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Abstract: The immune system has been increasingly recognized as a major contributor in the
pathogenesis of Parkinson’s disease (PD). The double-edged nature of the immune system poses
a problem in harnessing immunomodulatory therapies to prevent and slow the progression of
this debilitating disease. To tackle this conundrum, understanding the mechanisms underlying
immune-mediated neuronal death will aid in the identification of neuroprotective strategies to preserve
dopaminergic neurons. Specific innate and adaptive immune mediators may directly or indirectly
induce dopaminergic neuronal death. Genetic factors, the gut-brain axis and the recent identification
of PD-specific T cells may provide novel mechanistic insights on PD pathogenesis. Future studies to
address the gaps in the identification of autoantibodies, variability in immunophenotyping studies
and the contribution of gut dysbiosis to PD may eventually provide new therapeutic targets for PD.
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1. Introduction

Parkinson’s disease (PD) is one of the most common neurodegenerative disorders, affecting more
than 6 million people worldwide [1–3]. It is neuropathologically characterized by the loss of dopaminergic
neurons in the substantia nigra (SN) and the presence of Lewy bodies containing aggregates
of α-synuclein [4]. PD patients primarily present motor symptoms such as rigidity, tremors and
bradykinesia and a broad range of non-motor symptoms during the prodromal phase. These non-motor
symptoms, which include cognitive impairment, sleep disturbances, psychiatric disorders and autonomic
dysfunction, significantly impact the patient’s quality of life over the long term [5–7]. More importantly,
early identification of PD by these non-motor symptoms might be critical, as the onset of motor
symptoms in PD coincides with an irreversible loss of approximately 30–70% dopaminergic neurons in
the SN [8,9]. Despite decades of research on the complex interplay between genetic and environmental
risk factors in PD, the exact etiopathogenesis of PD has yet to be elucidated. Notably, neuroinflammation
and autoimmune mechanisms are increasingly recognized in PD pathogenesis. These dysregulated
processes are controlled by our immune system, which has vital roles in protecting us from noxious
stimuli. The failure to achieve a delicate balance between pro- and anti-inflammatory immune
players and the maintenance of self-tolerance predisposes one to a proinflammatory milieu [10,11].
Epidemiological studies have revealed an increased risk of PD development in patients with autoimmune
diseases and the clinical observation of postencephalitic parkinsonism secondary to viral infection
support the role of the immune system in PD progression [12,13]. The proinflammatory milieu in
PD patients is validated peripherally and centrally through biochemical, immunophenotyping and
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post-mortem studies. PD patients have elevated proinflammatory cytokines such as interferon (IFN)
γ, interleukin (IL)-1β, IL-2, IL-6 and tumor necrosis factor α (TNFα) in the blood and cerebrospinal
fluid (CSF), which contribute to neuronal death [14,15]. Immune cell dysregulation and perturbations
in immune subsets in PD patients through immunophenotyping reveal intrinsic changes, leading to
an inflammatory predisposition [16,17]. The central involvement of immune mediators arises from
the breakdown of the blood brain barrier (BBB), which protects the brain from peripheral immune
cells [18]. This results in the presence of complement proteins, human leukocyte antigen DR isotype
(HLA-DR) positive microglia, inflammasome activation, infiltration of CD4+ and CD8+ T lymphocytes
and autoantibodies against neuronal antigens in the SN of PD patients [19–21]. Despite the wealth of
studies implicating neuroinflammation in PD, the precise molecular mechanism leading to dopaminergic
neuronal death through immune pathways remains unclear. By focusing on immune-mediated pathways,
this review aims to integrate and highlight novel mechanisms involving genes, the gut-brain axis and
innate and adaptive immune responses that may be involved in neurodegeneration. Through this,
we hope to inspire a targeted search of PD inflammatory biomarkers and immune cells that aids in the
mitigation of disease progression and prognostication.

2. Mechanisms of Neuronal Death: Innate Immunity

Our immune system interacts with the internal and external environment to maintain homeostasis.
The seminal finding of activated microglia in PD brains established the link between inflammation and
PD [22,23]. Thereafter, numerous preclinical and clinical studies confirmed enhanced inflammatory
responses in the development and progression of PD. In addition, chronic inflammation has also
been identified to be a key driver of progressive neurodegeneration. This arises from the activated
phenotype of microglia that may be primed by ongoing systemic inflammation in PD patients [24]. Here,
we will examine how innate immune cells induce neurodegeneration through immunoexcitotoxicity,
the complement pathway and inflammasome activation (Figure 1). This will be followed by a discussion
on possible immune-mediated neuronal death mechanisms involving lymphocytes of the adaptive
immunity (Figure 1).
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(A) Pyroptosis: α-synuclein (Asyn) activates microglia through its association with the toll like
receptor 2 (TLR2) and 4 (TLR4), inducing inflammasome activation. The cytosolic nod like receptor
protein 3 (NLRP3) inflammasome is formed and mediates caspase 1 activation. Caspase 1 cleaves
pro-interleukin 1β (pro IL-1β) and pro-interleukin 18 (pro-IL-18) to IL-1β and IL-18, respectively,
which will be released into the brain’s microenvironment. Dopaminergic neurons which express toll
like receptor 4 (TL4) may allow α-synuclein to associate with it, leading to inflammasome activation in
dopaminergic neurons. (B) Immunoexcitotoxicity: Microglia activation in the presence of α-synuclein
induces the release of proinflammatory cytokines such as interleukin-1β (IL-1β) and tumor necrosis
factor α (TNFα). These cytokines induce neuroexcitotoxicity by modulating the receptor density
of excitatory receptors α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)
and N-methyl-D-aspartic acid or N-methyl-D-aspartate receptor (NMDAR) and glutamate levels.
This causes excessive intracellular calcium flux, enhancing dopaminergic neurons susceptibility to
neuronal death. Nitric oxide levels within the dopaminergic neuron are also increased in the presence
of the proinflammatory cytokines. (C) Complement system: Complement components, C3b, C4b and
C7 are present on Lewy bodies (LB) in dopaminergic neurons. Complement components may induce
neuronal death through the formation of the membrane attack complex (MAC), leading to neuronal
lysis. Adaptive mechanisms of neurodegeneration are mediated by CD4+ T cells, CD8+ T cells and B
lymphocytes. (D) T cell-mediated neurotoxicity may arise directly from the interaction of cytotoxic
CD8+ T cells with peptides presented on the major histocompatibility class I (MHC I). In the presence of
phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1) knockout with intestinal infection,
there will be mitochondrial antigen presentation and the presence of mitochondrial-specific CD8+ T
cells. Other PD-specific peptides presented on the MHC I of dopaminergic neurons that come from the
LB, neuronal cell or mitochondria may be recognized by CD8+ T cells, and further investigation is
required. (E) CD4+ T lymphocytes are activated in the presence of antigen presenting cells (APC) with
peptides presented on the major histocompatibility class II (MHC II). These peptides are derived from
neuronal antigens when microglia cells phagocytose degenerated dopaminergic neurons or α-synuclein
proteins that may be secreted by neurons. A specific example is observed from CD4+ T helper 17 (Th17)
cells mediating neuronal death through the upregulation of the interleukin-17 (IL-17) receptor (IL-17R)
and the secretion of IL-17. This leads to the upregulation of nuclear factor-κB (NFκB) within the neuron
that mediates neuronal death. (F) CD4+ T lymphocytes can be activated by B cells that present neuronal
peptides on the MHC II. CD4+ T cells can also activate B cells, causing them to produce antibodies or
autoantibodies, which may induce neuronal death when they bind directly to neuronal antigens on
dopaminergic neurons or when they bind to microglia receptors, activating and inducing the microglia
to produce proinflammatory cytokines.

2.1. Immunoexcitotoxicity

Immunoexcitotoxicity, or inflammation-driven excitotoxicity, was postulated to have a role
in PD neurodegeneration [25]. Excitotoxicity is a pathological event which induces cell death
through the overstimulation of glutamate receptors such as the N-methyl-d-aspartate receptor
(NMDAR) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) [26,27].
Overactivation of these receptors, especially the calcium permeable AMPAR, are more excitotoxic
as it excessively increases intracellular calcium levels [15,25,28]. There is considerable evidence
that excitotoxic mechanisms participate in nigral death in PD-related pesticide, toxin and
Parkin models [29,30]. Inflammatory processes from microglia activation are responsible for
increasing excitatory glutamate receptor density and glutamate levels through the release of
cytokines [25,31]. TNF-α and IL-1β were found to increase the production of excitotoxic glutamate
by modulating glutaminase and inhibiting glutamate transport proteins, thereby elevating levels of
extracellular glutamate [32,33]. These proinflammatory cytokines, together with other mediators
such as inducible nitric oxide synthase, cyclooxygenase 2 (COX2) and IL-6, can also indirectly affect
neuronal excitability [25]. TNFα and IL-1β both enhance neuronal sensitivity to glutamate and
neuronal excitability by modulating the function and expression of inhibitory and excitatory receptors
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on synapses [31,34–36]. Consequently, the synergistic effect of IL-1β and TNF-α causes neurotoxicity
through excessive nitric oxide production [37]. These neuroinflammatory processes may predispose
the brain’s milieu to excitotoxicity. However, this begs the question whether excitotoxicity can in
turn exacerbate neuroinflammation, leading to a vicious cycle that induces chronic inflammation.
It is noteworthy that excitotoxicity often arise secondary to specific triggers such as α-synuclein,
PD-related toxins and mitochondrial dysfunction [38–40]. With the presence of these perturbations
in PD patients, we postulate that immunoexcitotoxicity might be one of the main mechanisms of
neurodegeneration. Hence, the use of glutamate receptor antagonists to modulate excitotoxic pathways
should be considered in light of other therapeutics targeting dysfunctional pathways in PD. It is also
pivotal to adopt a multi-targeted approach to regulate both excitotoxic and inflammatory processes
without affecting other pathways in the brain. This could be addressed through an in-depth study of
specific pathways governing glutamate homeostasis and neuroinflammation in glial cells.

2.2. Pyroptosis

Pyroptosis is a form of programmed cell death induced by inflammatory caspases of the
inflammasome pathway [41]. Similar to immunoexcitotoxicity, which is driven and exacerbated
by a cytokine mediated process, pyroptosis creates a proinflammatory milieu with an increase in IL-1β
and IL-18 levels. Inflammasomes are intracellular multiprotein complexes that mediate the maturation
of IL-1β and IL-18 through the action of caspase 1. Inflammasomes are normally activated in the
presence of damage-associated molecular patterns (DAMPs) or pathogen-associated molecular patterns
(PAMPs) [42]. This triggers a cascade of inflammatory processes, contributing to neuronal injury and
rapid cell death. Inflammasome activation in PD patients is evident from the high levels of IL-1β and
the cytosolic nod like receptor protein 3 (NLRP3), correlating positively with α-synuclein levels [43,44].
Fibrillar α-synuclein is recognized as a potential DAMP, which activates the inflammasome through its
interaction with the toll-like receptor 2 (TLR2) [45–49]. Gordon et al. (2019) reported that the long-term
use of the NLRP3 inhibitor MCC950 protected against dopaminergic degeneration and abrogated
α-synuclein pathology in mice [50]. Likewise, using a mouse model, Zhang’s team reported that the
use of Salidroside, a bioactive compound from Rhodiola resea L., prevents NLRP3-dependent pyroptosis
induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) [51]. α-synuclein is also able to bind
to toll like receptor 4 (TLR4) to activate microglia and astrocytes and it will be of interest to determine
whether the interference of α-synuclein interaction with TLR4 has a role in inhibiting inflammasome
activation [52]. While the drugs were effective in the animal model, it is still unclear whether pyroptosis
actually induces nigral death in PD patients [53]. Therefore, studies will be required to validate and
determine the mechanism underlying inflammasome mediated neurodegeneration [50]. Assessing the
translational potential of the aforementioned immunomodulatory candidates should also be pursued
through clinical trials with our urgent need for promising disease modifying therapeutics in PD.

2.3. Complements

The complement system is an ancient branch of innate immunity consisting of recognition
molecules that have evolved to detect ‘foreign’ structures and recruit a cascade of protease enzymes
and substrates to neutralize the pathogen. This is accomplished by the activation and recruitment
of phagocytes, opsonization for phagocytosis and the formation of the membrane attack complex
(MAC) [54]. The presence of early stage (C3d and C4d) and late stage (C7 and C9) complement
proteins in the Lewy bodies of PD patients suggests the possibility of complement-mediated neuronal
destruction [55]. Future work to determine whether neuronal degeneration and subsequent neuronal
lysis of dopaminergic neurons may be a consequence of MAC formation is required [56]. Additionally,
modulation of complement receptor 3 (CR3) in a PD pesticide mouse model through genetic deletion
or the blockade using a CD11b antibody was found to ameliorate dopaminergic neurodegeneration.
CR3 was reported to activate microglia NAPDH oxidase (Nox2) activation through the Src and
extracellular regulated protein kinases (Erk) pathway [57]. This highlights the potential of targeting
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complement receptors in PD and compels further investigation on processes precipitating complement
activation. The contribution of the complement system in PD is also evident from whole-exome
sequencing analyses that identified mutations in the CUB and Sushi multiple domains 1 (CSMD1)
gene in patients with familial late onset PD. CSMD1 encodes a complement control protein that
activates complements and inflammation in the CNS [58]. This implies that dysregulation of the
complement system influences the development of PD. More work on the interaction of complements
with other PD-specific immune players may shed light on the pathways that can be targeted to abrogate
complement-mediated neurodegeneration.

3. Mechanisms of Neuronal Death: Adaptive Immune System

The adaptive immune system, comprising B and T lymphocytes, forms the second arm of the
immune system and has the ability to mount specific responses against foreign antigens. The presence
of CD8+ and CD4+ T cells in the SN of PD patients strongly suggests a role of these subsets in neuronal
death [19]. T lymphocytes transmigrate into the brain through the choroid plexus of the blood–CSF
barrier and the post capillary blood brain barrier [59]. In the brain, major histocompatibility complex
(MHC) presentation of PD-related (auto-) antigens, activation of cell death pathways and neuronal
response to cytokines promote T cell-mediated neuronal death. MHC class I (MHC I) expression
on catecholaminergic neurons in the SN and locus coeruleus allows neurons to be targets for CD8+

cytotoxic T cells (CTL) [60–62]. Moreover, upregulation of MHC class II (MHC II) on microglia in PD SN
may also activate CD4+ T cells that can drive PD-specific antibody responses or inflict deleterious effects
through the Fas ligand pathway [19,22,63]. Unfortunately, the nature of peptides presented on MHC I
of dopaminergic neurons and MHC II of microglia cells is still unknown. Hence, further dissection of
T cell activation due to peptide/antigen will reveal pathways that can be targeted to prevent neuronal
damage. An elegant study performed by Sommer et al. (2018) highlighted the direct impact of PD
derived T cells on dopaminergic neurons [64]. Using autologous co-cultures of T lymphocytes and
induced pluripotent stem cell (iPSC)-derived midbrain neurons from PD patients, they revealed that
neuronal death was attributed to IL-17 receptor upregulation and nuclear factor kappa B (NF-κB)
activation. In addition, secukinamab, an FDA-approved anti-IL-17 antibody, successfully prevented
neuronal death in these ex vivo cultures [64]. Their study is one of the first illustrating the mechanistic
link between T cell mediated neurotoxicity and dopaminergic neurodegeneration. To bridge the gap
between the physiological environment in the brain and their ex vivo system, inclusion of human iPSC
derived microglia may clarify the role of glial cells. Alternatively, the use of three-dimensional (3D)
brain organoids co-cultured with microglia-like cells presents an exciting option to improve disease
modeling and evaluate the effects of immune cells on neurons [65,66]. Finally, discerning T cell’s
antigenicity may explain the vulnerability of dopaminergic neurons in PD.

B lymphocytes, the key players in humoral immunity, are reliant on signals from CD4+ T helper
cells for their antibody secreting function. At present, immunoglobulins, but not B lymphocytes,
have been reported in the brains of PD patients [67]. This discovery sparked interest in the role of
humoral immunity in PD pathogenesis. In 1998, the injection of purified immunoglobulin from PD
patients into the SN of rats led to the loss of dopaminergic neurons, persistent perivascular inflammation
and microglia infiltration [68]. Subsequently, studies sought to identify PD-specific autoantibodies as a
diagnostic biomarker to prognosticate risk and disease progression. PD autoantibodies that recognize
modified dopamine, neuronal proteins and α-synuclein have been identified, but the significance
of these antibodies on dopaminergic neuronal death remains to be elucidated [69–71]. Without this
knowledge, it will be difficult to harness the right approach to prevent autoantibody-mediated damage.
Possible mechanisms of autoantibody-mediated neuronal death include its ability to neutralize
neurotrophic factors, recruit complement factors, induce antibody dependent cellular cytotoxicity or
internalize critical receptors into cells affecting neuronal function [72]. This emphasizes the need to
determine the autoantibody targets and whether these autoantibodies in PD are directly or indirectly
involved in the nigral neuronal death.
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4. Potential Factors Triggering Immune Responses in PD Patients

4.1. Genetic Factors: Functional Role of PD Risk Genes in the Immune System

Over the past two decades, several genes have been identified as genetic risk factors in the
development of PD. Familial PD accounts for approximately 10% of cases, while monogenic PD
contributes to 30% of familial and 3–5% of sporadic cases [73]. Monogenic PD is associated with
a single mutation in a dominantly or recessively inherited gene. Gene mutations in α-synuclein
(SNCA), ubiquitin carboxyl-terminal esterase L1 (UCHL1), Grb-10 interacting GYF protein-2 (GIGYF2)
and leucine-rich repeat kinase 2 (LRRK2) genes are inherited in an autosomal dominant manner,
while mutations in PRKN (Parkin), phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1),
protein DJ-1 (DJ-1), ATPase 13A2 (ATP13A2) and A2 phospholipase group VI (PLA2G6) cause
autosomal recessive PD [73,74]. Recent studies demonstrating the influence of certain PD-related genes
on autoimmune development and immunomodulation further underscore the role of the immune
system in the onset and progression of PD.

4.1.1. LRRK2

LRRK2 mutations are the most common cause of dominantly inherited PD, with roles in regulating
innate mediated inflammatory pathways. LRRK2 protein is expressed in immune cells and its expression
is regulated by immune stimulation [75]. Induction of LRRK2 protein expression was observed in
the presence of an inflammatory stimulus by lipopolysaccharide (LPS) or IFNγ [76,77]. Of note,
LRRK2 inhibition was found to abrogate TNFα secretion and the induction of nitric oxide synthase
in TLR4 stimulated microglia cells [76]. LRRK2 knockdown in murine microglia similarly impaired
LPS mediated inflammatory responses evidenced by reduced p38 mitogen activated protein kinase
phosphorylation and NFκB activity [78]. PD patients with G2019S and R1441G LRRK2 mutation had
elevated levels of basal cyclooxygenase-2 RNA levels in fibroblasts, which were significantly reduced
with LRRK2 silencing [79]. The association of LRRK2 to inflammation is also supported from reports
linking LRRK2 polymorphisms to inflammatory conditions such as leprosy and inflammatory bowel
disease (IBD) [80]. Collectively, these studies demonstrate LRRK2’s role in regulating inflammation and
underscore the potential of LRRK2 inhibitors as a therapeutic target. Interestingly, Shutinoski’s team
revealed that the control of LRRK2 kinase activity in immune cells was vital in countering specific
pathogens [81]. They reported that G2019S LRRK2 mice with increased kinase activity conferred greater
protection against Salmonella typhimurium through myeloid-induced production of reactive oxygen
species and chemotaxis augmentation. Surprisingly, the infection of G2019S LRRK2 mice with reovirus
causing invasion of the nervous system led to greater mortality from encephalitis in females. On the
other hand, the kinase inactive control, D1994S LRRK2 mutant mice had a higher survival rate due to
reduced LRRK2 autophosphorylation with reovirus infection [81]. Although this study was performed
in the context of a specific infection, it highlights the potential of modulating LRRK2 kinase activity
as a therapeutic in PD patients with monogenic LRRK2 mutation. Additionally, Shutinoski’s work
adds to mounting evidence that LRRK2 has critical roles in immune cells. However, the immune
cell type responsible for promoting LRRK2 related PD has yet to be identified. Knowing the precise
immune targets may reduce the risk of unintended effects of LRRK2 inhibitors on other immune cells
and systems where LRRK2’s function is crucial. Additionally, epidemiological studies on whether
previous infections play a role in the development of PD in LRRK2 carriers compared to healthy
LRRK2 carriers, will substantiate the ‘multiple hit’ hypothesis in PD [80,82]. Analyzing downstream
targets of LRRK2 variants that regulate inflammatory responses will aid in our search of useful
candidates for immune modulation. Considering that LRRK2 is implicated in chronic diseases such
as PD, leprosy and IBD, the role of LRRK2 in chronic inflammatory models and autoimmunity
warrants further investigation. Tackling these unanswered questions serves to inform us of potential
interventions in LRRK2-related conditions.
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4.1.2. HLA Genes

Genome-wide association studies and fine mapping of genes are useful in the identification of the
risk or protective genetic variants in PD. The MHC on chromosome 6, which houses the HLA genes,
contributes to an individual’s susceptibility to PD. The HLA gene is highly polymorphic with variations
in different ethnic and geographic populations. HLA class I gene products present intracellular
antigens to cytotoxic CD8+ T cells, while HLA class II gene products present extracellular peptide
fragments to CD4+ T helper cells [83,84]. HLA-DRB1*0301 was noted to be overrepresented in British
PD patients and is a risk allele in the Chinese Han population [85,86]. Association of other HLA I
and II alleles including HLA-A*2, HLA-B*17 and B*18, HLA-DQB1*06 have also been reported [87].
Different HLA alleles are responsible for the variation in immune responses among individuals [88].
A deep sequencing study of HLA genes carried out to associate single nucleotide polymorphisms (SNP)
with the risk of PD revealed genetic variant protection by valine at position 11 and a specific epitope
at position 70–74 on the HLA-DRB1 molecule of HLA-DRB1*04:01, *04:04 and *04:05. Conversely,
the absence of valine at position 11 in individuals with the specific epitope present in HLA-DRB1*01:01
and *01:02 contributes to the risk of PD development and this is modified with a history of smoking.
An α-synuclein peptide binding prediction to HLA-DRB1 alleles was performed and greater binding
affinity was predicted in the presence of the risk alleles containing the specific epitope without valine
at position 11 [84]. More of such studies will guide our understanding of autoimmune mechanisms
in PD and prompt further exploration to modulate specific peptide affinity in individuals with PD
genetic risk variants.

4.2. Environmental Factors: Double Hit Theory

4.2.1. Gut-Brain Axis

The presence of Lewy body inclusions in extra-nigral sites such as the enteric plexus of the stomach
and the olfactory bulbs (OB) accounts for some non-motor symptoms during the prodromal period in
PD patients. The double hit theory proposes that a neurotrophic pathogen enters the brain through the
nose and the gut, travels anterogradely or retrogradely through neurons to reach the SN and cause
PD [89]. Notably, the vagal nerve has also been identified to enable the transfer of the pathological form
of α-synuclein from the gastrointestinal tract to the brain [90]. Using a novel gut-to-brain α-synuclein
transmission model, truncal vagotomy and α-synuclein deficiency effectively attenuated PD-associated
neurodegeneration in these mouse models [90]. These findings might explain the data from cohort
studies, reporting a lower risk of PD development in individuals who had truncal vagotomy [91].
Research on the gut-brain axis in neurodegeneration was fueled in part by the observation that
approximately 80% of PD patients experience constipation [92]. Emerging data inform us of the
bidirectional communication of the gut and brain, as well as the presence of microbiota dysbiosis in
PD patients affecting intestinal inflammation and α-synuclein aggregation [93]. However, the nexus
between intestinal changes in PD and neurodegeneration still lacks experimental support. Clues on the
role of colonic inflammation in PD pathogenesis have been suggested from association studies reporting
a 22% increased risk of PD in patients with IBD [94]. Interestingly, early exposure to anti-TNF therapy
in IBD patients substantially reduced PD incidence by 78%, reinforcing the influence of systemic and
gut-specific inflammation in PD development [95]. T cells may be implicated as a mediator between
intestinal immunity and dopaminergic neuronal death. Campos-Acuña et al. (2019) postulated that
the gut may trigger autoreactive T cells by providing structures similar to autoantigens via molecular
mimicry or activate T cells through the production of metabolites [96]. Factors that enable a greater
accumulation of enteric phosphorylated α-synuclein (p-αsyn) in the presence of a proinflammatory gut
milieu and gut dysbiosis may explain how inflammation drives protein aggregation. The expression
of the M3 muscarinic receptor (M3R), which may have a role in modulating the permeability of the
epithelial barrier, was reduced in PD patients. M3R expression was negatively correlated to the number
of small sized p-αsyn aggregates [97]. Although the significance and cause of the change are not
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well understood in PD patients, it might serve as a lead in deconstructing processes, contributing to
α-synuclein aggregation in the gut. Another hallmark study by Sampson’s team highlighted the
involvement of the gut microbiota in neuroinflammation and the induction of PD motor symptoms [98].
α-synuclein overexpressing mice harboring complex microbiota had increased α-synuclein aggregation
and microglia activation. Fecal transplantation from PD patients into these mice enhanced motor
deficits compared to transplants from healthy donors, providing support that both gut dysbiosis and
genetic susceptibility influence disease outcomes [98]. Taken together, a myriad of factors, such as
microbiota, metabolites and receptors, are critical for the maintenance of intestinal immunity. Hence,
studies to identify protective microbes or metabolites capable of reducing the inflammatory milieu in PD
patients or reversing their gastrointestinal disturbance may be beneficial in mitigating PD development.

4.2.2. Olfactory Involvement

Olfactory impairment is an early sign of PD, which affects 82–90% of PD patients. The majority
of patients experience hyposmia with deficits in odor identification, detection, memory and
discrimination [99]. The olfactory network is complex and communicates directly to the SN through
multisynaptic transmission [100]. Evidence of the OB as a site of α-synuclein propagation was
seen from Rey’s study demonstrating the transneuronal spread of α-synuclein aggregates after the
injection of α-synuclein fibrils into the OB of mice [101]. Recent work identifying the abundance
of α-synuclein inclusions in non-neuronal cells of the anterior olfactory nucleus, such as the
microglia, pericytes and astrocytes in PD patients, supports the possible involvement of the OB
in PD progression [102]. Although the mechanism of olfactory dysfunction remains poorly understood,
recent work by Nui’s team suggested that OB inflammation induces α-synuclein pathology, enabling its
spread and the development of PD [103]. They found that intranasally administered LPS-induced
inflammation by activating microglia. Activated microglia enhances IL-1β secretion and increases
levels of phosphorylated and total α-synuclein in the OB. A concomitant loss of dopaminergic neurons
in the SN and motor impairment of LPS treated mice was observed. These PD-related changes were
abrogated in the presence of minocycline used to inhibit microglia activation and in mice with IL-1
receptor type I (IL-1R1) deficiency [103]. This study provides the first evidence that IL-1R1 is necessary
for LPS induced α-synuclein pathology.

Knowing that the gut and OB are exposed to various insults from the external environment,
the challenge lies in understanding whether these sites are an initial point of pathology or whether
changes observed are secondary to ongoing pathogenic processes in PD. Identifying predisposing,
precipitating and propagating factors of inflammation in the olfactory and gut microenvironment
allows specific signaling pathways to be studied in the context of environmental toxin or pathogens.
This will guide our approach in preventing PD progression by treating the sites which are affected by
PD pathology at an early stage of the disease.

4.3. Peptide-Specific T Cells: Potential Biomarker, Grievous Effect or Both

4.3.1. α-Synuclein-Specific T Cells

The seminal discovery ofα-synuclein-specific T cells in PD patients contributes to our understanding
of autoimmune mechanisms in PD pathogenesis. Sulzer et al. (2017) identified T cells recognizing
antigenic regions of α-synuclein [62]. T cell responses were primarily mediated by IL-5- or
IFNγ-producing CD4+ T cells and IFNγ-producing CD8+ T cells. Specific α-synuclein epitopes
from the Y39 region exhibited good binding affinity to specific HLA class II variants DRB1*1501 and
DRB5*01:01 [62]. More significantly, α-synuclein-specific T cells were detected in a PD patient more
than a decade before his PD diagnosis [104]. This finding is consistent with the proinflammatory
state observed in PD patients and raises further question on whether these cells have a grievous effect
on dopaminergic neuronal death before the onset of the motor symptoms. Longitudinal studies of
healthy individuals will shed light on the utility of α-synuclein-specific T cells as a guiding biomarker
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to catch individuals at risk or in the early stages of PD. Given that the α-synuclein pathology is also
implicated in other α-synucleinopathies, such as Lewy body dementia or multiple system atrophy,
comparing α-synuclein-specific T cell reactivity will unravel the usefulness of the marker as a surrogate
for neuronal loss and neuroinflammation. Although this suggests that the marker may not be
PD-specific, preclinical diagnosis of PD should take other clinical, biochemical and imaging markers
into consideration, similar to the diagnostic criteria used for the diagnosis of an autoimmune condition.
In Lindestam’s recent study, a higher magnitude of α-synuclein reactivity was observed in PD compared
to healthy controls [104]. However, a significant difference was only noted in IL-10 T cell responses, but
not with IL-5 and IFNγ T cell responses in PD patients. A pool of 11 α-synuclein epitopes was used
in this study and not restricted to a specific haplotype [104]. Although the epitopes were not clearly
defined, this highlights the value of studies creating α-synuclein peptide pools, consisting of a wide
range of predicted peptides that are associated with different HLA allele variants. This increases the
chance of detecting α-synuclein-specific T cells in at-risk individuals with a specific HLA allele variant.
Notably, a positive correlation of α-synuclein T cell reactivity was found in those with a low Levodopa
equivalent dose (LED), age (older than 70 years) and time since diagnosis (<10 years) in PD patients.
The combination of these three variables gave a 68% specificity and 54% sensitivity in this cohort of
patients. The consideration of other PD-specific antigens and proper categorization of patients according
to the duration of their disease may improve the sensitivity of using T cells as a biomarker [104].
These cells can either cause grievous harm to dopaminergic neurons or serve as a marker indicating
the ongoing neuronal death secondary to α-synuclein accumulation. Discriminating the function of
α-synuclein-specific T cells creates new venues to interfere with T cell responses, thereby mitigating
disease progression.

4.3.2. Mitochondrial Peptide-Specific T Cells

Mitochondrial dysfunction is recognized to be a central factor in PD pathophysiology, affecting both
sporadic and familial PD patients. In familial PD, several PD-related genes such as SNCA, LRRK2, Parkin,
PINK1, ATP13A2, vacuolar protein sorting 35 ortholog (VPS35) and coiled-coil-helix-coiled-coil-helix
domain containing protein 2 (CHCHD2) have been identified to directly affect the mitochondria [105].
PINK1 and Parkin both govern mitochondrial quality control and have been implicated in the
regulation of adaptive immunity [106]. The absence of the PINK1 and Parkin was found to induce
mitochondrial antigen presentation on MHC I molecules in antigen presenting cells through the
formation of mitochondria-derived vesicles [107]. This groundbreaking discovery of PINK1 and
Parkin’s role in the repression of mitochondrial antigen presentation supports a non-cell autonomous
model where cytotoxic T cells contribute to dopaminergic neuronal destruction. This was further
validated in a recent study, where an intestinal infection in PINK1 knockout mice (PINK1-/-) induced
mitochondrial antigen presentation and the establishment of mitochondrial-specific CD8+ T cells [108].
Subsequent infiltration of these cytotoxic T cells in the brain leading to nigral death explained the
emergence of motor impairment in PINK1-/- mice. The concomitant recovery of the PD behavioral
phenotype and density of the tyrosine hydroxylase signal was associated with a reduction in the levels
of mitochondrial-specific T cells [108]. These findings provide new lines of evidence that genetic
susceptibility may contribute to autoimmune mechanisms involved in PD pathogenesis. With the
insights afforded by the current study, it is worth investigating the contribution of PD-related genes to
the development of PD antigen-specific T cells, especially in individuals with genetic perturbations.
Although the identification of disease-specific T cells is key for early disease diagnosis, the extent of
antigen-specific T cells in neuronal destruction needs to be interrogated. As we strive to integrate our
understanding of genes and its role on immune cells, there is a need to adopt a system-based approach
when genes are studied in the context of a specific environmental trigger.
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5. Gaps and Future Studies

A substantial body of evidence suggests that the immune system is involved in PD pathogenesis.
However, the search for an appropriate biomarker, a specific immune target implicated in the
initiation and propagation of PD and the effect of gut dysbiosis on immune cells in PD requires
further investigation.

Currently, diagnostic tests for early detection of PD that are accurate and cost effective are
lacking [109]. Serum biomarkers through immunophenotyping, cytokine profile analysis and the
presence of autoantibodies have been extensively investigated, though an authentic biomarker has yet
to be identified. Current studies are confounded by differences in patient populations, disease stage,
patient comorbidities, medication influence, sample processing and storage and methodology for
analyses [14]. Aside from the discovery of α-synuclein autoantibodies, which may have pivotal roles in
disrupting α-synuclein aggregation, the search for other PD-specific autoantibodies have been largely
inconclusive. Reports on autoantibodies have been observational and autoantibody validation has been
inconsistent [110]. A large-scale population-based screening of autoantibodies using different protein
array platforms on the same samples may unravel novel autoantibodies. The use of independent
cohorts or subsets of patients who may have similar symptomology will aid in the correlation of clinical
parameters with the presence of specific autoantibodies. Deciphering autoantibody isotypes enables
specific downstream effector functions to be investigated. Importantly, elucidating the functional
effect of the autoantibody on its protein target will guide the development of potential therapeutics to
counter or promote the antibody effect.

Despite extensive work on immune cells contributing to neuroinflammatory processes in PD,
a specific immune target responsible for neuronal degeneration has yet to be reported. The involvement
of innate and adaptive immune cells and its variable responses to different PD-related triggers add
to the complexity. Critical to the identification of the immune cell involved in PD pathogenesis,
immunophenotyping should be performed on healthy individuals at high risk of PD development due
to genetic factors, the presence of prodromal non-motor symptoms and those exposed to PD-associated
environmental toxins. With our knowledge that immune subsets may change at different stages of
the disease, phenotyping patients at an early or late stage or when they are treatment naïve and
post treatment enables the treatment or disease-related changes to be accounted for. Ascertaining the
primary immune player for early intervention enables the development of an effective immunotherapy
to thwart the neurodegenerative process.

The gut is greatly influenced by diet, the environment, drugs and genetics [111].
Although mediators produced by the gut microbiota have been implicated as a possible trigger
of immune responses to antigens derived from Lewy bodies, it is still unknown whether these changes
are a cause or an effect of PD [96]. Hence, a systematic approach by carefully defining an individual’s
genetic risk factors and extrinsic exposure in different cohorts will aid in the identification of microbes
or metabolites involved in PD pathology in specific groups of PD patients. Comparing gut dysbiosis in
PD and healthy individuals with a high risk of PD development will also shed light on gut-related
changes that may be causal or consequential to PD development. Finally, mechanistic studies on
factors compromising the gut-brain axis by inflammation will guide our approach to treat and screen
healthy individuals at risk of PD.

In essence, we need a holistic multi-disciplinary integrative approach to study the immune profiles
and gut perturbations in PD patients (Figure 2).
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Figure 2. Proposed framework to integrate the study of genes, gut dysbiosis and immune cells in patient
cohorts. Precise patient selection by identifying patients who are carriers of risk alleles or familial
PD related genes allows the effect of genes on the immune system to be investigated. Other patient
variables, such as (1) stage of the disease determined by Hoehn and Yahr scale or the movement disorder
society-unified Parkinson’s disease rating scale (MDS-UPDRS), (2) motor or prodromal non-motor
symptoms, (3) ethnicity and (4) drug treatments, can be considered to characterize patients into specific
subgroups. Next, several modalities can be used to determine the baseline immune profile of patients
and healthy individuals. Imaging using magnetic resonance imaging (MRI), dopamine transporter scan
(DaTscan), single photon emission computed tomography (SPECT) and positron emission tomography
(PET) can also be performed. Blood and plasma-based assays can be conducted to understand changes
in immune subsets, cytokine levels and the presence of disease-specific autoantibodies. The collection
of stools enables the analysis of stool microbiota and metabolites to be performed. Future studies can
facilitate the monitoring of immune changes with disease progression, in the presence or absence of
novel therapeutics, and provide information to classify patients in groups for personalized medicine.

6. Conclusions

There are still many challenges in understanding the multifaceted neuroinflammatory mechanisms
inducing dopaminergic neuronal death in PD. While there are suggestions that various immune
components are implicated in PD pathogenesis, the cause and effect association remains unclear.
This interplay is further complicated by unknown relationships between extrinsic triggers
(e.g., gut dysbiosis) and intrinsic changes in immune cells (e.g., genetic mutations). As we elucidate
the complex interactions, understanding the mechanisms of neuronal death will be key in our quest to
develop targeted cell therapies to halt disease progression. Current observations suggest that there
appears to be an interplay of immune mechanisms, genes, gut immunity and antigen-specific T cells,
contributing to dopaminergic neurodegeneration (Figure 3). Proper validation and mechanistic studies
may help in the identification of PD-specific autoantibodies that can serve as an early predictor of
the disease. Finally, adopting a comprehensive immune profiling and gut dysbiosis characterization
in healthy individuals and PD patients categorized according to their risk factors is a promising
approach for identifying therapeutic targets. Altogether, early identification of PD and personalized
immune modulation according to the patient’s immune signature is likely the way forward against this
debilitating condition.
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