
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REVIEW ARTICLE
published: 02 April 2015

doi: 10.3389/fonc.2015.00069

Trailing TRAIL resistance: novel targets for TRAIL
sensitization in cancer cells
RachanaTrivedi and Durga Prasad Mishra*

Cell Death Research Laboratory, Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India

Edited by:
Gerry Melino, Medical Research
Council, UK

Reviewed by:
Alessandro Rufini, University of
Leicester, UK
Maria Rosa Ciriolo, Università degli
Studi di Roma Tor Vergata, Italy

*Correspondence:
Durga Prasad Mishra, Scientist Cell
Death Research Laboratory,
Endocrinology Division, CSIR-Central
Drug Research Institute, Life Science
South Lab No 106, B.S. 10/1,
Sector-10, Jankipuram Extension,
Sitapur Road, Lucknow-226031, India
e-mail: dpm@cdri.res.in

Resistance to chemotherapeutic drugs is the major hindrance in the successful cancer
therapy. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member
of the tumor necrosis factor (TNF) family of ligands, which initiates apoptosis in cancer
cells through interaction with the death receptors DR4 and DR5. TRAIL is perceived as
an attractive chemotherapeutic agent as it specifically targets cancer cells while sparing
the normal cells. However, TRAIL therapy has a major limitation as a large number of the
cancer develop resistance toward TRAIL and escape from the destruction by the immune
system.Therefore, elucidation of the molecular targets and signaling pathways responsible
for TRAIL resistance is imperative for devising effective therapeutic strategies for TRAIL
resistant cancers. Although, various molecular targets leading toTRAIL resistance are well-
studied, recent studies have implicated that the contribution of some key cellular processes
toward TRAIL resistance need to be fully elucidated. These processes primarily include
aberrant protein synthesis, protein misfolding, ubiquitin regulated death receptor expres-
sion, metabolic pathways, epigenetic deregulation, and metastasis. Novel synthetic/natural
compounds that could inhibit these defective cellular processes may restore theTRAIL sen-
sitivity and combination therapies with such compounds may resensitize TRAIL resistant
cancer cells toward TRAIL-induced apoptosis. In this review, we have summarized the key
cellular processes associated withTRAIL resistance and their status as therapeutic targets
for novel TRAIL-sensitizing agents.

Keywords:TRAIL, cancer, apoptosis,TRAIL-resistance, DR4, DR5

INTRODUCTION
Pre-existing or acquired resistance to chemotherapy is a major
obstacle in effective cancer therapy, as it often leads to the ther-
apy failure and the disease relapse (1). Therefore, there is an ever
increasing need for development of safe drugs and novel thera-
peutic strategies for targeting these chemo-resistant cancer cells.
It is imperative that these chemotherapeutic agents or strate-
gies should selectively target the cancer cells in an irreversible
manner without harming the normal cells (2). However, poor tol-
erance and chemotherapy associated side effects are still major
hurdles in therapeutic targeting of chemo-resistant cancer cells.
Chemotherapeutic drugs can target cancer cells through inhibi-
tion of cellular proliferation and survival or induction of cell cycle
arrest and apoptosis. Among these processes, apoptosis is an evolu-
tionarily conserved and the most widely studied cellular response,
essential for maintenance of tissue homeostasis and removal of
unwanted cells (3). Apoptosis is triggered by either the intrinsic
or extrinsic stimuli. The intrinsic pathway of apoptosis includes

Abbreviations: c-FLIP, cellular FLICE-like inhibitory protein; DcR, decoy receptor;
DD, death domain; DED, death effector domain; DISC, death inducing signaling
complex; DR, death receptor; EMT, epithelial mesenchymal transition; HDAC, his-
tone deacetylase; HSPs, heat shock proteins; JNK, c-Jun-N -terminal kinase; NF-κB,
nuclear factor kappa B; OPG, osteoprotegerin; RANKL, receptor activator of nuclear
factor kappa-B ligand; TNF, tumor necrosis factor; TRAIL, tumor necrosis factor-
related apoptosis-inducing ligand; XIAP, X-linked inhibitor of apoptosis protein;
UPR, unfolded protein response; UV, ultraviolet.

cellular damage brought about by stress, ultraviolet (UV) or ion-
izing radiation, or oncogene activation. On the other hand, the
extrinsic pathway of apoptosis is triggered by the binding of extra-
cellular ligands to specific transmembrane receptors resulting in
caspase activation and cell death (2, 4). The tumor necrosis factor-
related apoptosis-inducing ligand (TRAIL) belongs to the group
of chemotherapeutic agents selectively targeting a wide variety of
cancer cells without affecting the normal cells (5–8). The therapeu-
tic potential of TRAIL is attributed to its receptor expression in a
variety of tissues like lymphocytes, spleen, thymus, ovary, prostate,
colon, intestine, and placenta compared to the restricted and tran-
sient expression of other ligands of the TNF family (8). Therefore,
TRAIL is considered as a promising and effective anticancer agent
under clinical investigation (9, 10). The therapeutic usage of other
members of the TNF super family like Fas/FasL and TNFα/TNFR1
are limited due to their severe side effects including lethal septic
shock like responses (11). The Fas/FasL and TNFα/TNFR1 are
known to activate the oncogenic NF-κB pathway while TRAIL
shows weak effects on NF-κB activation, and is therefore consid-
ered safe as a therapeutic agent. It also plays an important role
in the natural killer cell mediated immunosurveillance against the
rapidly growing and metastatic cancer cells (8). Pre-clinical studies
have shown that administration of the soluble form of the recom-
binant TRAIL in mice and non-human primates suppressed the
proliferation of TRAIL sensitive human tumor xenografts, with
no apparent systemic toxicity underscoring the potential utility
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of rhTRAIL in vivo (6, 7). However, the major limitation of the
TRAIL therapy is development of TRAIL resistance through a vari-
ety of mechanisms in cancer cells. Therefore, to enhance the TRAIL
mediated apoptotic effect, the combination of TRAIL along with
novel TRAIL sensitizing agents possibly represents the best clinical
option (Table 1).

TRAIL, ITS RECEPTORS AND APOPTOTIC PATHWAY
TRAIL is a member of the TNF-related proteins having struc-
tural and functional similarity with CD95L. TRAIL is a 20 kDa
protein encoded by a gene with five exons and three introns
located on the chromosome 3 (12–14). TRAIL is mainly expressed
on the cells of the immune system and plays critical roles in
T-cell homeostasis and NK or T-cell mediated killing of virally
and oncogenically transformed cells (15, 16). TRAIL is a type II
transmembrane protein with an extracellular domain which can
be cleaved to form its biologically active soluble form (17). Ini-
tially TRAIL was identified and cloned based on the sequence
homology of its extracellular domain with CD95L (28% homol-
ogy) and TNFα (23% homology) (17). However, its extracel-
lular carboxy terminal portion is proteolytically cleaved from
the cell surface in a vesicle associated or soluble form (17,
18). Previous studies have also shown that TRAIL interacts
with two agonistic receptors i.e., (1) TRAIL-R1 (DR4) and (2)
TRAIL-R2 (DR5/TRICK2/KILLER) (19–21), and three antagonis-
tic receptors i.e., (1) TRAIL-R3 (DcR1/TRID/LIT), (2) TRAIL-R4
(DcR2/TRUNND), and a soluble receptor i.e., osteoprotegerin
(OPG) (22, 23). OPG was identified initially as a receptor for
the receptor activator of nuclear factor kappa-B ligand (RANKL)
(24) (Figure 1). TRAIL-R1 and TRAIL-R2 are type I transmem-
brane proteins sharing a sequence homology of 58% (25) with
a cytoplasmic or death domain which recruits apoptosis signal-
ing molecules for the induction of cell death (26). The TRAIL-R1
and TRAIL-R2 expression is regulated by p53 and the TRAIL-R2
gene promoter has a p53 responsive element (27). The TRAIL
receptors TRAIL-R1 and TRAIL-R2 not only trigger apoptosis
in TRAIL-sensitive cells but also activate survival pathways in
tumor cells that resist the induction of cell death upon exposure
to TRAIL (28). Post-translational modifications such as glycosy-
lation and palmitoylation of DR4 and DR5 death receptors are
also important regulators of TRAIL induced signaling (29). There
exists a correlation between the expression of glycosylation ini-
tiating enzyme polypeptide N -acetylgalactosaminyltransferase 14
(GALNT14) and sensitization toward TRAIL mediated apopto-
sis in different cancers like pancreatic carcinoma, lung cancer,
and malignant melanoma (30). O-glycosylation enhanced ligand-
induced clustering of DR4 and DR5, which mediated recruitment
and activation of apoptosis-initiating protease caspase-8 (31).
TRAIL binds to its receptor as a homotrimer form, which is
biologically much more active than the trimeric form. TRAIL-
R3 and TRAIL-R4 lack the functional death domain (DD), and
therefore are unable to transmit the apoptotic signals induced
by binding to TRAIL ligands (23, 32). Therefore, TRAIL-R3 and
TRAIL-R4 are believed to be competitive inhibitors regulating
TRAIL-induced apoptosis (20). OPG is the only soluble recep-
tor of TRAIL with lower binding affinity as compared to the other
death receptors (24).

Depending upon the stimuli, either the extrinsic or the intrin-
sic pathways of apoptosis are activated (33) in a cancer cell. The
cross talk between these two pathways is mediated through the
truncation of the pro apoptotic protein Bid (34). The extrinsic
pathway is mediated through the binding of TRAIL to its two
death receptors DR4 (TRAIL R1) and DR5 (TRAIL R2). Binding
of TRAIL to its receptors leads to the trimerization of receptors and
formation of the death inducing signaling complex (DISC) (25).
An adaptor protein FADD translocates to the DISC, and interacts
with the DD, and facilitates the recruitment of procaspase-8/10
through interaction of their respective death effector domains
(DED). Self activation of these initiator caspases (35) by DISC
is required for the execution of apoptosis via the extrinsic path-
way. In some cell types, type I activation of caspase-8 is sufficient
for the subsequent activation of the effector caspase-3 and execu-
tion of apoptosis (2). But in other cell types, type II involvement
of the mitochondrial pathway (intrinsic pathway) is required (4).
In case of the intrinsic pathway, activation of caspase-8 leads
to cleavage of Bcl-2 inhibitory BH3-domain interacting protein
(Bid) (36). Subsequently, the truncated Bid interacts with Bax
and Bak and induces their oligomerization in the mitochondrial
membrane, which leads to the loss of the mitochondria mem-
brane potential and ultimately release of cytochrome c (37) and
Smac/Diablo (38) (Figure 2). At the DISC, activation of caspase-8
and caspase-10 can be inhibited by cellular FLICE-like inhibitory
protein (c-FLIP) (39). Type II cells also require the inactivation
of intracellular apoptosis inhibitors, such as X-linked inhibitor
of apoptosis protein (XIAP), which directly inhibits the effector
caspase activity (40). The paradigm-changing model for DISC
assembly and structure indicated that FADD is substoichiomet-
ric and procaspase-8 is recruited, not only through an interaction
with FADD but also by interacting with itself. The DED chain
assembly model also presents the intriguing possibility that only a
small amount of DISC is required for activation of large amounts
of caspase-8 (41). Like caspase-8 and caspase-10, c-FLIP also has
two DEDs, and has 13 discrete splice variants, and three of which
are expressed as proteins: the 26 KDa short form (c-FLIPS), the
24 KDa form of c-FLIP (c-FLIPR), and the 55 KDa long form (c-
FLIPL) (42, 43). The C-terminus of c-FLIPS is smaller than that
of c-FLIPL and very much similar to the caspase-8 and caspase-10
structure, but this region of c-FLIPL does not contain a functional
caspase domain, which is due to substitution of several amino
acids, mainly the crucial cysteine residue in the catalytic domain
which is necessary for the catalytic activity of caspases (43, 44). In
humans, single nucleotide polymorphism defines the production
of c-FLIPS or c-FLIPL in a three′ splice site of the c-FLIP gene. An
intact splice site directs production of c-FLIPS, but the splice-dead
variant results in production of c-FLIPR. Both c-FLIPL and c-
FLIPS isoforms are short-lived proteins and are largely degraded by
the ubiquitin–proteasome degradation system. Levels of c-FLIPL

and c-FLIPS are regulated by JNK activation via the E3 ubiquitin
ligase Itch and also through phosphorylation. The protein kinase
C (PKC) phosphorylation at the serine 193 (S193) residue of c-
FLIPS inhibits its polyubiquitination, stabilizes c-FLIPS levels, and
increases cell survival (45, 46). c-FLIP isoforms are reported to be
overexpressed in pancreatic cancer, where as very low or no expres-
sion is found in normal pancreatic ducts (47). c-FLIP protein
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Table 1 | Small molecule withTRAIL sensitization ability.

Target Drug Tissue (cell line) TRAIL-sensitizing mechanism

ER-stress

induction

Verrucarin A Liver (Hep3B) (118) eIF2α/CHOP-dependent DR5 induction via ROS generation

Monensin Brain (U251MG), U87MG (119) CAAT/enhancer binding protein homologous protein (CHOP)

dependent DR5 inductionNigericin

Salinomycin

Narasin

Lasalocid A

Medicarpin Blood (K562, U937) (120) CHOP dependent DR5 up-regulation

Diallyl trisulfide (DATS) Skin (A375) (72) CHOP mediated DR5 up-regulation and c-FLIP

down-regulation

Oligomycin A Cervical (HeLa) (121) Disrupting the adaptation to ER-mediated death pathway

Tunicamycin Skin (Mel-RM, MM200) (122) DR5 up-regulation via the unfolded protein response

15-deoxy-∆-12,14-prostaglandin

J2 (15dPGJ(2))

Colon (HCT116) (123) CHOP dependent DR5 up-regulation via ROS generation

Dibenzylideneacetone (DBA) Colon (HCT116, HT29) (124) Down-regulation of cell survival proteins and up-regulation

of death receptors via activation of ROS and CHOP

mediated pathways

5,7-dimethoxyflavone (DMF) Liver (Hep3B, Huh-7, and Hep

G2) (125)

ROS-stimulated ER-stress triggering CHOP-mediated DR5

up-regulation

Metastasis Neobavaisoflavone (NBIF) Brain (U373MG) (126) DR5 up-regulation

4,5-dimethoxy-2-

nitrobenzaldehyde

(DMNB)

Metastatic colon (KM12L4A) and

prostate (PC3-MM2) (127)

Up-regulation of DR5 and inactivation of DNA-dependent

protein kinase (DNA-PK)/Akt, a pathway required for cancer

cell metastasis

MG132 Head and neck (128) Stabilizing tBid and Bik

Liver (HepG2) Modulating the interaction of FADD and the TRAIL death

receptors

Bortezomib (VELCADE) Head and neck (129) A caspase-dependent, E6-independent mechanism

Kidney (Caki1,UO-3, ACHN) (130) Increased in activation of caspase-8 in the death-inducing

signaling complex

Brain (U373MG) (131) p53-independent DR5 up-regulation

Brain (132) PKCε-dependent down-regulation of AKT and XIAP

expressions

Brain (U373, LNZ308) (133) Inhibiting the NF-κB signaling pathway

Proteosome

inhibition

Oesophagus (established cell

lines KE4, TE8, TE9) (134)

Activation of both extrinsic and intrinsic apoptosis pathways

Prostate (LNCaP, PC3) (135) Stabilization of the TRAIL receptor DR5 mRNA through the

3′-untranslated region

Lung (H460, A549, SW1573,

H292, H1299, and H322) (80)

Increased activation of caspase-8-mediated as well as

caspase-9-mediated apoptosis

B-Cell (HRC57) (136) Blocking bax degradation

Thyroid (8305C, ARO, and KAT4)

(137)

Down-regulation Bcl-2 and Bcl-XL, and the up-regulation of

p21 and SMAC/Diablo

NPI-0052 Prostate (PC3) human

non-Hodgkin’s B cell lymphoma

(B-NHL) (Ramos) (82)

Inhibits the transcription repressor Yin Yang 1 (YY1), which

negatively regulates DR5 transcription

Heat shock

proteins

Geldanamycin Prostate (LNCaP, DU145) (104) Hsp90 inhibition and increased activation of caspase-3,

caspase-7, and their substrate poly (ADP-ribose) polymerase

17-AAG Brain ((U87MG, LN229, and

U251) (138)

HSp90 inhibition and down-regulating survivin through

proteasomal degradation

LY30 Cervical (HeLa) (139) Sustained phosphorylation of Hsp27 and inhibition of its

protective functions

(Continued)
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Table 1 | Continued

Target Drug Tissue (cell line) TRAIL-sensitizing mechanism

Autophagy Pifithrin (PFT)-µ Pancreatic (MiaPaca-2,

Panc-1) (140)

Inhibits HSP70-induced stabilization of lysosomal membrane

permeabilization, resulting in increased cell death

HDAC Inhibitor

MS-275 Breast cancer

(MDA-MB-231) (141)

Activation of downstream caspase-3, which can be activated

by both extrinsic and intrinsic pathways

Depsipeptide Lymphoid (Jurkat) (142) By facilitating formation of an active death-inducing signaling

complex (DISC), leading to the rapid activation of caspase-8

NaB and SAHA Brain (SHEP) (143) Change in the equilibrium of pro-to anti-apoptotic molecules

that lowers the cell death threshold and strongly favors

apoptosis

Epigenetic

modulation

LGP1, a HDAC inhibitor analog of

FR235222

Blood (Jurkat,HL60), Breast

(MCF-7) (144)

Activate the DR5 gene through p53-independent regulation

TSA Myeloid (U937) (145) Up-regulation of TRAIL-R1 receptor

SIRT1 inhibitor

Amurensin G Blood (Jurkat,HL60), Breast

(MCF-7) (144)

Activate the DR5 gene through p53-independent regulation

Valproic acid (VPA) Myeloid (K562) (146) Up-regulation of c-Myc and DR5 surface expression and the

down-regulations of c-FLIP and Mcl-1

DNA demethylation

Decitabin Lung (H69, H82 H1417 H2171,

and U1906 (147)

Efficient restoration of caspase-8

Brain (T98G, U87MG, U251, and

TB10) (148)

Up-regulation of TRAIL receptor-1 and caspase-8,

down-regulation of PED/PEA-15

Lung (H69, H82 H1417 H2171,

and U1906 (147)

Efficient restoration of caspase-8

Brain (SH-SY5Y, LAN1, Kelly, and

D283Med) (149, 150)

Re-express caspase-8 in cancer cells lacking caspase-8

Skin (MEWO, MML-1) and Blood

(Jurkat, CEM) (150)

Increasing expression level of caspase-8

Glycolysis inhibitor

Metabolic

pathways

2-Deoxy-d-Glucose Skin (MelRM, Mel200, Mel-CA,

and Mel-MC) (66)

XBP-1-mediated up-regulation of TRAIL-R2

Blood (U937,Jurkat) and Cervical

(HeLa) (151)

AMPK activation and mammalian target of rapamycin

(mTOR) inhibition leading to Mcl-1 decrease

Glyoxalase pathway

Methylglyoxal (MG) Colon (SW480) (152) Suppresses expression of antiapoptotic factors, X-linked

inhibitor of apoptosis protein (XIAP), survivin, cIAP1, Bcl-2,

and Bcl-xL

Nucleoside transport inhibitor

Dipyridamole Colon (SW480), Bone (MG63),

Prostate (DU145) (153)

CHOP dependent DR5 up-regulation

Thymidylate synthase inhibitor

Trifluorothymidine (TFT) Lung (A549, H292, H322, and

H460) (154)

Increased the expression of p53 and p21/WAF1, and

p53-dependent DR5 expression

Mitochondrial pyrimidine

biosynthesis

Doxorubicin and Brequinar Lung (U1690), Breast (MC7),

Prostate (LNCaP) (155)

Inhibition dihydroorotate dehydrogenase (DHODH) and

down-regulation of c-FLIPL as well as by mitochondrial

depolarization

Protein

synthesis

Cycloheximide Prostate (PC3) (156) JNK activation and c-FLIP down-regulation

Colon (KM12C, KML4A, and

KM20) (157)

JNK activation and c-FLIP down-regulation

Anisomycin Prostate (PC3) (156) JNK activation

Salubrinal Liver (HepG2) (67) Inhibition of eIF2α dephosphorylation
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Trivedi and Mishra Novel targets in TRAIL resistance

FIGURE 1 | Interaction ofTRAIL with its five receptors (two agonostic receptors: DR4, DR5; and three antagonistic receptors: DcR1, DcR2, and OPG).
Only the two agonistic receptors DR4 and DR5 can transduce the TRAIL induced cell death signaling.

enhances the anti-apoptotic activity of Akt by modulating GSK3β

activity and thus induces resistance to TRAIL (48). High-grade
prostatic intraepithelial neoplasia (HGPIN) and prostate cancer
are found to express high level of c-FLIP as compared to normal
prostate epithelium (47). The naturally occurring differences in
the levels or states of proteins regulating receptor-mediated apop-
tosis are the primary causes of cell-to-cell variability in the timing
and probability of death (49).

PROTEIN SYNTHESIS AND TRAIL RESISTANCE
Many disease conditions are attributed to failure in synthesis of
a specific active protein (50). Such conditions generally involve a
mutation of the gene encoding the protein, leading to an altered
protein level or activity (51). Protein translational control is an
important strategy in regulation of eukaryotic gene expression.
Interestingly, dysregulated translation has now been linked to mul-
tiple human cancers (52). A major target of translational control
is the eukaryotic translation initiation factor 4E (eIF4E), which
interacts with the 7-methylguanosine cap structure located at the
5′ untranslated regions of cellular messenger RNA (mRNA) and
transfers these mRNA to the eIF4F translation initiation complex,
an assembly of the cap-binding protein eIF4E, the RNA helicase
eIF4A, and the scaffolding protein eIF4G (53, 54). Availability
of eIF4E is the determining factor for the assembly of eIF4F.
As eIF4E is scarce among the initiation factors involved in the
eIF4F complex, eIF4E is the rate-limiting factor for cap-dependent
translation initiation (54). Several human cancers exhibit inade-
quate eIF4F activation. Inhibitor of eIF4E/eIF4G interaction can
act as a TRAIL sensitizer by down-regulating the levels of cyclin
D1 and hypoxia-inducing factor-1α (HIF-1α), and both of which
follow the cap-dependent translation regulation mechanism (55).
Inhibitors of the eIF4E/eIF4G increase TRAIL-induced apoptosis
through the up-regulation of DR5 and inhibition of c-FLIP, inde-
pendent of inhibition of cap-dependent protein translation (56).
JNK signaling induces apoptosis by inducing secretion of death
ligands to promote release of cytochrome c from mitochondria to

cytosol or by posttranslational modification phosphorylation of
downstream pro-apoptotic proteins (57). It has been also reported
that JNK activation up-regulates DR5 expression, which leads to
apoptosis in cancer cells through caspase-8 activation (58). JNK
has also been reported to up-regulate the expression of CHOP
via an AP-1 binding site in promoter region in HeLa cells. This
JNK dependent CHOP expression leads to DR5 up-regulation and
induces TRAIL mediated apoptosis (58).

ER-STRESS AND TRAIL RESISTANCE
Endoplasmic Reticulum (ER) is a key intracellular organelle
involved in the regulation of protein synthesis, proper folding
of newly synthesized proteins and regulation of the intracellular
calcium levels (59, 60). The malfunctioning of the aforemen-
tioned processes leads to the cellular stress response known as
ER stress. ER stress induces signaling pathway which is known
as the “unfolding protein response” (UPR). The prolonged and
severe ER stress leads to apoptosis (61, 62). ER stress induces acti-
vation of the intrinsic apoptotic pathway (63) through the DR5
death receptors (64). DR5 up-regulation by ER stress inducing
agents has been suggested to play a crucial role in the sensitization
of TRAIL resistant cells (65, 66). Activation of TRAIL receptors
induces translocation of pro-apoptotic Par-4/GRP78 complex to
the cell surface of cancer cells. Combination of salubrinal and
TRAIL leads to dephosphorylation of eIF2-α increased expres-
sion of Bim, a CHOP-regulated proapoptotic protein in hepatoma
cells for TRAIL sensitization (67). Par-4 is spontaneously secreted
by normal and cancer cells in culture and also by Par-4 trans-
genic mice that are resistant to spontaneous tumors. Par-4 induces
apoptosis by binding to glucose regulated protein-78 (GRP78)
which results in ER-stress and activation of the FADD/caspase-
8/caspase-3 pathway (68). Thus Par-4 activates extrinsic pathway
involving cell surface GRP78 receptor for apoptosis induction (69).
An increasing number of reports have also demonstrated that
inducers of ER stress also sensitize glioblastoma, colon cancer,
breast cancer, melanoma, and hepatoma cells to TRAIL induced
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FIGURE 2 | Molecular details of canonical and non-canonical
TRAIL signaling. Following TRAIL binding to its death receptors, the
DISC can be formed which results in caspase-3 activation and
apoptosis. A secondary complex can also be formed after TRAIL

receptor activation, leading to the activation of various kinases and
the induction of direct or indirect non-apoptotic responses as
indicated (A). The ubiquitin–proteasome system can assist in the
degradation of TRAIL-Rs (B).

apoptosis (70–72). ER stress inducers provide a promising option
for sensitizing TRAIL resistant cells as ER stress alters the cellular
levels of different apoptosis-related proteins responsible for TRAIL
resistance, including a decrease in the levels of FLIP and Mcl-1 and
the up-regulation of DR5 (70–72).

THE UBIQUITIN–PROTEASOME PATHWAY AND TRAIL
RESISTANCE
Protein stabilization is a key regulatory mechanism required for
the control of cellular development, cell growth, and regula-
tion of cell cycle, and mediation of apoptosis (73). The selective
degradation or stabilization of intracellular proteins through the

ubiquitin-dependent pathway is vital for adjusting the regula-
tion of these cellular processes (73). Ubiquitination targets many
key regulatory proteins for degradation of these proteins through
the 26S proteasome. The NF-κB pathway proteins, p53, and the
inhibitors of apoptosis (IAPs) proteins are well-known target
of the proteasome (74). Due to these reasons, the proteasome
acts as an attractive target for cancer therapeutics. Proteasome
inhibitors are a novel class of compounds with promising anti-
cancer effects. Proteasome inhibitors are more selective for cancer
cells opposite to normal cells with the unknown reasons (75).
Proteasome inhibitors also show additive effects in chemosensiti-
zation and radio sensitization of tumor cell lines (76). Proteasome
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inhibitor PS-341 sensitizes HCT-116 and HC4 cell lines to TRAIL
through DR5 up-regulation and activation of extrinsic and intrin-
sic apoptotic pathway (77). MG132 also sensitizes HCT-116 cells
to TRAIL by DR5 up-regulation (78). Bortezomib sensitizes acute
myeloid leukemic cells to TRAIL by down-regulation of anti-
apoptotic proteins Bcl-xL and Mcl-1 and up-regulation of death
receptors DR4, DR5, and proapoptotic protein p21, activation
of executioner caspases, and a loss of the mitochondrial mem-
brane potential (79). Bortezomib also sensitizes non-small lung
carcinoma cells to TRAIL mediated apoptosis through DR5 up-
regulation involving both the extrinsic and intrinsic apoptotic
pathways (80). b-AP15, a novel inhibitor of proteasome deubiqui-
tinating activity, sensitizes tumor cells to TRAIL mediated apop-
tosis through DR5 up-regulation and c-FLIP down-regulation
(81). Proteasome inhibitor, NPI-0052, sensitizes tumor cells to
TRAIL induced apoptosis by inhibiting the transcription repres-
sor Yin Yang 1 (YY1), which regulates TRAIL resistance through
the negative regulation of DR5. NPI-0052 up-regulates the DR5
promoter activity along with increase in both surface and total
DR5 protein expression (82). The degradation of specific cell pro-
teins is involved in determining cell proliferation or cell death.
Inhibition of the ubiquitin–proteasome system by proteasome
inhibitors blocks the process of programed cell death in thymo-
cytes and neurons, but induces apoptosis in various human cancer
cell lines (83). The ubiquitin–proteasome pathway has been also
reported to control TRAIL apoptosis signaling by affecting lev-
els of death domain adaptor molecules including Fas-associated
death domain (FADD) and Fas-like inhibitor protein (FLIP) (73).
Ubiquitination is considered to be a crucial regulator of DISC
activity through recruitment of E3 ligase Cullin3 to the DISC.
This recruitment leads to poly-ubiquitination of caspase-8 which
results in DISC recruitment of the ubiquitin-binding protein p62,
leading to the stabilization of the activated caspase-8, there by
facilitating DISC activation (84). Inhibitors of apoptosis proteins
(IAPs) are a family of proteins defined by the baculovirus repeat
(BIR) domains and inhibit caspase activation; the majority of the
caspase-inhibiting IAPs possess a carboxyl-terminal RING zinc-
finger motif and exhibit E3 ligase activity (85). The overexpression
of cIAP1 results in its autoubiquitination and degradation (86).
cIAP2 can encourage monoubiquitination of caspase-3 and -7,
and that XIAP catalyzes the ubiquitination and degradation of
caspase-3 (87). This is supported by the study that IAPs catalyzed
their own ubiquitination in vitro, and this activity requires the
RING domain (87). The proteasome inhibitor PS-341 enhances
TRAIL killing by increasing the level of DR5 and DR4 receptors,
thus increasing caspase-8 activation (77). Proteasome inhibitor
MG132 and MG115 sensitizes hepatocellular carcinoma cells to
TRAIL by suppressing caspase inhibitors and the AKT signal-
ing pathway (83). The proteasome inhibitors MG132 or Borte-
zomib sensitize human malignant pleural mesothelioma cells to
TRAIL induced apoptosis through Mcl-1 and Akt protein cleavages
(88). Bortezomib-mediated proteasome inhibition also sensitizes
TRAIL resistant HPV-positive HNSCC cells to TRAIL-induced cell
death through both the extrinsic and intrinsic pathways of apopto-
sis (89). Death-associated protein kinase (DAPK2) is a modulator
of TRAIL signaling and inhibition of the expression of DAPK2
results in phosphorylation of NF-κB and transcriptional activity,

which leads to induction of NF-κB target genes including DR4
and DR5 (90). Collectively, these findings indicate that the combi-
nation of proteasome inhibitors and TRAIL could be a promising
strategy for TRAIL sensitization.

HEAT SHOCK PROTEINS MEDIATED TRAIL RESISTANCE
Heat shock proteins (Hsp) are a highly conserved group of intra-
cellular proteins classified by molecular weight into groups of
Hsp110, Hsp90, Hsp70, Hsp60, small molecular Hsps (<27 kDa),
and ubiquitin (91, 92). Hsps are highly abundant cytosolic pro-
teins and function as molecular chaperones. Hsp function is best
explained under cellular stress condition like heat, hypoxia under
which levels of Hsps are significantly amplified (93). Under these
stress conditions, Hsps encourage cell proliferation by inhibiting
protein aggregation and enhancing the proper folding of damaged
proteins (94, 95). Hsps also play a crucial role in normal cells, espe-
cially Hsp70, and to some amount Hsp90 are essentially implicated
in protein folding functions (93–95). Hsp70 does so by binding
to newly synthesized peptides thereby inhibiting premature pro-
tein misfolding, whereas Hsp90 binds to proteins with unstable
tertiary structures and hamper protein degradation. Hsp60 and
Hsp27 both function in protein folding by making a complex that
make use of ATP to form intramolecular interactions required
for client protein folding (96, 97). Hsp70 and Hsp90 are also
implicated in the DNA-binding activity and stability of mutant
p53, thereby resulting in cellular transformation (98). These find-
ings indicate that the usual protein folding functions of Hsps,
and in particular Hsp70 and Hsp90, are subverted by tumors to
stabilize proteins important for the establishment and preserva-
tion of the transformed phenotype. Heat shock proteins such as
Hsp70 and Hsp90 interact with Apaf-1, while Hsp27 sequesters
cytochrome c from the cytoplasm, thereby preventing formation
of apoptosome (99, 100). The heat shock proteins i.e., Hsp60 and
Hsp10 promote procaspases three maturation (101),while Hsp90α

has been reported to recruit FLIPs to DISC leading to TRAIL
resistance. Inhibition of Hsp90 function affects multiple onco-
genic substrates simultaneously and has been reported to have a
TRAIL sensitizing effect (93). Combination of the Hsp90 inhibitor
17-AAG with “death receptor” targeting agents can synergisti-
cally improve their anti-tumor activities and decrease the TRAIL
resistance in glioma cells (102). In TRAIL/TNF-resistant prostate
cancer cells, pre- or co-treatment to17-AAG with TRAIL/TNF is
known to induce high levels of apoptosis (103) through inhi-
bition of the NF-κB or Akt cell survival pathways (104, 105).
Synergistic effects between 17-AAG and anti-TRAIL monoclonal
antibodies have also been observed (106). Collectively, these stud-
ies underscore the critical role of the Hsps in regulation of TRAIL
resistance.

AUTOPHAGY AND TRAIL RESISTANCE
Resistance to chemotherapeutic drugs is a universal clinical con-
cern in cancer therapy. Intrinsic or acquired drug resistance can
be due to a wide variety of mechanisms including tumor cell
heterogeneity, drug efflux and metabolism, tumor microenvi-
ronment, or stress-induced genetic or epigenetic alterations as a
cellular response to drug exposure (107). Among these mecha-
nisms, the response or adaptation of cancer cell itself to anticancer
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drug-induced tumor microenvironment stresses is a fundamental
cause for chemotherapy resistance. Autophagy is a lysosomal
degradation process typically activated in response to adverse
microenvironmental stresses (107). Autophagy itself fulfils a dual
role, with both tumor-promoting and tumor-suppressing effects.
Tumor cells activate autophagy in response to cellular stress and/or
increased metabolic load related to enhanced cellular proliferation
(108). As a response to anticancer treatments, whether autophagy
activation leads to cell survival or cell death remains still unclear.
Previous studies have suggested that the induction of autophagy
could be a useful therapeutic approach to overcome drug resis-
tance of cancers to some therapeutic agents, particularly those
which typically induce an apoptotic response (107, 109). Cytopro-
tective autophagy circumvents TRAIL sensitivity, and inhibiting
autophagy in cancer cells, sensitizes cancer cells to TRAIL (110).
However, apoptosis-defective tumor cells can survive TRAIL-
mediated stress by eliciting a protective autophagic process cou-
pled with enhanced F-actin polymerization (88). Although the
autophagy regulates key processes associated with TRAIL resis-
tance, still more studies are needed to elucidate the molecular
mechanisms of autophagy mediated TRAIL resistance and to pro-
vide basis for therapeutic approaches that can target autophagy
mediated TRAIL resistance.

EPIGENETIC MODULATION AND TRAIL RESISTANCE
Epigenetic changes may contribute to both cell survival and
chemotherapy resistance in cancer cells. Abnormal DNA methyla-
tion at CpG islands and other associated epigenetic deregulations
are observed during the acquisition of drug resistance (111).
Recent studies suggest that epigenetic deregulation of gene expres-
sion by DNA methylation and aberrant histone deacetylation plays

a crucial role in tumor development (112, 113). The role of epige-
netic mechanisms in the silencing of the death receptor mediated
pathway has been demonstrated in cases of medulloblastoma, as
the inhibition of DNA methylation restored apoptosis suggesting
the crucial role of DNA methylation in caspase-8 inactivation, a
critical process in TRAIL resistance (114). Loss of caspase-8 gene
expression critical to the process of TRAIL resistance by aber-
rant DNA methylation has also been supported by a number of
other studies (114, 115). Overexpression of FAS/CD95 receptor
and its cognate FAS ligand (FASL) are known to develop resistant
in brain tumors toward etoposide treatment (116). The expres-
sion of DR4 and DR5 is also deregulated in human cancer cells
by such mechanisms and it can be reversed by agents that target
the DNA methylation or histone deacetylation (Figure 3). Mod-
ulation of chromatin by histone acetyltransferases (HATs) and
histone deacetylases (HDACs) represents one important regula-
tory mechanism involved in gene transcription. Importantly, the
HDAC inhibitor, MS-275 is effective in inhibiting the proliferation
of cancer cells (Daoy and D283) in vitro through MS-275-induced
increase in acetylation of histones H3 and H4 in the DR4 promoter
and reactivation of DR4 expression in cancer cells. A significant
potentiation of apoptosis observed in the presence of both MS-
275 and recombinant TRAIL suggests that the up-regulated DR4
receptors are cell-surface associated and functional (111). At the
receptor level, somatic mutations in the TRAIL receptors, down-
regulation of DR4 and DR5, and over expression of the decoy
receptors DcR1 and DcR2 can all confer selective resistance to
TRAIL therapy (117). In summary, the reversal of aberrant gene
repression with the use of a combination of epigenetic modulators
and TRAIL could thus enhance the therapeutic benefit in a wide
range of malignancies.

FIGURE 3 | Potential targets for sensitization of cancer cells toTRAIL induced apoptosis.
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METABOLIC PATHWAYS INVOLVED IN TRAIL RESISTANCE
Metabolic processes and regulation in cancer cells differ signifi-
cantly from the normal cells (158). Therefore, therapeutic target-
ing of metabolic pathways is a promising approach for enhancing
TRAIL sensitivity in cancer cells. Cancer cells mostly rely on aer-
obic glycolysis, fatty acid synthesis, and glutaminolysis for their
growth and proliferation (159). And this fact suggests that tar-
geting cancer cell metabolism could provide a selective approach
for targeting cancer cells without harming normal cells. Aerobic
glycolysis or the Warburg effect links the high rate of anaerobic
glycolysis to cancer (160). Mitochondrial respiration injury and
hypoxia are often associated with resistance to chemotherapeutic
drug-induced apoptosis. (161). One probable association between
metabolic change and resistance to apoptosis is the association of
HKs with the voltage-dependent channel protein (VDAC) under
glycolytic metabolism. Tp53-induced glycolysis and apoptosis reg-
ulator (TIGAR), a target of p53, reduces the level of Fructose1,
6-biphosphatase, and ultimately inhibits glycolysis. TIGAR, a tar-
get of p53, inhibits glycolysis by reducing the level of FBP. Glucose
is then diverted into the pentose phosphate pathway (PPP) to make
NADH and nucleotides, instigating an increase in glutathione.
As such, TIGAR decreases the sensitivity of cells to p53 and
other apoptotic signals linked with ROS (162). Similarly, an over-
expression of PFK redirects glucose from glycolysis to the PPP
and increases the resistance to oxidative stress (163). This aber-
rant high rate of glycolysis generates microenvironmental acidosis
which requires evolution to phenotypes resistant to acid-induced
cellular toxicity. Following, cell populations with up-regulated gly-
colysis and acid resistance have a potent growth advantage, which
stimulates unconstrained proliferation and cell invasion (164).
Efforts have been made to adjust the metabolic reprograming of
cancer cells by treating with glycolysis inhibiting compounds. 2-
Deoxyglucose (2-DG) is best known as an inhibitor of glucose
metabolism. Inside a cell, it is converted to phosphorylated 2-DG
(2-DG-P) by hexokinase, the first and the rate-limiting enzyme
in glycolysis (165). Glycolysis inhibitor, 2-DG, accumulates in
cells and inhibits Hexokinase (HK). At high concentration, 2-DG
leads to depletion of ATP level and results in apoptosis (166).
2-DG has been reported to sensitize tumor cells to death recep-
tor induced apoptosis linking glucose metabolism to Mcl-1 down
expression (151). The therapeutic potential of 2-DG has prompted
sufficient interest in the United States, and there is an ongo-
ing phase one clinical trial for this compound (ClinicalTrials.gov
identifier: NCT00247403) (165). Dichloroacetate (DCA), another
glycolysis inhibitor, prevents pyruvate dehyrogenase kinase (PDK)
by increasing mitochondrial metabolism through forcing pyru-
vate in to mitochondria (167). DCA also reduces tumor growth
in vitro and in vivo without affecting normal tissue (168). Altered
expression of PKM2 is associated with drug resistance in different
tumor. This shows that PKM2 is a potential target for adjuvant
cancer therapy (169). Silencing of PKM2 intensify the efficacy
of docetaxel because of enhanced inhibition of proliferation and
apoptosis-inducing activity both in vitro and in vivo (170). It has
been also reported that glucose deprivation intensifies TRAIL-
induced apoptosis by decreasing the expression of cFLIP through
the ceramide-AKT-FLIP pathway (171). Tumor cells tend to have
a large pool of glutamate, and this pool is maintained by their

ability to convert glutamine into glutamate through glutamine
synthase (GLS), a mitochondrial enzyme highly active in tumors.
Like glycolysis, this abnormal glutamine metabolism cancer cells
makes these cells addicted to glutamine and this leads to increased
synthesis of by-products essential for fast cell growth and prolif-
eration (172, 173). Similarly, the salvage pathway of nucleotide
synthesis is one of the attractive targets for cancer therapy. Dipyri-
damole is a known nucleoside transport inhibitor that sensitizes
cancer cells to TRAIL induced apoptosis. Thymidylate synthase
(TS) is an E2F-1 regulating enzyme, crucial for DNA synthesis
and repair. Many cancer cells show elevated expression of this
enzyme and have been associated with poor prognosis in various
solid cancers including non-small cell lung cancer (174). The novel
thymidylate synthase inhibitor trifluorothymidine (TFT) has been
reported to enhance TRAIL-induced apoptosis in NSCLC cells
by sensitizing the apoptotic machinery at different levels in the
TRAIL pathway (154). The mitochondrion is the main power sta-
tion of the cell that generates most of the cell’s supply of ATP by
glycolysis and oxidative phosphorylation. In addition, mitochon-
dria are also involved in a range of intracellular processes, such as
cell growth and division, differentiation, apoptosis, and intracel-
lular signaling. Mitochondria participate in de novo biosynthesis
of pyrimidines, which is catalyzed by dihydroorotate dehydroge-
nase (DHODH), an FMN flavoprotein in the inner mitochondr-
ial membrane, which transfers electrons from dihydroorotate to
ubiquinone of the ETC for further oxidation (175). Doxorubicin
is reported to sensitize cancer cells to TRAIL mediated apoptosis by
targeting dihydroorotate dehydrogenase (DHODH) (155). There-
fore, the novel inhibitors of metabolic pathways may be promising
agents for TRAIL sensitization.

ROLE OF METASTASIS IN TRAIL RESISTANCE
The process of cancer metastasis involves tumor cell invasion at
the primary tumor, intravasation, arrest, and extravasation of
the circulatory system, followed by angiogenesis and progres-
sive outgrowth at a distant site (176, 177). Metastatic potential
is measured by the number and size of large lesions on imag-
ing and by indices of patient survival. Epithelial–mesenchymal
transition (EMT) plays an essential role in promoting metas-
tasis in epithelium-derived carcinoma and considered to be the
key process driving tumor cell invasiveness and metastasis (178,
179). Recent studies have established the dynamic association of
EMT and its reverse program, mesenchymal–epithelial transition
(MET), in the metastatic process (179). EMT is characterized by
the down-regulation of epithelial proteins, such as E-cadherin,
γ-catenin/plakoglobin, α-catenin, and β-catenin (180) and with a
stimulation of mesenchymal proteins, including α-smooth muscle
actin, fibronectin, N -cadherin, or vimentin (181). This is medi-
ated by transcription factors like Twist, E12/E47, and members of
the Snail, and ZEB protein families (182, 183). ZEB1 suppresses
E-cadherin expression by recruiting HDAC. EMT transition has
been a novel target for TRAIL sensitization, and HDAC inhibitor
MS-275 inhibits angiogenesis, reverses EMT, attenuates metasta-
sis, and sensitizes TRAIL-resistant breast cancer MDA-MB-468
xenografts in vivo (178). A recent study has demonstrated that the
increased migration and invasion is a crucial factor in regulation
of TRAIL resistance in cancer cells (184). A recent study suggests
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Table 2 | Summary of current recombinant humanTRAIL variants, agonistic DR4, DR5-specific antibodies, their pre-clinical development and

current clinical status.

Molecule tested Targeted receptors Comments and clinical development

His-TRAIL (rhTRAIL

variant)-polyhistidine-tagged rhTRAIL

DR4/DR5/decoy

receptors

Induces apoptosis in transformed cells. Toxic to primary hepatocytes and

keratinocytes (5, 195, 196)

LZ-TRAIL (rhTRAIL variant)-Leucin-zipper

tagged rhTRAIL

DR4/DR5/decoy

receptors

Induces apoptosis in transformed cell lines. Toxic to keratinocytes (6, 196)

Flag-TRAIL/M2 (rhTRAIL variant) DR4/DR5/decoy

receptors

On cross linking, induces apoptosis in transformed cells. Toxic to primary

hepatocytes and keratinocytes (6, 11)

Apo2L/TRAIL (rhTRAIL

variant)-non-tagged rhTRAIL

DR4/DR5/decoy

receptors

Induces apoptosis in transformed cells, but not to primary, non-transformed

hepatocytes, or keratinocytes. Ongoing phase I/II clinical trials as single

agent and in combination therapy (7, 196–198) Amgen/Genentech

TRAIL-CD19 and TRAIL-EGFR (rhTRAIL

fusion proteins)

DR4/DR5/Decoy

receptors,TRAIL-CD19,

and TRAIL-EGFR (rhTRAIL

fusion proteins)

Selectively targets TRAIL to CD19 or EGFR expressing tumors,

respectively. Induces apoptosis in vitro. Good in vivo activity seen with

TRAIL-CD19 in pre-clinical studies (199, 200)

Apo2L.DR5–8 (rhTRAIL variant) DR5/DcR2 (?) Non-tagged, DR5-selective rhTRAIL variant. Induces apoptosis in DR5-

responsive cancer cell lines. Toxicity observed following cross-linking (201)

DR5-TRAIL (E195R/D269H) (rhTRAIL

variant)

DR5/DcR2 (reduced) Non-tagged, DR5-selective rhTRAIL. Induces apoptosis in DR5-responsive

cancer cell lines. No toxicity in non-transformed fibroblast and endothelial

cells. Anti-tumor activity in ovarian cancer xenograft models (202)

M413 (agonistic Ab) DR5 Induces apoptosis in TRAIL-sensitive cancer cell lines selectively through

DR5 receptor (203)

TRA-8 (CS-1008) (agonistic Ab) DR5 Induces apoptosis in DR5-responsive cancer cell lines and primary

hepatocellular carcinoma but not toxic to normal hepatocytes (phase I

clinical trials), (204) (Sankyo)

AMG 655 (agonistic Ab) DR5 Induces apoptosis in a number of human cancer cell lines. Phase I trial

showing dose linear kinetics with half-life of 10 days and some anti-tumor

activity (Amgen)

LBY135 (agonistic Ab) DR5 Good anti-tumor activity in vitro and in vivo pre-clinical studies. Currently in

phase I trials (Novartis)

Lexatumumab (HGSETR2,agonistic Ab)

HGS-TR2J (agonistic Ab)

DR5 Phase I/Ib trials showing that lexatumumab can be administered safely and

in combination with chemotherapeutic agents. (Human Genome Science)

(205). HGS-TR2J was voluntarily suspended from clinical development

Apomab (agonistic Ab) DR5 Phase I trial showing dose proportional pharmacokinetics. Half-life

15–20 days. Currently initiations of phase II trial (Genentech) (206)

TRAIL-R1-5 (rhTRAIL variant) DR4/decoy receptors (?) Non-tagged, DR4-selective rhTRAIL. Induces apoptosis in DR4 responsive

cancer cell lines. HDACi sensitized primary CLL cells to DR4 mediated

apoptosis (207)

M271 (agonistic Ab) DR4 Induces apoptosis in TRAIL-sensitive cancer cell lines selectively through

DR4 receptor (203)

4HG, 4G7 (agonistic Ab) DR4 Induced apoptosis in vitro with cross-linking antibody. Anti-tumor activity in

colon cancer xenograft model (208)

2E12 (agonistic Ab) DR4 Induced apoptosis in vitro with cross-linking antibody (204)

Mapatumumab (HGS-ETR1) (agonistic Ab) DR4 Phase I – solid malignancies refractory to standard therapy, safely

administered up to 10 mg/kg

Phase Ib – combination therapy with paclitaxel and carboplatin (209)

Phase II – single treatment in NSCLC
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Table 3 |The efficacy of selective drugs involved inTRAIL sensitization (212).

Drugs Direct targets Indirect targets

Cancer type P -value,

FDR adjusted

Odds

ratio

k (l ) m (N ) Cancer type P -value,

FDR adjusted

Odds

ratio

k (l ) m (N )

Bortezomib Breast cancer 0.23 (0.0085) 4.55 4 (11) 1295 (16154) Breast cancer 0.045 (0.00102) 2.23 18 (93) 2127 (24375)

Glioblastoma 0.23 (0.011) 6.16 3 (11) 575 (12940) Lung cancer 0.047 (0.0021) 2.03 19 (92) 2002 (19592)

Diffuse large B cell

lymphoma

0.65 (0.046) 2.05 6 (11) 5432 (20387) Diffuse large B cell

lymphoma

0.069 (0.0059) 1.47 36 (92) 5432 (20387)

Valproic acid Glioblastoma 0.086 (0.0020009) 6.97 4 (13) 575 (12940) Diffuse large B cell

lymphoma

0.0037 (8.57e−05) 1.64 48 (110) 5432 (20387)

Breast cancer 0.41 (0.019) 2.96 5 (13) 1685 (12940) Breast cancer 0.41 (0.024) 1.90 12 (96) 858 (12940)

Breast cancer 0.44 (0.031) 4.23 3 (14) 1278 (25177) Breast cancer 0.41 (0.033) 1.68 15 (112) 1295 (16154)

Anisomycin Breast cancer 0.0104 (0.00023) 5.34 7 (26) 1034 (20387) Diffuse large B cell

lymphoma

0.00012 (2.86e−06) 1.42 137 (365) 5432 (20387)

Breast cancer 0.025 (0.0011) 4.86 6 (26) 973 (20387) Chronic lymphocytic

leukemia

0.00039 (1.80e− 05) 1.70 66 (365) 2200 (20386)

Astrocytic glioma 0.24 (0.018) 5.26 3 (20) 535 (18681) Breast cancer 0.0040007 (0.00036) 1.65 51 (345) 1180 (12940)

Ovarian cancer 0.0040007 (0.00038) 1.92 33 (345) 660 (12940)

Breast cancer 0.0040007 (0.00045) 1.62 52 (371) 2127 (24375)

Breast cancer 0.018 (0.0025) 1.72 32 (371) 1278 (25177)

Astrocytic gliomas 0.034 (0.00609) 1.97 18 (325) 535 (18681)

High-grade glioma 0.034 (0.0063) 1.52 40 (345) 1000 (12940)

Multiple myeloma 0.0403 (0.0082) 1.51 38 (365) 1416 (20387)

Breast cancer 0.043 (0.0099) 1.47 41 (352) 1295 (16154)

Doxorubicin Breast cancer 0.16 (0.0036) 3.55 6 (13) 1685 (12940) Diffuse large B cell

lymphoma

1.56e− 05 (3.56e−07) 1.52 116 (289) 5432 (20387)

Diffuse large B cell

lymphoma

0.19 (0.011) 2.11 9 (16) 5432 (20387) Chronic lymphocytic

leukemia

4.89e− 05 (2.22e−06) 1.88 58 (289) 2200 (20386)

Chronic lymphocytic

leukemia

0.19 (0.016) 3.15 5 (16) 1844 (18540) Breast cancer 0.083 (0.0057) 1.44 49 (263) 1685 (12940)

Trifluorothymidine Breast cancer 0.26 (0.0083) 6.48 3 (7) 858 (12940) Diffuse large B cell

lymphoma

6.04e− 16 (1.37e− 17) 1.70 210 (472) 5432 (20387)

High-grade glioma 0.26 (0.012) 5.56 3 (7) 1000 (12940) Chronic lymphocytic

leukemia

1.00e− 06 (5.02e−08) 1.80 90 (472) 2200 (20386)

Prostate cancer 0.43 (0.0307) 6.93 2 (6) 295 (6097) Breast cancer 1.00e− 06 (6.84e−08) 1.90 77 (473) 2127 (24375)

Breast cancer 0.0033 (0.000304) 1.79 42 (472) 1034 (20387)

Lung cancer 0.0067 (0.00076) 1.47 71 (477) 2002 (19592)

Breast cancer 0.0082 (0.0011) 1.69 40 (473) 1278 (25177)

Breast cancer 0.0082 (0.0014) 1.40 80 (445) 1685 (12940)

(Continued)
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that synergistic co-targeting of oncogenic and death receptor path-
ways can not only overcome melanoma resistance to different
anti-tumor agents in vitro, but can also promote pro-apoptotic
effects and inhibition of tumor angiogenesis in vivo (185). These
data collectively support that metastatic potential of cancer cells
can be a possible target for TRAIL sensitization.

THERAPEUTIC TARGETING OF TRAIL RESISTANCE
Although TRAIL has high specificity and therapeutic efficacy
against cancer cells, the mechanisms involved in TRAIL resistance
are not well elucidated. Therefore, recent research efforts have
focused on devising strategies to overcome TRAIL resistance in
cancer cells in the clinical setting. A prolonged exposure at high
concentrations of TRAIL might be required to overcome resis-
tance (186, 187). However, the short plasma half life of TRAIL
(7) due to rapid elimination through metabolism (6), achieving
prolonged exposure at high concentrations is difficult. Recombi-
nant TRAIL developed by Genentech (San Francisco, CA, USA)
and Amgen (Thousand Oaks, CA, USA) is a receptor agonist
that directly activates the functional death receptor TRAIL-R1 and
TRAIL-R2, and used as a targeted therapy for both hematological
malignancies and solid tumors. Pre-clinical studies have been per-
formed using recombinant rhTRAIL and have provided evidence
for the use of exogenous TRAIL for suppressing tumor growth
both in vitro and in vivo (188, 189). A recent study indicated that
the use of non-tagged version of rhTRAIL induces apoptosis in
malignant cells but not in normal cells (190). It is also proven
that non-tagged native rhTRAIL can reduce tumor growth with-
out damaging human hepatocytes in the chimeric mouse model
(191). Monoclonal antibodies targeting DR4 and DR5 have been
proven to be clinically effective for cancer treatment because they
can selectively bind to specific antigens and have longer half life as
compared to rhTRAIL ligands (188). In 2008, a study reported the
humanized DR5 agonistic MAb, CS-1008 generated from mouse
DR5 MAb TRA-8 through a complementarity-determining region
grafting (192) (Table 2). HGS-ETR1 (Mapatumumab; Human
Genome Sciences, Rockville, MD, USA) is a fully human agonistic
monoclonal antibody that binds TRAIL-R1, and it is in phase-II
clinical trial as a single agent in patients with non-small cell lung
cancer and colorectal cancer (193). Monoclonal antibodies target
distinct receptor expression profile in malignant cells, whereas sol-
uble TRAIL interacts with TRAIL-R1 and TRAIL-R2 as well as the
decoy receptors. Therefore, soluble TRAIL may either have a wider
therapeutic spectrum or a narrower and more unpredictable ther-
apeutic window compared to that of the highly specific antibodies
(194). The efficacy of selective drugs involved in TRAIL sensiti-
zation (Table 3) and survival profile of selective genes involved
in TRAIL sensitization (Table 4) have been also identified using
DRUGSURV and PPISURV respectively.

Administration of soluble TRAIL in animal models of can-
cer has shown significant antitumor effect without any systemic
toxicity. In in vivo studies, a trimerized (6) or a non-tagged
(7, 191) form of TRAIL has shown a good toxicity profile,
and organ toxicity might be expected at high doses of solu-
ble TRAIL. In TRAIL related cancer therapeutics, recombinant
soluble form of TRAIL, rhTRAIL (Dulanermin), the TRAIL R1-
targeting agonistic monoclonal antibody mapatumumab; and
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Table 4 | Survival profile of selective genes involved inTRAIL sensitization (212).

Gene Cancer type GENE (probe ID) P -value Effect sign

DDIT3 Breast cancer 209383_AT 2.4e-05 Negative

Lung cancer 209383_AT 0.00318 Negative

Breast cancer 11002 0.00765 Negative

Ovarian cancer 209383_AT 0.0326 Positive

Cervical cancer CG15021531 0.068 Negative

Astrocytic gliomas 956 0.0725 Negative

Colon cancer 209383_AT 0.0774 Negative

Lung cancer 209383_AT 0.0799 Negative

Bladder cancer ILMN_1676984 0.149 Negative

Breast cancer 209383_AT 0.232 Positive

Multiple myeloma 209383_AT 0.438 Positive

Breast cancer A_23_P21134 0.533 Positive

Breast cancer 22873 0.667 Positive

Chronic lymphocytic leukemia 209383_AT 0.701 Positive

Breast cancer 209383_AT 0.845 Positive

Chronic lymphocytic leukemia 209383_AT 0.869 Positive

p53 Breast cancer 201746_AT 0.00691 Positive

Multiple myeloma 201746_AT 0.0106 Positive

Breast cancer 211300_S_AT 0.0145 Positive

Diffuse large B cell lymphoma 211300_S_AT 0.0289 Negative

Breast cancer 211300_S_AT 0.0378 Positive

Cervical cancer CG11519508 0.0583 Positive

High-grade glioma 201746_AT 0.115 Negative

Lung cancer 18627 0.14 Negative

Breast cancer 1330 0.14 Negative

Lung cancer A_23_P26810 0.147 Negative

Breast cancer ILMN_1779356 0.158 Negative

Astrocytic gliomas 13689 0.165 Positive

c-myc Diffuse large B cell lymphoma 202431_S_AT 9e-04 Negative

Breast cancer 19825 0.0019 Negative

Meningioma 302 0.0091 Negative

Breast cancer 202431_S_AT 0.0181 Negative

Breast cancer A_23_P215956 0.0191 Positive

Lung cancer A_23_P215956 0.026 Negative

High-grade glioma 202431_S_AT 0.0416 Positive

Colon cancer 202431_S_AT 0.0576 Positive

Breast cancer 202431_S_AT 0.0622 Positive

Breast cancer ILMN_1680618 0.0656 Negative

Breast cancer 202431_S_AT 0.0666 Negative

Lung cancer 8 0.0813 Negative

Cflar Liposarcoma 209508_X_AT 0.000199 Positive

Diffuse large B cell lymphoma 211316_X_AT 0.000565 Negative

Chronic lymphocytic leukemia 237367_X_AT 0.00119 Negative

Lung cancer 239629_AT 0.00121 Positive

Multiple myeloma 211316_X_AT 0.00133 Positive

Breast cancer 209939_X_AT 0.00171 Negative

Breast cancer 208485_X_AT 0.00323 Positive

Cervical cancer CG18119407 0.00609 Negative

Breast cancer 210563_X_AT 0.013 Positive

Breast cancer 210563_X_AT 0.0138 Positive

(Continued)
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Table 4 | Continued

Gene Cancer type GENE (probe ID) P -value Effect sign

TNFRSF10B Breast cancer 209295_AT 0.000221 Positive

Diffuse large B cell lymphoma 210405_X_AT 0.00271 Negative

Lung cancer 210405_X_AT 0.0221 Negative

Breast cancer 210405_X_AT 0.0241 Positive

Multiple myeloma 209295_AT 0.0271 Positive

Ovarian cancer 209295_AT 0.0551 Negative

Breast cancer 210405_X_AT 0.062 Negative

Breast cancer 16038 0.0684 Positive

Chronic lymphocytic leukemia 210405_X_AT 0.0732 Negative

Liposarcoma 209295_AT 0.0776 Positive

High-grade glioma 209295_AT 0.0832 Negative

Breast cancer 3130377 0.0869 Positive

the TRAIL R2-targeting agonistic monoclonal antibodies cona-
tumumab, tigatuzumab, HGS-ETR-2 (lexatumumab), and DAB4
(PRO95780) against different types of cancer including non-
Hodgekin lymphoma and colorectal cancer have been advanced
to clinical development as chemotherapeutic agents (210). Mostly
non-small cell lung carcinoma and other solid cancers are treated
with a combination of rhTRAIL (Dulanermin) and paclitaxel, car-
boplatin and bevacizumab; mapatumumab and paclitaxel or car-
boplatin, as well as mapatumumab combined with gemcitabine or
cisplatin (211). These combinations are evolving as very effective
treatment against TRAIL resistant cancer cells.

CONCLUSION AND FUTURE PROSPECTS
In the last decade, search for novel cancer therapeutics has focused
on the goal of developing specific, targeted, and less toxic agents
for treatment of cancers. In this context, TRAIL as a promising
chemotherapeutic agent has attracted much attention, and is cur-
rently being evaluated in the phase II clinical trials. However, the
dogged pursuit of validating TRAIL as a specific anti-cancer agent
has further highlighted its limitations in the clinical setting. The
precise mechanisms involved in the escape from TRAIL-induced
cytotoxicity and development of TRAIL resistance in some can-
cer cells is still not well understood. Whether combination of
TRAIL receptor agonists with natural or synthetic TRAIL sensitiz-
ers will restore cancer cell sensitivity toward TRAIL is still an open
question (213). It is still not well-understood whether the cellular
processes alone or in combination can induce TRAIL resistance. It
is also not known whether different types of tumor undergo TRAIL
resistance through similar or specific mechanisms? The question
whether and how TRAIL resistance could be measured to monitor
therapy response in patients needs further attention. Pre-clinical
studies till date suggest that combination therapy with TRAIL
and chemotherapeutic drugs, natural compounds, or radiation
is undoubtedly a logical way forwards in devising rationalized
therapeutic regimens for TRAIL resistant cancers. However, effec-
tive therapeutic targeting of TRAIL resistance will essentially need
to focus on (1) development of strategies for increasing the half
life of TRAIL, (2) identification of suitable biomarkers through
pre-selection of patients responsive to rhTRAIL/agonist antibody
therapy, (3) development of novel synergistic combinations with

TRAIL and inhibitors of cell stress response proteins, and (4)
screening and identification of novel TRAIL sensitizers from FDA
approved drug libraries. In the future, combination therapies with
TRAIL would necessitate targeting the signaling pathways asso-
ciated with the self-seeding properties of each cancer along with
their varying pre-metastatic niches. However, given the complex-
ity of the TRAIL system, further studies in primary tumor cells
of diverse origin along with validation studies through syngenic
and xenograft mice models and clinical trials would be required to
develop personalized medicine on the basis of the TRAIL/TRAIL
receptor pathway.
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