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plasma BDnf is a more reliable 
biomarker than erythrocyte 
omega‑3 index for the omega‑3 
fatty acid enrichment of brain
Dhavamani Sugasini1, poorna c. R. Yalagala1 & papasani V. Subbaiah1,2*

Enriching brain DHA is believed to be beneficial for the prevention and treatment of several 
neurological diseases, including Alzheimer’s disease. An impediment in assessing the effectiveness 
of the treatments is the lack of a reliable biomarker for brain DHA. The commonly used erythrocyte 
omega‑3 index is not suitable for brain because of the involvement of unique transporter at the blood 
brain barrier (BBB). We recently showed that dietary lysophosphatidylcholine (LPC)‑DHA significantly 
increases brain DHA, which results in increase of brain BDNF. Since there is bidirectional transport of 
BDNF through the BBB, we tested the hypothesis that plasma BDNF may be used as biomarker for 
brain DHA enrichment. We altered the brain DHA in rats and mice over a wide range using different 
dietary carriers of DHA, and the correlations between the increase in brain omega‑3 index with the 
increases in plasma BDNF and the erythrocyte index were determined. Whereas the increase in brain 
omega‑3 index positively correlated with the increase in plasma BDNF, it negatively correlated with 
the erythrocyte index. These results show that the plasma BDNF is more reliable than the erythrocyte 
index as biomarker for assessing the effectiveness of omega‑3 supplements in improving brain 
function.

The brain contains a very high concentration of the essential omega-3 fatty acid (FA) docosahexaenoic acid 
(DHA), which plays an important role in the normal development and function of the brain. Deficiency of DHA 
is associated with several neurological diseases, including Alzheimer’s, schizophrenia, Parkinson’s, and major 
depressive  disorder1–3. Furthermore,  epidemiologic4 and pre-clinical  studies5–8 show beneficial effects of dietary 
omega-3 FA in the prevention and management of these diseases. Therefore, nutritional supplements such as fish 
oil are widely used in order to increase brain DHA with a hope to prevent these diseases or mitigate their effects. 
Although some beneficial effects have been  reported9–11, majority of the controlled clinical trials using the cur-
rently available supplements failed to show improvement in Alzheimer’s  disease12–14, Huntington’s  disease15, or 
 schizophrenia16. A possible reason for the failure of these trials is that the supplements do not significantly enrich 
brain DHA at clinically relevant doses, and therefore it is necessary to measure the brain DHA levels in order to 
test their effectiveness. Since a direct measurement of brain DHA is not possible, reliable non-invasive biomarkers 
are needed to determine the brain enrichment. Currently, the most widely used biomarker is the percentage of 
eicosapentaenoic acid (EPA) + DHA in the erythrocyte membrane lipids (omega-3 index)17. The basis for using 
this biomarker is the epidemiologic data showing that the dietary intake of omega-3 FA is positively correlated 
with the changes in the erythrocyte omega-3  index18. Furthermore, the increase in omega-3 FA of erythrocytes, 
following fish oil feeding correlated positively with the changes in brain DHA content in aged  rats19, as well as 
neonatal  baboons20. In contrast, other studies reported no positive correlation between erythrocyte DHA and 
brain DHA in swine which were fed fish  oil21 or in weanling rats fed alpha linolenic  acid22. The mechanism of 
uptake of DHA and EPA by the brain is unlike the uptake by the systemic tissues because of the involvement of 
a transporter at the blood brain barrier which is specific for the lysophosphatidylcholine (LPC)-form of  DHA23, 
whereas most other tissues obtain their omega-3 FA via lipoprotein uptake or by exchange with plasma lipids. 
Therefore, the enrichment of brain DHA may not correlate with that of other tissues, including the erythrocytes. 
We recently demonstrated that the brain DHA can be increased by up to 100% by feeding LPC-DHA to mice 
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and  rats24,25. We also found an increase in the brain derived neurotrophic factor (BDNF) in the brain, concomi-
tant with its increase in DHA  levels24. Since DHA is known to increase the synthesis of BDNF in the  brain26,27, 
and since there is a bidirectional transport of BDNF through the blood brain barrier (BBB)28, we investigated 
whether the increase in plasma BDNF can be used as a functional biomarker for the increase in brain DHA. 
We determined plasma BDNF levels in rats and mice whose brain DHA levels were altered over a wide range 
with various nutritional supplements. The results presented here show a strong positive correlation between the 
increase in brain DHA and the increase in plasma BDNF levels in both rats and mice. In contrast, the erythrocyte 
omega-3 FA levels were negatively correlated with the brain DHA levels, although they correlated positively with 
the increase in adipose tissue and heart. These results show that plasma BDNF level is a more reliable biomarker 
for the brain DHA levels compared to the erythrocyte omega-3 FA.

Results
Comparative effects of dietary TAG‑DHA, PC‑DHA, and LPC‑DHA on brain DHA and BDNF in 
rats. Our previous studies in rats showed that the brain DHA levels can be altered over a wide range by feed-
ing different molecular carriers of  DHA24,25. Whereas triacylglycerol (TAG)-DHA had minimal effect on brain 
DHA, di-DHA PC (phosphatidylcholine) and LPC-DHA markedly and dose dependently increased the DHA 
in all regions of the  brain25. Furthermore, brain BDNF levels were increased significantly in proportion to the 
increase in  DHA24. Since there is a bidirectional transport of BDNF across the  BBB28, we determined whether 
the increase in brain BDNF also results in an increase in plasma BDNF. As shown in Fig. 1, there was indeed a 
positive correlation between the increase in plasma BDNF and the increases in BDNF levels of cortex and hip-
pocampus after treatment with various molecular carriers of dietary DHA. The absolute values of the BDNF (and 
the statistical significance determined by ANOVA) are shown in the insets. These results show that the changes 
in plasma BDNF levels reflect the changes in brain BDNF levels, as also reported by  others29. Since the increase 
in brain BDNF is correlated with the increase in brain  DHA24, we tested the hypothesis that plasma BDNF may 
be a valid biomarker for the changes in the brain DHA content. As shown in Fig. 2A, B, the increase in plasma 
BDNF correlated positively with the increase in DHA in both cortex and hippocampus over a wide range of val-
ues. The insets show absolute percentages of brain omega-3 FA (EPA + DHA) and the concentrations of plasma 
BDNF under various dietary conditions. We have also determined the correlation between the increases in brain 
DHA levels and erythrocyte omega-3 index, the most commonly used biomarker for measuring the incorpora-
tion of dietary omega-3 FA into brain and other  tissues18,30. As shown in Fig. 2C, D, the increases in erythrocyte 
omega-3 levels were actually negatively correlated with the increases in cortex or hippocampus omega-3 levels. 
This is due to the fact that TAG-DHA significantly increased the erythrocyte omega-3 FA without appreci-
ably increasing the brain omega-3 FA. On the other hand, PC-DHA and LPC-DHA which increased the brain 
omega-3 FA, had only modest effect on erythrocytes. These results therefore show that the erythrocyte omega-3 
index is not a suitable marker for the changes in brain omega-3 FA altered by dietary lipids.

Figure 1.  Correlation of plasma BDNF levels with brain BDNF in rats. Two month old rats were gavaged daily 
with the indicated DHA-compounds (40 mg DHA/kg body weight) for one month, and the BDNF levels in 
plasma and brain regions were determined by ELISA. Two doses of LPC-DHA (5 mg and 10 mg) equivalent 
to 20 mg DHA and 40 mg DHA/kg body weight respectively were used. The insets show the absolute values 
(mean ± SD, n = 10 rats/group) of BDNF in the control (untreated) and DHA-treated groups. Bars of the same 
color without common superscripts are significantly different from each other (one-way ANOVA, with Tukey 
multiple comparison correction). The increase in BDNF by DHA treatment was calculated by subtracting 
the average of the control values from the individual samples of the treated groups. Pearson correlation was 
calculated between the increase in plasma BDNF vs the increase in cortex or hippocampus (Graphpad, Prism 
8.0).
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It should be pointed out that the negative correlation observed above does not mean a reciprocal relationship 
between erythrocyte omega-3 and brain omega-3. Instead, this is due to the divergent mechanisms of uptake 
by the two tissues. Brain acquires its DHA through the Mfsd2a transporter pathway which prefers LPC-DHA 
over other forms of  DHA23, whereas the DHA uptake by the erythrocytes is most likely through the exchange 
with plasma lipids. Therefore, it is possible that the erythrocyte index may not reflect the brain index, but could 
reflect the uptake of DHA by other peripheral tissue that acquire DHA through non-Mfsd2a pathways, including 
uptake of free FA through diffusion, and the receptor-mediated uptake of lipoproteins. To investigate this, we 
determined the correlation of changes in erythrocyte omega-3 index with changes in this index of other tissues. 
In addition, we determined the correlation of the omega-3 index of these tissues with plasma BDNF. As shown in 
Fig. 3, the liver omega-3 index was negatively correlated with the erythrocyte index, but positively correlated with 
the increase in plasma BDNF, similar to the brain. In contrast, the changes in erythrocyte index were positively 
correlated with the changes in heart (Fig. 4A) and adipose tissue (Fig. 4C). In both these tissues, TAG-DHA was 
more efficient than LPC-DHA or PC-DHA in increasing the omega-3  FA25. The plasma BDNF changes, on the 
other hand, were negatively correlated with the changes in omega-3 index of adipose tissue (Fig. 4B) as well as 
heart (Fig. 4D). In conclusion, these results show that the erythrocyte index, which has been widely used as a 
surrogate for the tissue incorporation of dietary omega-3 FA, reflects only selected tissues such as adipose tissue 
and the heart, but not the brain or liver.

Studies in normal mice; effect of dietary free (unesterified) DHA versus LPC‑DHA. Although 
some previous studies suggested that BDNF is absent in mouse  plasma29,31, more recent studies showed the 
presence of measurable  amounts32,33. We previously showed that while dietary free DHA did not appreciably 
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Figure 2.  Correlation of omega-3 FA levels of brain with plasma BDNF and with erythrocyte omega-3 index in 
rats. The increase in cortex and hippocampus omega-3 FA (DHA + EPA) by the dietary treatment with various 
DHA carriers is plotted against the increase in plasma BDNF (A and B respectively) or against the erythrocyte 
omega-3 index (C and D respectively). The increase in brain omega-3 index was positively correlated with 
plasma BDNF, but negatively correlated with the increase in the erythrocyte index. The insets show the absolute 
values (mean ± SD, n = 10 rats/group), of BDNF and omega-3 FA (EPA + DHA), including those of the controls. 
Bars of same color without common superscripts are significantly different from each other by one-way 
ANOVA, with Tukey post-hoc correction.
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increase brain DHA, LPC-DHA (both sn-1 acyl and sn-2 acyl isomers) markedly increased brain DHA, as well 
as BDNF, and improved brain function in normal male  mice24. We now determined whether the increase in 
brain DHA by LPC-DHA resulted in an increase of plasma BDNF in mouse plasma also. As shown in Fig. 5A, 
B (insets), free DHA did not increase plasma BDNF levels compared to controls, whereas both isomers of LPC-
DHA significantly increased it in cortex as well as hippocampus. There was a positive correlation between the 
increase in plasma BDNF and the increase in brain BDNF (Supplementary Figs. 1 and 2 online). The increase in 
plasma BDNF above the control value correlated positively with the increase in omega-3 index in both the brain 
regions. In contrast, the increase in erythrocyte index was negatively correlated with the increases in cortex and 
hippocampus (Fig. 5C, D). These results are similar to those obtained in rats, and thus show that plasma BDNF 
is a valid marker for changes in brain omega-3 FA levels not only in rats but also in mice.

Effect of dietary LPC‑EPA in mice. Whereas previous studies reported that brain EPA levels cannot be 
increased through  diet34,35, we have demonstrated that feeding LPC-EPA to normal mice not only increases 
brain EPA levels by several fold, but also increases brain DHA by about 100% in normal  mice36. We determined 
whether the increase in plasma BDNF can be used as a biomarker for the increase in brain EPA and DHA after 
feeding free and LPC-EPA. As shown in Fig. 6, the increase in plasma BDNF above the average of control val-
ues positively correlated with the increase in the brain omega-3 index. However, the increase in erythrocyte 
omega-3 index was negatively correlated with that of brain because free EPA increased the omega-3 content of 
erythrocytes but not the brain, similar to the effects of TAG-DHA. The insets show the absolute values for all 
groups, including the controls. The increase in plasma BDNF also correlated positively with its increase in the 
brain (Supplementary Fig. 3 online). These results show that the effect of feeding LPC-EPA on plasma BDNF are 
similar to those of feeding LPC-DHA.

Studies with lipase treated krill oil and fish oil. We recently showed that the brain omega-3 index can 
be significantly increased by feeding krill oil which has been pre-treated with a lipase (thus generating LPC-EPA 
and LPC-DHA), but not by similarly treated fish oil, which cannot generate  LPC37. Since many of the clinical 
studies are carried out with fish oil or krill oil, we determined whether the plasma BDNF can be used as surro-
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Figure 3.  Correlation of liver omega-3 FA enrichment with plasma BDNF and erythrocyte omega-3 index in 
rats. The increase in omega-3 FA levels in the liver correlated positively with the increase in plasma BDNF (top), 
but correlated negatively with the increase in erythrocyte omega-3 index (bottom).
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gate for brain omega-3 index in the mice treated with the lipase-modified and unmodified krill oil and fish oil. 
As shown in Fig. 7A, B (insets), only the lipase-treated krill oil significantly increased the omega-3 FA content 
in both cortex and hippocampus. The increase in plasma BDNF correlated with its increase in cortex and hip-
pocampus (Supplementary Figs. 4 and 5 online). Furthermore, the increase in plasma BDNF above the control 
value positively correlated with the increases in the omega-3 indexes of cortex and hippocampus. On the other 
hand, the increase in erythrocyte index was negatively correlated with the increases in the indexes in cortex and 
hippocampus (Fig. 7C, D). These results are similar to the results obtained with pure LPC-DHA or LPC-EPA in 
the mice.

Discussion
Although there are several nutritional supplements of omega-3 FA in the market claiming to improve brain func-
tion and to protect against neurological diseases, controlled clinical trials supporting these claims are lacking. 
While some studies did report positive  results9–11 many other studies reported negative results in improving brain 
function and  memory12–14. An impediment for testing the effectiveness of the various supplements in humans 
is the lack of a reliable biomarker for the enrichment of brain omega-3 FA in response to them. Although the 
erythrocyte omega-3 index has been effectively used to evaluate the cardiovascular benefits of the omega-3 
 supplements38, the utility of this index in determining the effectiveness of these supplements for brain enrichment 
has not been demonstrated. In fact, the study by Fenton et al.17, which showed positive correlation of the eryth-
rocyte omega-3 index with most other tissues excluded brain and liver, the two most important tissues relevant 
to the omega-3 FA function in the brain. Previous studies by Berliner et al.21 showed no significant correlation 
between the DHA concentration of erythrocyte membranes and that of brain membranes in miniature swine fed 
menhaden oil. Similarly, Tu et al.22 reported that after feeding α-linolenic acid to weanling rats, the erythrocyte 
omega-3 index correlated positively with that of most other tissues, but not the brain. Some epidemiologic studies 
also showed no correlation between erythrocyte index and  depression39 or white matter  hyperintensity40. Many 
experimental studies in animals, on the other hand, have reported a positive correlation between erythrocyte 
omega-3 index and that of the brain, but the range of brain DHA values achieved in these studies was narrow, 
since TAG-omega-3, which does not efficiently enrich brain omega-3, was used for  feeding19,22,41. Interestingly 
we also found a positive correlation between the increase in erythrocyte and brain indexes if we plot only the 
values of the rats fed TAG-DHA (Supplementary Fig. 6 online). However, this correlation turned negative when 
the effects of PC-DHA and LPC-DHA are included, since the latter induce a much greater increase in brain 
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Figure 4.  Correlation of brain omega-3 changes in adipose tissue (top) and heart (bottom) with changes in 
plasma BDNF or erythrocyte omega-3 index in rats. The increase in omega-3 index of peri-gonadal adipose 
tissue (A) and of heart (C) correlated negatively with the increase in plasma BDNF, whereas the they were 
correlated positively with the increase in erythrocyte omega-3 index (B, D).
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DHA without a concomitant effect on erythrocytes (Fig. 2C, D). Therefore, the negative correlation does not 
mean that there is a reciprocal relationship between the erythrocytes and the brain, but instead is indicative of 
the divergent incorporation profiles of TAG-DHA and LPC-DHA. Whereas DHA from dietary TAG is incorpo-
rated significantly into erythrocytes, it is inefficient in enriching brain DHA. In contrast, LPC-DHA efficiently 
increased brain DHA by up to 100%, without significantly altering erythrocyte levels.

The current study makes a strong case for the plasma BDNF as a reliable non-invasive biomarker for the 
increase in brain omega-3 FA levels in response to treatments in patients. BDNF is an important neurotrophin 
with a role in neurogenesis, neuronal survival, learning and memory, as well as in regulation of body weight and 
energy  homeostasis42. Plasma levels of BDNF are significantly decreased in patients with psychiatric  disorders43, 
and are increased after treatment with anti-depressants44, as well as high doses of omega-3  FA45. Plasma BDNF is 
also significantly increased after vigorous  exercise46, which is further enhanced by feeding  DHA27. Importantly, 
it has been shown that there is a bidirectional transfer of BDNF between the brain and the  plasma27,28, and that 
up to 80% of BDNF in the plasma may be derived from the  brain46. There is convincing evidence that DHA 
increases the expression of BDNF in the brain possibly through the activation of  Akt27 or  GPR4047. Many of the 
beneficial effects of DHA may be through the expression of BDNF. Therefore, there is a physiological basis for 
using the plasma BDNF as a functional surrogate for brain omega-3 FA levels, unlike the erythrocyte omega-3 
FA levels, which are metabolically unrelated to the brain levels.

In addition to the brain omega-3 FA status, the plasma BDNF may be a reliable marker for the omega-3 FA 
level of the liver, which does not correlate with the erythrocyte omega-3 index. There is ample evidence from 
experimental studies that high dietary omega-3 FA diets are beneficial in the treatment of fatty  liver48, but 
mixed results were obtained in the clinical trials. Measuring plasma BDNF, which correlates positively with the 

Figure 5.  Correlation of brain omega-3 index with plasma BDNF and erythrocyte omega-3 index in normal 
mice. Normal male mice were gavaged with 40 mg DHA/kg body weight in the form of free DHA, sn-1 acyl 
LPC-DHA, or sn-2 acyl LPC-DHA for 30 days. The omega-3 FA content (DHA + EPA) of the brain regions and 
erythrocytes was measured by GC/MS, and the plasma BDNF levels were measured by ELISA. The insets show 
the absolute values (mean ± SD, n = 8 mice/group) for the % of omega-3 fatty acids (DHA + EPA) and the plasma 
BDNF values (pg/ml) in all groups, including controls (no treatment). In the inserts, bars of same color without 
common superscripts are significantly different from each other by one-way ANOVA, with Tukey post-hoc 
correction. The increases in omega-3 index and plasma BDNF levels above the control values are plotted. The 
increases in omega-3 FA of cortex as well as hippocampus correlated positively with the increases in plasma 
BDNF (A, B), whereas they correlated negatively with the omega-3 index of the erythrocytes (C, D).
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hepatic enrichment of omega-3 FA would be helpful in determining the effectiveness of the treatments with 
nutritional supplements. It may be pointed out that the BDNF concentration of serum is much higher than the 
plasma, since large amounts of BDNF are released during the activation of  platelets49. Therefore, it is important 
to measure the BDNF levels in the plasma, not in the serum, for more accurate reflection of the brain DHA lev-
els. Another important consideration is that since BDNF expression and its plasma levels are also increased by 
vigorous  exercise46 and anti-depressant  treatments44, such factors should be controlled for, if present, in order to 
specifically measure the effects of DHA. For example, any exercise regimen and anti-depressant therapy should 
be continued as usual during omega-3 FA treatment, and plasma BDNF should be measured before and after 
the treatment period.

Materials and methods
Animals and dietary treatments. Most of the analyses were carried out on samples obtained from our 
studies published  previously24,25,36,37. All animal protocols were approved by the UIC institutional animal care 
committee, and all methods were carried out in accordance with the relevant guidelines and regulations. Male 
Sprague–Dawley rats (8 week old) were purchased from Harlan laboratories (Indianapolis, IN). Male c57BL/6 
mice (2–4 months old) were purchased from Jackson Laboratories (Bar Harbor. Maine).

In study 1, the rats were gavaged daily with 10 mg of DHA in the form of TAG-DHA, di-DHA PC, or 5 and 
10 mg of DHA in the form of LPC-DHA for 30  days25. In study 2, male mice (4 month old) were gavaged daily 
with 40 mg DHA/kg body weight in the form of free DHA, sn-1 acyl LPC-DHA, or sn-2 acyl LPC-DHA for 
30 days as described  previously24. In study 3, male mice (2 month old) were gavaged daily with 40 mg EPA/kg 
body weight in the form of free EPA or LPC-EPA for 15 days, as described  previously36. In study 4, male mice 
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Figure 6.  Correlation of brain omega-3 index with plasma BDNF or erythrocyte omega-3 index in mice fed 
EPA. Normal male mice were gavaged with 40 mg EPA/kg body weight in the form of either free (unesterified) 
EPA or LPC-EPA for 15 days, and the plasma BDNF as well as omega-3 indexes were measured. The increases 
in omega-3 index of the brain (over the averages of control values) are plotted against the increases in plasma 
BDNF (top) or erythrocyte omega-3 index (bottom). The absolute values of omega indexes (EPA + DHA) and 
plasma BDNF (pg/ml) for all groups including the control are shown in the insets (mean ± SD, n = 6 mice/
group). In the inserts, bars of same color without common superscripts are significantly different from each 
other by one-way ANOVA.



8

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:10809  | https://doi.org/10.1038/s41598-020-67868-9

www.nature.com/scientificreports/

(2 month old) were fed diets enriched with natural or lipase-treated fish oil or natural or lipase-treated krill oil for 
30 days. The FA composition of most of the tissues, determined by GC/MS, has been presented in our previous 
 studies24,25,36,37. In addition, we analyzed the FA composition of the erythrocytes in all animals by GC/MS for this 
study. The values of EPA and DHA (percentage of total) were combined to give the omega-3 index of the tissues.

Analytical procedures. The FA analysis of tissues was carried out by GC/MS as described  previously24. 
BDNF in plasma and brain regions was assayed by ELISA, using Promega Emax Immunoassay system kit (Pro-
mega Inc., Madison, WI, USA), according to the manufacturer’s protocol. Rat brain regions (Cortex and hip-
pocampus) were homogenized in the lysis buffer, and the homogenates were centrifuged at 10,000×g, for 20 min. 
The supernatants were collected and used for the quantification of BDNF levels.

Statistics and correlations. The significance of differences between treatment groups was determined by 
one-way ANOVA, with Tukey post hoc multiple comparison corrections. For each study, the average of control 
values (untreated group) was first calculated. This average was then subtracted from individual values of the 
treatment groups to calculate the increases in omega-3 FA of tissues or plasma BDNF due to the treatment. The 
increases in omega-3 FA in the brain and other tissues were plotted against the increases in plasma BDNF or 
erythrocyte omega-3 of each animal to determine the Pearson correlation coefficients (Graphpad Prism 8.0).
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Figure 7.  Correlation of brain omega-3 index with plasma BDNF and erythrocyte omega-3 index in mice fed 
krill oil or fish oil. Natural or lipase-treated fish oil and krill oil were incorporated into AIN-93G diet to provide 
2.64 g of EPA + DHA per kg diet. These diets were fed to normal male mice for 30 days, and the tissue FA 
composition as well as plasma BDNF contents were measured. The top 2 panels (A, B) show the correlation of 
the increase in omega-3 indexes of cortex and hippocampus with the increase in plasma BDNF levels, whereas 
the bottom 2 panels (C, D) show the correlation of the increases in cortex and hippocampus omega-3 indexes 
with that of erythrocytes. The insets show the absolute values (mean ± SD, n = 5 mice/group) of omega-3 indexes 
(% of EPA + DHA) and the plasma BDNF levels (pg/ml) for all groups including the controls (which were fed 
unsupplemented AIN-93G diet). Bars of same color with different superscripts are significantly different from 
each other by one-way ANOVA.
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