome to be used for transcript expression profiling is the one that is assem-

bled directly from the samples. To aid the construction of a culm-derived meta-tran-

scriptome, a large scale deep RNA sequencing of 20 genotypes of diverse genetic

backgrounds had been performed, aiming to cover a wide range of transcripts that

are expressed in the culm. In this current study, further analyses of the effect of

different settings, assemblers and processing methods on assembly output through

different quality assessment was performed and discussed. The separation of the

coding fraction of the transcriptome prior to protein-based transcript prediction re-

sulted in a more usable set of 121,987 transcripts being retained. The updated anno-

tation showed that 76% and 73% of this dataset matched the NCBI NR protein and

the Viridiplantae protein databases, respectively, while the rest could contain poten-

tially novel genes in sugarcane. About 67% of the transcriptome was annotated

against the GO terms; while w61% and w10% (taking only main transcripts)

were assigned to 11,853 orthologous groups and 3,251 KOs in the KEGG metabolic

pathway, respectively. A total of 822 transcripts were differentially expressed (DE),
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including 504 down-regulated transcripts and 318 up-regulated transcripts during

maturation of the sugarcane plant. Among these, there were important transcripts

involved in fiber and sugar accumulation in the sugarcane culms. This study pro-

vides useful information on coding genes specific to the sugarcane culm from a

diverse set of genotypes that was not previously available and the transcript set iden-

tified will facilitate further gene expression studies in the sugarcane culm, especially

in understanding the processes of carbon partitioning and biomass accumulation in

the sugarcane culm.
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