Das et al. BMC Genomics 2013, 14:685
http://www.biomedcentral.com/1471-2164/14/685

BMC
Genomics

RESEARCH ARTICLE Open Access

DNMT1 and AIM1 Imprinting in human placenta
revealed through a genome-wide screen for
allele-specific DNA methylation

Radhika Das', Yew Kok Lee', Ruslan Strogantsev?, Shengnan Jin', Yen Ching Lim', Poh Yong Ng',
Xuegin Michelle Lin', Keefe Chng', George SH Yeo®, Anne C Ferguson-Smith? and Chunming Ding'”

Abstract

maouse.

DNMT1, AIM1

Background: Genomic imprinting is an epigenetically requlated process wherein genes are expressed in a parent-
of-origin specific manner. Many imprinted genes were initially identified in mice; some of these were subsequently
shown not to be imprinted in humans. Such discrepancy reflects developmental, morphological and physiological
differences between mouse and human tissues. This is particularly relevant for the placenta. Study of genomic
imprinting thus needs to be carried out in a species and developmental stage-specific manner. We describe here a new
strategy to study allele-specific DNA methylation in the human placenta for the discovery of novel imprinted genes.

Results: Using this methodology, we confirmed 16 differentially methylated regions (DMRs) associated with known
imprinted genes. We chose 28 genomic regions for further testing and identified two imprinted genes (DNMTT and
AIMT). Both genes showed maternal allele-specific methylation and paternal allele-specific transcription. Imprinted
expression for AIMT was conserved in the cynomolgus macaque placenta, but not in other macaque tissues or in the

Conclusions: Our study indicates that while there are many genomic regions with allele-specific methylation in tissues
like the placenta, only a small sub-set of them are associated with allele-specific transcription, suggesting alternative
functions for such genomic regions. Nonetheless, novel tissue-specific imprinted genes remain to be discovered in
humans. Their identification may help us better understand embryonic and fetal development.
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Background

Genomic imprinting is the epigenetic phenomenon
wherein genes are expressed exclusively from one parental
allele [1,2]. Imprinting has been reported in placental
mammals, specifically, in primates, rodents, canines and
ruminants. Some of these imprinted genes exhibit species-
specific and spatial-temporal patterns of imprinted
expression [3,4].

Selective inactivation of one parental allele can be
achieved by parent-of-origin specific cytosine methyla-
tion. Germline-derived heritable differentially methylated
regions (gDMRs) are established at the gamete stage [5].
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Secondary differentially methylated marks are acquired
after fertilization or later in life, and these are known as
somatic DMRs or sDMRs [6]. Allele-specific activating
or repressive histone modifications have also been impli-
cated in regulating imprinting [7].

Since the discovery of the first imprinted gene in 1991,
73 imprinted genes have been identified in humans http://
igc.otago.ac.nz/home.html while 155 imprinted genes have
been reported in mice (http://www.mousebook.org/catalog.
php?catalog=imprinting). In recent years, many studies
using genome-wide technologies for genomic or
epigenomic analyses were performed to identify novel
imprinted genes. However, most had mixed success
[8-16]. Whole genome and transcriptome sequencing
technologies have helped identify only a small number
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of imprinted transcripts [8,17-22], suggesting that most
imprinted genes have already been identified [23] or are
tissue-specific and thus needed to be analyzed in specific
cell types [8]. Only one study identified a large number of
potential imprinted genes in the mouse brain [24,25], but
further investigation revealed that most of these may be
false positives due to artifacts from the RNA-Seq approach
[26], a finding supported by more recent data [27].

Functionally, genomic imprinting is critical for proper
placenta and embryo development [28-32]. Conditions
such as Intra-Uterine Growth Restriction (IUGR) and
pre-eclampsia as well as unsuccessful pregnancies have
been correlated with abnormalities in methylation or ab-
errant expression of imprinted genes in the placenta
[33-35]. Surprisingly, very few human or primate-
specific placental imprinted genes are known so far,
though interesting candidates like RBI (Table 1),
ZNF331 and the microRNA cluster C1I9MC have been
discovered in recent screens [21,36,37]. A comparison
between the 73 imprinted genes discovered to date in
humans and the 155 reported in mice reveals that ma-
jority of this divergence is due to the multiple genes
imprinted specifically in the mouse placenta [38,39], al-
though recent data suggests that several genes were
wrongly identified as showing imprinted expression in
mouse placenta [18,40,41]. The imprinting difference is
consistent with the biological differences between the
less-invasive mouse placenta and its highly invasive hu-
man counterpart.

Page 2 of 14

In this study, we used reduced representation bisulfite
sequencing (RRBS) to identify partially methylated CpG
islands (CGIs) in the human placental genome. We fur-
ther identified candidate regions with allele-specific
methylation based on calculation of methylation con-
cordance values. We then selected 28 regions for further
characterization and identified two novel imprinted genes
(DNMT1 and AIM]I). Both genes are paternally expressed
and methylated specifically on the maternal allele in the
human placenta. For AIM1, the differential methylation is
conserved in another primate, the cynomolgus macaque
but not in the mouse. In conclusion, we have delineated
many regions with allele-specific methylation and devel-
oped an approach for the identification of human
placenta-specific imprinted genes.

Results

Confirmation of known germline differentially methylated
regions using RRBS DNA methylation analysis

Nine human placental samples (five first trimester and
four third trimester) were subject to RRBS analysis for
DNA methylation (Figure 1). CpG sites sequenced at
greater than 10x coverage were included in the analysis.
If our approach was to be used for identifying novel
imprinted genes, it should also be able to confirm the
known gDMRs. Indeed, CGIs overlapping 14 known hu-
man DMRs (known to be gDMRs in mouse) were found
to be approximately 50% methylated (Table 1). The
DMRs for the genes MCTS2 and INPPSF_V?2 (described

Table 1 Confirmation of known human germline differentially methylated regions

Gene Germline DMR locus* Overlapping UCSC CpG island* Average methylation Reference
HYMAI/PLAGLT chr6:144323557-144324495 chr6:144328917-144329847 0.384 [42]
IGF2R** chr6:160426265-160427502 chr6:160426265-160427502 0.698 [43]
GRB10 chr7:50849753-50850871 chr7:50849753-50850871 0452 [44]
SGCE/PEGI0 chr7:94284859-94286527 chr7:94284859-94286527 0.390 [45]
MEST chr7:130130740-130133111 chr7:130130740-130133111 0499 [46]
HI19/IGF2 chr11:2020180-2022580 chr11:2019566-2019863 0457 [47]
KCNQT chr11:2720354-2721827 chr11:2720411-2722087 0.504 [48]
MEG3 chr14:101272662-101277765 chr14:101290524-101290868 0334 [49]
SNRPN chr15:25,199,933-25200342 chr15:25200036-25201054 0374 [50]
PEG3 chr19:57351284-57351995 chr19:57351284-57351995 0420 [51]
NNAT chr20:36148604-36150136 chr20:36148604-36150136 Not represented [52]
L3MBTL chr20:42143211-42143591 chr20:42143211-42143591 0479 [53]
GNAS-A chr20:57464132-57464622 chr20:57463653-57467739 0.191 [54]
GNAS-B chr20:57426198-57430959 chr20:57426730-57427047 0494 [55]
RBI1 chr13:48892636-48893857 chr13:48892636-48893857 0577 [56]
INPP5F_V2 chr10:121577530-121578385 chr10:121577530-121578385 0456 [57]
MCTS2 chr20:30135077-30135292 chr20:30135077-30135292 0.633 [57]

*Based on UCSC genome build hg19.
**Polymorphic imprinting reported in human placenta, but DMR still present.
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Figure 1 Pipeline for assessment of allele-specific methylation and genomic imprinting in the human placenta. The process involves
three main steps — reduced representation bisulfite sequencing of placental samples (red), selection of partially methylated regions with high
concordance (green) and individual locus-based validation of the potential DMRs and parental allele-specific expression (violet).

in [57]) were further validated by bisulfite cloning and
sequencing and were found to be methylated in an
allele-specific manner (Additional file 1: Figure S1). The
NNAT promoter was not covered by our sequencing
data. For the GNAS locus, the CGI overlapping with the
DMR exhibited 19.1% methylation. However, on analyz-
ing individual CpG sites within this large CGI, the first
half of the CGI was found to be about 50% methylated.

Allele-specific methylation analysis and selection of
potential DMRs

On calculation of a concordance value (see Methods),
the known DMRs were shown to be partially methylated
with high concordance (Figure 2A). The mean and me-
dian concordance values for the first trimester placentas
were 90.9% and 92.8% respectively while those for the
third trimester placentas were 90.5% and 93.8% respect-
ively. However, other partially methylated CGIs (30-70%
methylation) showed a much higher variability in con-
cordance value. We hypothesized that novel DMRs asso-
ciated with imprinted genes should demonstrate similar
methylation patterns to the known DMRs with partial
methylation and high concordance.

By choosing partially methylated autosomal CGIs
with >85% concordance, we identified 953 regions in first
trimester placenta and 994 regions in third trimester pla-
centa, 495 of which were shared between the two trimes-
ters (Figure 2B). These regions were located in promoters,
gene bodies and inter-genic regions (Figure 2C). Details of
these regions are listed in Additional file 2.

Amongst the 495 potential DMRs overlapping between
the first trimester and third trimester placenta samples,

we chose 28 genomic regions for further validation. The
first 18 regions (Table 2) were chosen based on high ex-
pression levels of adjacent genes in placenta as
ascertained from RNA-seq data (Jin et al. unpublished
data). The other 10 regions (Table 3) were chosen since
they were highly methylated in human spermatozoa
samples [58] and also had high expression levels of adja-
cent genes in placenta. These 10 regions were candidates
for paternally methylated gDMRs.

Analysis of allele-specific expression for genes located in
the selected regions in human placenta

We chose 28 genes (Tables 2 and 3) associated with the 28
candidate DMRs for analysis of allele-specific expression.
Three to four exonic SNPs per gene were analyzed in 28
paired placental DNA and RNA samples. Two genes
(DNMT1 and AIMI) showed allele-specific expression.
The monoallelic expression profile was not due to biased
expression from one specific allele since reciprocal alleles
were represented in the sample set (Figure 3D, Figure 4D,
Additional file 3: Figure S3A). For DNMT1 (or DNA Me-
thyl Transferase I), eight heterozygotes (harboring four
SNPs in different exons) exhibited a single allele in their
c¢DNA (four examples are shown in Figure 3D). For AIM1
(or Absent in Melanoma 1), there are two alternative
transcripts, the long transcript and the short transcript
(Additional file 4: Figure S2). Allele-specific expression
was observed in 28 individuals with two different SNPs lo-
cated in exon 1 specific for the long transcript (four exam-
ples are shown Figure 4D). However, bi-allelic expression
was observed with SNPs located in exon 20 shared by both
the long and the short transcript in two individuals
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Figure 2 Methylation concordance in known gDMRs and CGls
with partial methylation. (A) Comparison of concordance for
known gDMRs vs. other CGls with partial methylation (30-70%
methylation): known gDMRs showed much higher concordance
levels than partially methylated CGls. P1: first trimester placenta; P3:
third trimester placenta. (B) There were 495 CGls with partial
methylation and high concordance shared between the first
trimester and third trimester placentas. (C) Genomic mapping of
CGls with partial methylation and high concordance showed that
the CGls were distributed across promoters (blue), gene bodies (red)
and intergenic regions (green). Gene body regions contained the
highest number of such CGls in both the first and third

trimester placenta.

(Additional file 4: Figure S2), indicating that imprinting is
limited only to the long transcript of AIM1. The bi-allelic
status of the shorter transcript was confirmed by 3° RACE
and SNP analysis.

Methylation and Imprinting analyses of DNMTT in human
placenta

DNMT1I has two alternative transcripts, one expressed
in somatic tissues (s-DNMTI) and the other expressed
specifically in the oocyte (o-DNMT1). The potential
DMR identified at Chromosome 19 CGI 89 is located at
the promoter of s-DNMTI. We performed bisulfite

Page 4 of 14

cloning and sequencing for this region in three human
placenta samples to confirm the allele-specific methylation
status (one representative example shown in Figure 3B).
An individual (fN599) with an informative SNP exhibited
methylation of the maternal allele (T) and was unmethy-
lated on the paternal allele (G; Figure 3C). The allele-
specific methylation profile was confirmed in one more
sample (fN134, Additional file 3: Figure S3B). However,
parent-of-origin methylation could not be determined for
the second sample since the mother was also heterozygous
at this locus.

All the eight polymorphic human placenta samples
showed monoallelic expression. Informative SNPs were
available in four samples where the mothers were homo-
zygous. All four samples showed paternal allele-specific
expression of s-DNMT1 (Figure 3D).

Methylation and Imprinting analyses of AIMT in human
placenta

We performed bisulfite cloning and sequencing for four
human placental DNA samples for the Chromosome 6
CpG 114 region (located within AIM1I). All four samples
displayed equal numbers of methylated and unmeth-
ylated clones, characteristic of a DMR (one representa-
tive example shown in Figure 4B). An individual (fN158)
with an informative SNP at the DMR exhibited a meth-
ylated maternal allele (G), while the paternal allele (T)
was unmethylated (Figure 4C). This maternal allele-
specific methylation profile was confirmed in one more
individual (fN155, Additional file 3: Figure S3C). We
also confirmed that the methylation profile was not a
SNP effect by profiling a sample (mN158) that was non-
polymorphic at the same locus. This sample still showed
the characteristic allele-specific methylation profile
(Additional file 3: Figure S3D).

Allele-specific expression was observed in 28 individuals
with two different SNPs located in exon 1 specific for the
long transcript. Four of the mothers were homozygous at
the corresponding SNP loci and thus were informative for
parent-of-origin expression analysis. All four placenta sam-
ples displayed paternal expression of this gene (Figure 4D).

Methylation and Imprinting analyses of AIM1 in cynomolgus
macaque placenta
The region homologous to human CpG 114 in the macaque
was analyzed in the placental DNA of three macaques and
shown to have approximately 34% methylation in each sam-
ple (one representative example shown in Figure 5A). Ana-
lysis of one macaque (pl36) with a C/G polymorphism
within the DMR indicated that the expressed allele (G) was
completely unmethylated, whereas the non-expressed allele
(C) was partially methylated (Figure 5B).

Eleven macaque placental tissues were further ana-
lyzed for expression, and four heterozygotes for the first
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Table 2 Partially methylated CpG islands with high concordance

Locus* CpG island* Location and annotation

chr6: 106959764-106960985 CpG 114 Exon-Intron 1 of AIMT (melanoma suppressor)

chr7: 807336-808261 CpG 79 Promoter of HEATR?2 alternative transcript

chr19:36604359-36606906 CpG 194 Overlaps Promoters of TBCB/ POLR21 (polymerase sub-unit gene )
chr19:55992577-55996916 CpG 321 Last exon of ZNF628/ promoter of NAT14 (acetyltransferase)
chr1:41847264-41849204 CpG168 Last exon of FOXO6

chr1:111746337-111747303 CpG %4 Promoter of DENN/MADD domain containing 2D
chr4:154712073-154712706 CpG 57 Downstream of SFRP2 (Wnt singnalling)

chr12:22486835-22488666 Cpg 163 Promoter of ST8SIAT (sialyltransferase for ganglioside production)
chr13:33001249-33002078 CpG 93 Intron 1 of NEDD4 binding protein 2-like 1 isoform 1
chr19:1584445-1585247 CpG 89 Exon-intron of MBD3 (Nurd complex subunit: nucleosome remodeling)
chr22:29706500_29706710 CpG 15 Exon-intron 3-4 of GAS2L1 (similar to Gas2, Actin-associated protein)
chr9:36,222,678-36,294,377 CpG 76 Promoter of GNE, enzyme for N-Acetyl Neuraminic Acid regulation
chr11:497359-511488 CpG 46 Exon-intron 2 of RNHT (placental ribonuclease inhibitor)
chr19:10304966-10305864 CpG 89 Promoter of DNMTT1 (DNA Methyl transferase)

chr15:96856299-96875368 CpG 145 Upstream of NR2F2 (steroid thyroid family of nuclear receptors)
chr2:241496576-241497600 CpG 96 Exon-intron of ANKMY1 (Ankyrin repeat and MYND domain containing protein)
chr7:127671159-127672853 CpG 156 Exon-intron of SNDT (p100 co-activator)

chr4:169799086-169799625 CpG 58 Exon-intron of PALLD (cytoskeletal protein involved in actin organization)

*Based on UCSC genome build hg19.

exon were found. Monoallelic expression was observed in
all four samples (Figure 5C). Since parent/offspring matched
samples were not available, we were unable to determine
the parental origin of the expressed allele in these animals.

Methylation and imprinting analyses of AIM1 in other
cynomolgus macaque tissues

Additional macaque tissues (liver, biceps, kidney, heart,
lungs and pancreas) were available for two of the inform-
ative individuals, and these were also subject to methylation
analysis at the DMR. However, all the tissues were found to
be completely unmethylated (Additional file 5: Figure S4).
AIM1I was expressed in the heart, kidney and placenta, but

showed minimal or no expression in the liver, lung and
pancreas by qPCR analysis (Additional file 6: Figure S5).
AIM1 was found to be bi-allelically expressed in the kidney
and heart in two macaques (example of Macaque 11 is
shown in Additional file 6: Figure S5).

Methylation and imprinting analyses of Aim1 in mice

Twelve samples from reciprocal crosses of CAST/Ei]
and BL6 mice were analyzed for methylation levels in
the Aiml promoter, and in a second region with a po-
tential alternative transcription start site upstream of
Aiml. Both regions were hypomethylated in this species
(Figure 6A, Additional file 7: Table S3). Aiml was

Table 3 Partially methylated CpG islands with 100% methylation in sperm

Locus* CpG island* Location and annotation

chr2:220312699-220314094 CpG 153 Internal exon of SPEG (striated muscle protein kinase)
chr3:128215213-128216905 CpG 137 Upstream of GATA2 (Zinc finger transcription factor)

chr5:343450-344535 CpG 117 Internal exon-intron AHRR (aryl hydrocarbon receptor repressor)
chr5:179740711-179741121 CpG 43 Internal exon-intron GFPT2 (controls flux of glucose into hexosamine pathway)
chr6:1624186-1625468 CpG 111 Promoter of GMDS (catalyzes conversion of GDP-mannose to GDP-4-keto-6-deoxymannose)
chr8:145749856-145750410 CpG 61 Promoter of LRRCT4 (Leucine rich repeat containing protein)
chr13:110965775-110966223 Cpg 43 Intron of COL4A2 (encodes one sub-unit of Type IV collagen)
chr17:46641535-46642110 CpG 56 Intron of HOXB3 (homeobox transcription factor needed for development)
chr19:36246329-36247982 CpG 127 Promoter of HSPB6 (heat shock protein, alpha-crystallin related)
chr20:62193967-62198985 CpG 381 Internal exon of PRIC285 (part of peroxisome proliferator receptor alpha)

*Based on UCSC genome build hg19.
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Figure 3 Methylation and expression analyses of DNMT1 in human placenta. (A) CGI 89 is located at the promoter of DNMTI. (B) Bisulfite
treatment and cloning confirmed monoallelic methylation. (C) Sequencing of clones from the heterozygous individual fN599 showed that the
maternal allele (T allele) was associated with methylated CpGs, while the paternal allele (G allele) was associated with unmethylated CpGs. (D)
DNMTT was paternally expressed in humans. Arrow depicts the SNP location for each sample. In all four samples, the fetal DNA was heterozygous
and the maternal DNA was homozygous. Fetal RNA showed monoallelic expression from the paternal allele.

expressed in the kidney, placenta and heart but showed Our DNA methylation data at single base resolution
minimal expression in the liver, brain and lung (Additional ~ confirmed 16 known DMRs associated with imprinted
file 8: Figure S6) by qPCR analysis. Bi-allelic expression  genes. One known DMR (at the promoter of NNAT) was
was observed in all tissues (placenta, brain, heart, liver, not confirmed because the genomic region was not ana-

lung, and kidney) in the reciprocal crosses (Figure 6B). lyzed by RRBS. As expected, the known DMRs were par-
tially methylated with high concordance. Thus, we
Discussion selected 28 candidate DMRs from 495 partially methyl-

The human placenta was chosen for our investigation of ated regions with high concordance in both first and
novel imprinted genes since genomic imprinting is critical ~ third trimester placenta samples for analysis of allele-
for placenta and embryo development. Additionally, mor-  specific expression of adjacent genes. Subsequently, we
phological and physiological differences are evident between  confirmed that DNMT1 and AIMI were maternally
mouse and human placenta, consistent with differences in  methylated and paternally expressed. While we were
imprinting between these two species. RRBS was used to  preparing the manuscript, a similar theoretical model
quantify DNA methylation at CpG-rich regions, since it was used to describe allele-specific methylation in the
allowed us to readily distinguish two different types of par- human genome [60]. The authors identified known
tially methylated regions: those with allele-specific methyla-  imprinted DMRs from publically available methylome
tion which show high concordance; and those that exhibit  datasets in predominantly cultured cells. Another related
variable methylation where different CpGs on the same al- model has also been used to detect allele-specific methy-
lele can be methylated or unmethylated [59]. lation in the Arabidopsis genome [61].



Das et al. BMC Genomics 2013, 14:685
http://www.biomedcentral.com/1471-2164/14/685

Page 7 of 14

i coi114

AIM1

H—HHE

C SNP

00 000000ee0EEO GG

CGTT GTAGTTAGTTT TAAGGGCGC
CGTTCGTAGTTAGTTT FAAGGGCGC
CGTTCGTAGTTAGCTT FTAAGGGCGC
CGTTCGTAGTTAGTTT FTAAGGGCGC
GTTCGTAGTTAGTTT FTAAGGGCGC
CGTTCGTAGTTAGTTT FTAAGGGCGC
CGTTCGTAGTTAGTTT FTAAGGGCGC
CGTTCGTAGTTAGTTT TAAGGGCGC
CGTTCGTAGTTAGTTT
CCTTCGTAGTTAGTTT
GTTI GTAGTTAGTTTTITAAGGG I G
GTTI GTAGTTAGTTTTITAAGGG

FAAGGGCGC
FA GGGCGC

GTTIGTAGTTAGTTTTITTAAGGG

r
r
GTT I GTAGTTAGTTTTITAAGGG
r
T

0o

GTT GTAGTTAGTTTTITAAGGG

fN158 fN464

fN535 fN661

NN a s
Fetal “m,«sw\ ‘
vy \f\/\] v

|
A\

CCCCC/GCAAG CGCCC/GCAA{: CCCCC/GCAA. CCGAA/GGGCG

|

Fetal
cDNA

Maternal
DNA

v
F\ /\/\ ,/’\\
J\/ 10

showed monoallelic expression from the paternal allele.

Figure 4 Methylation and expression analyses of AIM7 in human placenta. (A) CGl 114 is located at the junction of exon 1 and intron 1 of
the long transcript of AIM1. (B) Bisulfite treatment and cloning confirmed about 50% methylation in an allele specific manner in human placenta.
(C) Sequencing of clones from the heterozygous individual fN158 showed that the maternal allele (G allele) was associated with methylated
CpGs, while the paternal allele (T allele) was associated with unmethylated CpGs. (D) AIM1 was paternally expressed in humans. Arrow depicts the
SNP location for each sample. In all four samples, the fetal DNA was heterozygous and the maternal DNA was homozygous. The fetal RNA

The Chromosome 19 DMR is located at the promoter
of the well-studied DNMT1 gene. DNMT1 selectively
methylates hemi-methylated DNA, regulates tissue-
specific methylation and is also essential for mainten-
ance of progenitor cells in an undifferentiated state in
somatic tissues [62]. It produces two transcripts, one
expressed in somatic tissues (s-DNMTI) and the other
expressed specifically in the oocyte (o-DNMTI). The
promoter of s-DNMT1 was shown to be monoallelically
methylated specifically in the primate placenta and to be
hypomethylated in other human tissues [63]. Novakovic
et al. reported the monoallelic methylation in human
placenta to be random, based on only one sample har-
boring a SNP (rs8112895) in the promoter of s-DNMT1I.
In another recent report, an elegant screen for potential
DMRs using diandric and digynic conceptuses also iden-
tified the same DMR at the s-DNMT1 locus, although
again only one informative individual was analyzed to
confirm monoallelic expression [64]. In our study, we
confirmed monoallelic expression in eight individual
samples, paternal allele-specific expression in four of

these individuals, and maternal specific methylation in
one sample with an informative SNP. The latter SNP is
located in the CGI within the DNMT1 promoter (within
exon 1, 428-bp away from the polymorphism used in the
earlier report [63].

It is interesting to note that the promoter of s-DNMT1
has already been shown to be monoallelically methylated
in the placenta of baboons and marmosets (Figure 4,
[48]). Thus, it is likely that placental genomic imprinting
of DNMTI is maintained throughout the primate
lineage. Since we lacked parent-offspring matched sam-
ples for our macaque tissues, we were unable to confirm
the parental-allele specific expression of DNMT1 in this
species.

It is also interesting that the promoter of s-DNMTI
has been shown to be unmethylated in the mouse pla-
centa (Figure 4 [48]). However, dynamic methylation
changes have been observed upstream of the 0o-DNMT1
transcript during early mouse development [65]. No evi-
dence for imprinting of murine Dnmtl has emerged
from genome-wide placenta specific imprinting studies
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in mice [18,23]. Thus, it appears that genomic imprint-
ing of DNMT1 is specific to the primate placenta.

The function of the paternal allele-specific expression of
DNMT1 in human placenta remains to be elucidated.
Methylation of the s-DNMT1 promoter may attenuate its
transcription; this is coincident with global hypomethy-
lation of the human placenta [63]. Moreover, s-DNMT1 ex-
pression attenuation has been reported to cause alterations
in methylation at germline DMRs [66,67]. Thus, it is pos-
sible that reduction in s-DNMT1 level in the human pla-
centa by genomic imprinting is linked to loss-of-imprinting
observed at several loci in this tissue [38,68].

AIM1 or Absent in Melanoma 1 is a non-lens member
of the By-crystallin superfamily [69,70]. It was predicted to
be a suppressor of malignant melanoma and NK-cell ma-
lignancies [71]. It was implicated in trophoblast differenti-
ation in the placenta [72]. It has two alternative transcripts
and both are highly expressed in the placenta.

The Chromosome 6 DMR (CpG 114) lies at the
exonl-intronl junction of the long transcript of gene
AIM1, 460-bp downstream of the transcription start site.
There is another CpG island (CpG 44) located 587-bp
upstream of the transcription start site of this transcript.
CpG 44 is unmethylated. Thus, CpG 114 potentially reg-
ulates the expression of the long transcript. The DMR

and imprinted expression were found to be conserved in
the macaque placenta, but not in the mouse placenta. It
should be noted that in the macaque placenta the non-
expressed allele was partially methylated while in the hu-
man placenta the non-expressed allele was fully methylated.
We suspect that this was due to maternal cell contamin-
ation in the macaque samples, since the macaque placenta
is much thinner than the human placenta, making it diffi-
cult to isolate pure fetal cells.

It is interesting to speculate about the function of pa-
ternal allele-specific expression of the long transcript of
AIMI. Since this transcript appears to be robustly
expressed in the placenta [70], it is possible that its ex-
pression regulated by imprinting is functionally relevant
in this tissue. IGF2R, one example of a maternally
expressed imprinted gene is located on the same
chromosome. However, it is unlikely that they belong to
the same imprinted cluster since they are approximately
53 Mb apart. Moreover, IGEF2R exhibits polymorphic im-
printing in humans [73].

Limited numbers of validated novel imprinted genes
were discovered in previous genome-wide screens, raising
the question whether most imprinted genes had been
identified [36]. Despite evidence suggesting extensive loss
of imprinting in the human placenta [74], our study as
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well as others [21,37] suggest that novel species and
tissue-specific imprinted genes remain to be discovered
[4]. The functional consequences of such imprinting
events may be species, tissue, and even developmental
stage specific. In this regard, the placenta may be a good
tissue for studying genomic imprinting since it is both
functionally important and evolutionarily under intense
selective pressure.

However it is also clear from our data that while
allele-specific DNA methylation may be prevalent, most
of these epigenetically regulated regions are not associ-
ated with genomic imprinting. Out of the 28 potential
DMRs analyzed, only two were shown to be imprinted
DMRs. We confirmed the allele-specific methylation
profile of 10 additional regions by bisulfite cloning and
sequencing, even though these were not associated with
monoallelic expression. Many of these potential DMRs
are located in gene-bodies (Figure 2C and 2D). Some of
these regions could contribute to processes like alterna-
tive splicing [75], or replication timing [76].

One limitation of our study is the use of RRBS rather
than whole genome bisulfite sequencing for the discovery
of imprinted genes. RRBS enriches for CpG-rich regions,
particularly CpG islands. It is possible that this led to iden-
tification of only maternally methylated DMRs in our
study, since all known paternally methylated gDMRs are

in CpG-poor, inter-genic regions. Analysis of the ten par-
tially methylated regions which were fully methylated in
sperm and were potential paternal gDMRs did not yield
any imprinted gene candidates. Whole genome bisulfite
sequencing analyses would facilitate future discovery of
gDMRSs in an unbiased manner.

Conclusions

In conclusion, we have developed a method to study
allele-specific methylation and associated genomic im-
printing in the human placenta. Careful follow-up and
validation of other partially methylated regions with high
concordance will potentially reveal the functional role of
methylation in these regions and may help identify more
novel imprinted genes. The precise functions and mech-
anisms associated with placenta-specific imprinting of
DNMTI1 and AIMI remain to be investigated. A more
complete catalog of species-specific imprinted genes in
the placenta will help our understanding of how gen-
omic imprinting is associated with placental function,
morphology and evolution.

Methods

Study participants and sample processing

Women with euploidy pregnancies who attended KK
Women’s and Children’s Hospital, Singapore, were
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recruited. Informed consent was obtained under the eth-
ics approval from the SingHealth CRIB Committee (IRB
Reference: EC200903042, CIRB Reference: 2009/271/A).
Maternal ethnicity was ascertained to be Chinese in four
out of the five first trimester placenta cases and Asian
for the remaining one. Amongst the four third trimester
placenta cases, three were Chinese but the maternal eth-
nicity for one subject was not available.

Ten mL of peripheral blood from each subject was
collected in EDTA tubes. The blood samples were cen-
trifuged at 1,790 g for 10 min at 4°C. After removing the
supernatant plasma, the blood cells were transferred to a
new microcentrifuge tube and centrifuged at 2,300 g for
5 minutes at room temperature to remove the residual
plasma. The blood cells containing buffy coat were then
collected and stored at -80°C. DNA was extracted from
200 pL of blood cells using QIAamp DNA Blood Mini Kit
(QIAGEN GmbH, Germany), according to manufacturer’s
instructions. DNA samples eluted with 50 pL of DNase
and RNase-free water (Sigma-Aldrich, St. Louis, MO,
USA) were stored at —80°C.

First trimester villi samples were collected from leftover
material obtained via chorionic villus sampling. The villi
samples were washed extensively with diethylpyro-
carbonate (DEPC)-treated water. Third trimester placental
villi were collected from subjects after the normal babies
were delivered. The fetal side of the placenta was washed
with 1xPBS before dissection. A small piece of placenta
tissue 1 cm below the chorionic plate was dissected and
maternal blood was thoroughly washed away with DEPC-
treated water. These samples were stored at —-80°C imme-
diately (for DNA extraction), or incubated with RNAlater
(Applied Biosystems/Ambion, Carlsbad, CA, USA) over-
night at 4°C, and stored at -80°C (for RNA extrac-
tion). DNA and RNA extractions were performed with
QIAamp DNA Mini Kit (QIAGEN) and TRIZOL Reagent
(Invitrogen, Carlsbad, CA, USA), respectively, according
to manufacturer’s instructions.

Reduced representation bisulfite sequencing (RRBS) and
GA analysis

One to five microgram each of genomic DNA from the
nine human placental samples was fragmented by re-
striction enzyme digestion using both Taq“l and Mspl
(New England Biolabs, Ipswich, MA, USA), and was
end-repaired, 3’-end-adenylated, and adapter-ligated
using ChIP-Seq Sample Preparation Kit (Illumina, San
Diego, CA, USA). lllumina’s RRBS for Methylation Ana-
lysis protocol was followed, except that 10 pL of the
methylation adapter oligo was used and the ligation was
performed for 15 min at 20°C in the adapter-ligation
step. The gel-purified fragments were then bisulfite
treated using the EZ DNA Methylation-Gold Kit (Zymo
Research, Irvine, CA, USA), according to manufacturer’s
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instructions. The converted DNA was PCR enriched,
purified by gel electrophoresis, and the library was vali-
dated using Agilent 2100 Bioanalyzer (Agilent Technolo-
gies, Santa Clara, CA, USA). RRBS was performed on
the Illumina Genome Analyzer IIx platform, as per man-
ufacturer’s instructions. The paired-end 36-base pair
(bp) reads were filtered based on gseq score, then
aligned to CGIs in the bisulfite-converted human gen-
ome (UCSC Build hgl9, GRCh37, Feb 2009) using
Bowtie [77]. The formula for computing bisulfite conver-
sion rate was:

Bisulfite Conversion Percentage
= (nonCpGC- > T)/(nonCpGC- > C + nonCpGC- > T)
* 100%.

A bisulfite conversion rate above 99.3% was used as
the cut-off.

The formula for computing the CpG methylation for
the CpG sites was:

CpG Methylation Percentage
= (CpGC- > C)/(CpGC- > C+ CpGC- > T) * 100%.

The % CpG coverage achieved by RRBS is 3.3%. Gen-
omic regions with at least three CpGs covered at a mini-
mum sequencing depth of 10 were considered. We
covered 76.7% of all CGIs.

Selection of regions with high concordance and partial
methylation
The average CGI methylation was obtained by averaging
methylation percentage of all the CpGs in a defined
CGI. This required that the CGI had at least 3 CpGs
with 10x or greater coverage. The CpGs were not neces-
sarily within a limited interval but had to be inside the
defined CGIs. CGIs with partial methylation ranging
from 30% to 70% were selected. Those with high con-
cordance (>85%) were further short-listed. The concord-
ance of adjacent CpGs in the same read was defined as
the ratio of the number of identically methylated (or
unmethylated) CpG pairs over the total number of CpG
pairs. The average CGI concordance was obtained by aver-
aging concordance of all the CpGs in the defined CGIs.
The partially methylated CGIs with concordance >85%
were annotated based on whether they belonged to pro-
moters, gene-bodies or inter-genic regions. The pro-
moter of a gene was defined as 1000 bp upstream to
500 bp downstream of the transcription start site for
this analysis.

The above analysis was carried out on the first and
third trimester placentas separately. Comparing the lists
of CGIs with partial methylation and high concordance
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from the first and third trimester placentas, there was an
overlap of 495 CGIs shared between the two.

To assess the possibility of false positives in our
dataset of partially methylated genomic regions, we ana-
lyzed 37 CGIs known to be unmethylated in first trimes-
ter placenta samples [78]. Nine of these 37 CGIs were
not analyzed by the RRBS methodology used in this
study. The remaining 28 CGIs were almost completely
unmethylated in our data (average methylation 2.62%,
Additional file 9). None of these 28 CGIs were present
amongst the candidate regions identified in our dataset,
indicating a low false positive rate.

To shortlist CGIs that are potential gDMRs, MeDIP
methylation data for three human spermatozoa samples
was downloaded from http://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE25686 [58]. Overlapping CGIs be-
tween the two data sets were compared to identify re-
gions that exhibited 100% methylation in the sperm but
partial methylation with high concordance in the placen-
tal samples from our data.

Imprinting analysis in human placental samples

For assessing monoallelic expression status of the candi-
date imprinted genes, we first sequenced DNA of exons
containing high frequency SNPs (based on dbSNP) for
genes listed in Tables 2 and 3. Once heterozygous sam-
ples were identified, we tested whether the gene was
monoallelically expressed.

Eighty one human placental tissues were chosen for im-
print analysis. Thirty ng of purified genomic DNA was
used for amplification with the HotStar Taq DNA Poly-
merase Kit (QIAGEN) with the addition of Q solution
(primer sequences are listed in Additional file 7: Table S2).
The thermocycling condition was 15 min at 95°C for heat
activation, and 45 cycles of 20 sec at 94°C, 30 sec at 60°C
and 1 min at 72°C, followed by a 3-min final extension at
72°C. The amplicons were sequenced using BigDye Ter-
minator v3.1 Cycle Sequencing Kit (Applied Biosystems).
Reverse transcription was performed using gene-specific
reverse primer (AIMIRT1 for AIMI) or oligo dT primer
(for the rest of the genes, including DNMT1) and Super-
script III (Invitrogen). The cDNA obtained was amplified
using specific primers (listed in Additional file 7: Table S2)
and the same thermocycling conditions as above. The PCR
products were subsequently sequenced as above. To deter-
mine parent-of-origin expression, maternal blood DNA
was also sequenced. An informative case was where the
mother was homozygous and the fetus was heterozygous.

To increase throughput, Sequenom multiplex genotyp-
ing assays were performed on genes listed in Table 3.
Sequenom Typer 4.0 (Sequenom, Inc., San Diego, CA,
USA) was used to design four multiplex reactions for 30
SNPs within the 10 selected genes. Twenty eight sample
sets (fetal placental DNA, buffy coat maternal DNA and
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fetal placental cDNA) were used at a concentration of
20 ng/pL in 5 pL PCRs (as above) with 0.5 uM primer
concentration and thermocycling conditions of 15 min
at 94 °C for heat activation, and 45 cycles of 20 sec at
94°C, 30 sec at 56°C and 1 min at 72°C, followed by a
3-min final extension at 72°C. The PCR products
were treated with Shrimp Alkaline Phosphatase for 40
minutes at 37°C followed by 5 minutes at 85°C. The exten-
sion reaction was performed as per the manufacturer’s in-
structions, with a 9 pM extension primer concentration.
The sample clean-up, spotting on the chip and laser firing
were done as per the manufacturer’s instructions and the
data was analyzed using the Typer software.

Methylation analysis by cloning and bisulfite sequencing
Bisulfite conversion with 1 pg of each genomic DNA
sample was performed using the EZ DNA Methylation-
Gold Kit (Zymo Research), according to manufacturer’s
instructions. One twenty-fifth of converted DNA was
used for each PCR (primers listed in Additional file 7:
Table S1) with HotStar Taq DNA Polymerase Kit
(QIAGEN). The thermocycling condition was 15 min at
95°C for heat activation, and 50 cycles of 20 sec at 94°C,
30 sec at 62°C and 1 min at 72°C, followed by a 3-min
final extension at 72°C. The PCR product was TA-
cloned into pGEM-T Easy vector (Promega, Madison,
WI, USA), and the positive clones with inserts were then
subjected to PCR amplification using SP6 and T7 primer
set from the vector. Sequencing reaction was performed
using BigDye Terminator v3.1 Cycle Sequencing Kit
(Applied Biosystems).

Methylation and imprinting analyses of AIM7 in macaques
Eleven Cynomolgus macaque (Macaca fascicularis) neo-
natal and placental tissues were collected from the
Vietnam Primate Breeding and Development Centre. All
animal procedures were approved by Nafovanny, subsid-
iary of the Ministry of Forestry, Vietnam, and performed
in accordance with the guidelines set by the national
advisory committee for laboratory animal research
(NACLAR) of Singapore. All harvested samples were
stored at —80°C until analyses.

A CGI homologous to human CpG 114 was identified
by BLAT at chr4:102,561,846-102,563,066 on the ma-
caque (Macaca mulatta) genome available on the UCSC
genome browser. DNA was isolated, bisulfite treated,
amplified (primers listed in Additional file 7: Table S1),
cloned into TA vector and sequenced as above.

For imprinting analysis, selective genomic regions
were amplified from macaque AIMI to analyze poly-
morphisms located at chr4:102,561,811-102,619,896 and
Chr4:102,562,698-102,562,816 (primers listed in Additional
file 7: Table S2, same thermocycling conditions as above
but with annealing temperature 58°C) and sequenced. The
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expression of the polymorphisms was then analyzed by
extracting RNA from placenta of the informative individ-
uals and reverse transcribing (using gene-specific RT pri-
mer MacaqueAIM1RT1 or RT2 as appropriate), amplifying
with primers listed in Additional file 7: Table S2 and the
same thermocycling conditions, and finally sequencing as
above.

Additional tissues (liver, biceps, kidney, heart, lungs
and pancreas) were available for two of the informative
individuals, and these were also subject to methylation
analysis at the DMR region.

Imprinting analysis in mice

Mouse Aim 1 is located at chr10:43670113-43724652. It
is reasonably well-conserved with human AIM]I, even
though it is in reverse orientation unlike its human
counterpart. A UCSC-defined CGI is annotated only at
its promoter region (chr10:43723295-43724261), but an
upstream region at chrl10:43,725,821-43,726,151 with
elevated H3K4me3 binding could also potentially
serve as an alternate promoter. Thus, two bisulfite-
pyrosequencing assays were designed to analyze the
methylation levels at the promoter CGI as well as one
assay for the upstream region (primers listed in
Additional file 7: Table S1). DNA from six tissues col-
lected from two reciprocal hybrid (BL6 x CAST/Ei]) em-
bryos at E16.5 stage were bisulfite treated and subject to
quantitative CpG pyrosequencing analysis (as per manu-
facturer’s instructions).

In order to analyze imprinting at this locus, the
CAST/Ei] inbred strain crossed with the BL6 which con-
tains polymorphisms in exon 1 and exon 2 of AimlI were
used. RNA was extracted from the above mentioned hy-
brid embryo tissue material and cDNA was generated.
Quantitative real-time PCR was performed to judge the
relative levels of expression in the different tissues
(brain, placenta, liver, kidney, heart, lung) using primers
listed in Additional file 7: Table S2. The resultant PCR
product was pyrosequenced (as per manufacturer’s in-
structions) in order to quantify the relative proportion of
each parental allele for the SNP rs46531577 at
chr10:43723761 (within exon 1) and SNP rs29356879 at
chr10:43717117 (within exon 2).

Additional files

Additional file 1: Figure S1. Methylation Analysis of Mouse gDMRs in
Human Placental Tissue. Bisulfite cloning and sequencing showed that
the promoters of imprinted genes INPP5Fv2 (A) and MCTS2 (B) were
methylated in an allele-specific manner in human placental tissue.
Additional file 2: Lists the allele-specific methylated regions in
human placenta.

Additional file 3: Figure S3. Confirmation of Allele-specific Expression
and Methylation of DNMTT and AIM1. (A) fN165 expressed the “T" allele in
exon 1 of DNMT], reciprocal of the “C" allele expressed at the “C/T" locus of
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fN158 shown in Figure 3D. Similarly, fN468 expressed the “G" allele in exon 1
of AIM1, reciprocal of the "A” allele expressed at the “A/G" locus of fN661
shown in Figure 4D. (B) fN134 was polymorphic within the DNMT1 DMR; the
G allele was unmethylated whereas the A allele was methylated. (O) fN155
harbored a SNP in the AIMT DMR; the G/maternal allele was associated with
methylated clones whereas the T/paternal allele was associated with
unmethylated clones. (D) mN158 was non-polymorphic within the AIM1
locus and still exhibited an allele-specific methylation profile, indicating that
the methylation pattern was not a SNP effect.

Additional file 4: Figure S2. AIM] Transcripts and Expression Analysis
from Different Exons. Human AIMT was mono-allelically expressed from
exon 1 of Transcript 1 (an asterisk indicates the location of the SNP) but
bi-allelic expression was observed by analyzing SNPs in the last exon
(which overlaps with Transcript 2, double asterisk indicates the location
of the SNP). The transcript information has been obtained from the
Ensembl Genome Browser.

Additional file 5: Figure S4. Methylation analysis of the AIMT DMR in
Additional Macaque Tissues. All tissues other than placenta: liver (A),
biceps (B), kidney (C), lung (D), heart (E) and pancreas (F) were found to
be unmethylated at the DMR locus.

Additional file 6: Figure S5. Expression Analysis of AIMT in Macaque
Tissues. (A) qPCR for AIM1 in different macaque tissues of one individual
(Macaque 11) showed that it is expressed only in placenta, heart and
kidney tissues. (B) Macaque AIMT is bi-allelically expressed in the heart
and kidney tissue of the same individual. Arrow depicts the genomic
location of a C/T polymorphism that was still apparent in the cDNA.

Additional file 7: Table S1. Primers Used for Methylation Analysis of
DNMTT and AIM1. Table S2. Primers Used for Analysis of Imprint Status
of DNMTT and AIM1. Table S3. Methylation percentage for individual
CpG sites in various tissues in the mouse for Aim1 promoter and
upstream region.

Additional file 8: Figure S6. Expression Analysis of Aim1 in Mouse
Tissues. qPCR for Aim1 in a panel of mouse tissues showed that it is
expressed only in placenta, heart and kidney tissues from both Exon 1 (A)
and Exon 2 (B). Blue bars represent the BL6 X CAST/EiJ cross allele
whereas red bars represent the CAST/EiJ X BL6 reciprocal cross.

Additional file 9: Lists the loci used to assess false positives. The
RRBS and RNA-seq data have been submitted to NCBI Gene Expression
Omnibus under accession no. GSE40955.

Abbreviations

CGl: CpG island; DMR: Differentially methylated region; RRBS: Reduced
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