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Abstract: Physics-informed machine learning is emerging through vast methodologies and in various
applications. This paper discovers physics-based custom loss functions as an implementable solution
to additive manufacturing (AM). Specifically, laser metal deposition (LMD) is an AM process where
a laser beam melts deposited powder, and the dissolved particles fuse to produce metal components.
Porosity, or small cavities that form in this printed structure, is generally considered one of the
most destructive defects in metal AM. Traditionally, computer tomography scans measure porosity.
While this is useful for understanding the nature of pore formation and its characteristics, purely
physics-driven models lack real-time prediction ability. Meanwhile, a purely deep learning approach
to porosity prediction leaves valuable physics knowledge behind. In this paper, a hybrid model that
uses both empirical and simulated LMD data is created to show how various physics-informed loss
functions impact the accuracy, precision, and recall of a baseline deep learning model for porosity
prediction. In particular, some versions of the physics-informed model can improve the precision of
the baseline deep learning-only model (albeit at the expense of overall accuracy).

Keywords: laser-based additive manufacturing; deep learning; in situ porosity detection; data fusion;
inspection and quality control; sensing; monitoring and diagnostics

1. Introduction
1.1. Background of Laser Metal Deposition and Challenges

Laser metal deposition (LMD) is an additive manufacturing (AM) process that uses a
laser beam to melt powder as it is deposited and fuses those dissolved particles to build
metal components. LMD is capable of producing a functional part directly from a three-
dimensional (3D) computer aided design model, and is able to do so using more than one
material simultaneously [1]. LMD has the advantages of a very high material build-up
rate, 3D surface adaptability, and gradient layers. It can reduce the waste created during
production, and it suits the production and repair of comprehensive and customized
parts [2]. In one successful case, LMD printed a helicopter engine combustion chamber
and achieved wall density of more than 99.5% throughout the part [3]. For these reasons,
LMD is used in the production of high value-added parts in the aerospace, automotive,
energy, petrochemical, and biomedical industries [4].

The existence of porosity, or small cavities that form in this printed structure, is
generally considered one of the most significant quality issues in metal AM parts. Pores
may form from processing defects (e.g., “lack of fusion” porosity due to insufficient energy
input and “keyhole” porosity that occurs due to overheating) or raw material defects (e.g.,
“trapped gas” porosity inherited from the powder feedstock and “soluble gas” porosity).
These tiny pores can undermine the integrity of the final structure by reducing static
mechanical properties and causing significant scatter of fatigue. Various models and

Sensors 2022, 22, 494. https://doi.org/10.3390/s22020494 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-7565-3052
https://orcid.org/0000-0001-8433-6326
https://doi.org/10.3390/s22020494
https://doi.org/10.3390/s22020494
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s22020494
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22020494?type=check_update&version=1


Sensors 2022, 22, 494 2 of 18

techniques have been developed to improve the AM process and to minimize porosity.
For example, Oskolkov et al. developed an indirect temperature measurement method to
improve mechanical properties of printed materials by maintaining control of extruded
material temperature using high-frequency induction [5]. They also developed a regression
model to predict the amplitude of the desired signal (dimensionless units) using nozzle
temperature and magnetic field strength. Other existing methodologies are focused on
tracking general process changes via statistical process control [6], in situ monitoring
of melt pool images to understand microstructure formation [7], tracking porosity via
thermal distribution [8], or modeling layer-wise spatial distribution [9]. However, process
instability is difficult to eliminate, making it impossible to avoid porosity altogether.

1.2. Physics Models in LMD

Physics-based models that do not incorporate deep learning strategies can help under-
stand the nature of pore formation and its characteristics. For example, theoretical finite
element models using Goldak’s moving heat flux due to a moving heat source are beneficial
to simulate thermal history to help form a prediction on the distortion of the process [10].
Goldak’s model can provide insight on thermal processes and how it impacts mechanical
and microstructural properties of AM materials. For example, it can benefit the study that
accounts for realistic microstructural development on deformation from grain structure
evolution by providing insight on thermal processes [11]. However, these models have
several limitations. First, the model parameters are difficult to calibrate due to incomplete
physics-related data. Moreover, simulated models cannot capture the realistic situations of
the uncertainty of the complex process and are infeasible for real-time applications.

The AM process is complex, as when the deposit is melted and becomes liquid,
convection flow occurs, causing alloying element vaporization and increased thermal
gradients [12]. In LMD, the laser beam melts a stream of material feedstock, forming melt
pools which then solidify due to cooling as the laser continues its path. After solidifying,
the material goes through more heat cycles as new layers are built on top of previously
solidified layers. During melt pool formation, porosity can form and can be monitored
using temperature profiles and geometry. However, aspects such as the laser–particle
interaction, hydrodynamic fluid flow of the melt pool, and solidification are also important
to consider. Indeed, solidification can be impacted by thermal behavior metrics such as
cooling rates and temperature gradient pool geometry [13]. The simulation model used
in our paper does relate information about the laser–particle interaction, fluid flow, and
solidification impacting melt pool geometry during the build that the pyrometer sensor
data alone cannot capture.

Apart from thermal behavior, process-induced porosity can occur due to microstruc-
ture grain evolution. Two ways to simulate grain evolution are using the phase field method
and cellular automaton. The phase field method uses a phase field variable and governing
physics equation to describe the state of material as a function of position and time [14]. By
incorporating knowledge of the state of the material (liquid or solid) at a specific location,
realistic results occur for simple microstructure shapes using simple numerical methods,
yet computing time is very long. The cellular automaton uses the physical knowledge
of nucleation and grain growth to study grain evolution while solidification occurs in
the printing process [15]. Yet, ref. [15] used a weak version of the cellular automaton
coupled with finite element modeling by neglecting nucleation influence. This model also
neglected solid state phase change and recrystallization. While the cellular automaton is
computationally more efficient, the phase field method captures finer information about
the grain structure.

Other works showed qualitative [16] and quantitative [17] acceptance between simu-
lated and experimental outputs by combining a 3D cellular automaton with finite volume to
predict grain structure. In all cases of the finite element, finite differences, phase fields, and
cellular automaton models, computation time seems to be long if the goal is fine accuracy,
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while assumptions, simplicity, and negligence of the process result in faster results but
lower accuracy.

1.3. In Situ Monitoring Techniques in LMD

A review of in situ monitoring and metrology found that camera-based sensors that
monitor the powder bed condition, geometrical accuracy, and build height, and sensors
such as pyrometry and IR cameras that monitor temperature, are limited for in situ closed-
loop process control due to existing licenses and harsh environments. In situ methods only
show information about the component surface, and are not yet able to identify material
porosity from surface topography [18]. There is a tradeoff between spatial capability
(increased information) and time penalty (increased scan time results in longer production
time) to understand one aspect of integrating non-destructive evaluations methods for in
situ monitoring in AM [19].

These in situ monitoring techniques are integral to understanding the microstructural
development and are used to create models that predict the process-induced porosity.
In [20], the material ratio curves were studied to differentiate AM topographies and
correlate volume with open surface pores. Currently, the in situ monitoring techniques
help relay information to the models but do not identify porosity in real time. Instead, the
models are currently being studied to identify the porosity with some accuracy, and the
next step is to allow the in situ monitoring sensors to relay information to the printing
system to perform real-time fixes.

The LMD process, like other AM processes, has the potential to equip multiple sensors
including thermocouples, infrared temperature sensors, and accelerometers. While sensors
are powerfully accurate, cheap, and can provide real-time insight into the printing process,
they can be prone to errors. With that, physics-based data can be combined with sensors
through various methods. One can use simple domain knowledge that the temperature
observed by a sensor should always be positive, for example, and if it were not, the custom
loss function would penalize that incorrect sensor reading. In our work, we combine
the pyrometer-based sensor data that dynamically observe the thermal behavior with
numerical approximations of partial differential equations (PDEs) that statically predict
thermal behavior of the process to help predict the process-induced porosity and negate
any inaccurate sensor readings. A proton transfer reaction time-of-flight mass spectrometry
sensor monitored in real-time the concentration of compounds and helped to build a
classification model to predict if concentrations exceeded a limiting value [21]. However,
ref. [21] admits it falls short in understanding the long-term effects of the sensor’s lifetime
since it studied the sensor only for five weeks (i.e., sensor drift can occur, and re-occurrence
of electrochemical sensors can be affected in the long run).

Hence, incorporation of physics-based knowledge can improve a model’s predictive
performance by serving as a check on what sensors collect in the case said sensors collect
inaccurate measurements. Many works show sensory applications to the incorporation of a
physics-informed machine learning (PIML) model. One challenge of integrating PIML into
multimodal sensor data is matching modalities of different sensors. In one way, Guo et al.
appended finite element analysis (FEA)-simulated data to a convolutional neural network
(CNN) model that incorporated thermal images from sensors [22]. In another way, Gawade
et al. matched the FEA-simulated melt pool data to thermal melt pool images by similar
location and time [23]. This paper incorporates FEA data into the custom loss functions of
the CNN model, which takes the pyrometer sensor-based data as its baseline model data.

1.4. Machine Learning-Based Models in LMD

To deal with such uncertainties, machine learning and deep learning models that
utilize the sensor data collected during the real manufacturing processes can be developed.
These models can efficiently handle complex data (with high dimensionality, heterogeneity,
large volume), and can be potentially used to predict porosity accurately during the LMD
process. For example, Khanzadeh et al. developed a porosity prediction method based on
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the temperature distribution of the top surface of the melt pool by using self-organizing
map clustering [8]. Khanzadeh et al. used morphological characteristics of the melt pool
boundary to investigate the relationship between the melt pool characteristics and the
defect occurrence in an as-built AM part [24]. Tian et al. developed a deep learning-
based data fusion method for in situ porosity detection in laser-based AM [22]. Yang et al.
developed a CNN model to investigate how the melt pool can be characterized in real time
for feedback control of a laser powder bed fusion AM process [25]. However, these purely
deep learning models use black-box methods that do not incorporate valuable physics
knowledge. They also must be carefully trained with available experimental data, and
often require a lot of data to be trained upon. Such models are difficult to interpret, apply,
or generalize for a broader set of process conditions [26].

1.5. PIML Models in AM

Recently, an emerging research area that integrates the physics-informed (or physics-
based, physics-driven, physics-guided) models and machine learning models is gaining
increased interest [26–30]. These methods combine the strengths of machine learning and
physical principles to decrease uncertainty from PDEs, data (noise), and learning models
themselves (generalizing error) [27]. Examples of physics-guided ML models used in
engineering and environmental systems are uncertainty quantification, inverse modeling,
parameterization, and forward solving PDEs [28]. It has also been shown that physical data
or constraining the loss function based on physical constraints helps to construct effective
physics–deep learning hybrid models [29,31]. Deep learning models seek to minimize loss
functions for a given input to evaluate the discrepancy between the true and predicted label
output. Thus, a physics-based model and data-driven model are well suited to enhance
each other, forming a PIML model.

In the context of AM in particular, PIML models can be developed to study several
problems associated with process and product quality, such as melt pool characteristics
prediction and porosity analysis. For example, Zhu et al. developed physics-informed
neural networks to predict temperature and melt pool fluid dynamics for metal AM [32].
Liu et al. developed a PIML model to analyze the porosity in laser powder bed fusion
AM [30]. Recent research has also shown that incorporating physical data into the machine
learning model can enhance porosity-predicting models for LMD processes. For example,
Guo et al. developed a physics-driven deep learning model for the process–porosity causal
relationship and porosity prediction with interpretability [26]. Gawade et al. developed
simulated and empirical data-driven insight into supervised learning for porosity pre-
diction [23]. In these works [23,26], the physics-informed insights are integrated into the
features that are used in the machine learning models.

These models, however, do not integrate said physics-informed insights into the
architecture of the machine learning model itself. This paper is centered on the weakly
explored notion of incorporating physics-informed insights into the architecture of a
deep learning model via the loss function. The design of the loss function is another
important component in the design of machine learning models [33,34]. Different from
previous the works [23,26], this paper focuses on the capability to combine simulated
physical data with experimental data in the form of physics-informed custom loss functions
built into deep learning models in the LMD process. This paper aims to explore the
impact of several physics-informed loss functions on a baseline deep learning-only porosity
prediction model.

The rest of the paper is organized as follows: Section 2 explains the empirical and
simulated data acquisition process, Section 3 details the method used to construct a baseline
deep learning-only model and physics-informed custom loss functions, and Section 4
explores the results and discussion, including a breakdown of training, validation, and
testing data set splits, data pre-processing and augmentation, and model performance.
Section 5 ties these together, in conclusion, highlighting key outcomes.
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2. Data Description

Both simulated and experimental data of the melt pool temperature are used in this
study. As mentioned earlier, these two categories of data can complement each other. While
the sensor data from the experiment can capture the environmental factors and uncer-
tainties, the simulation models can capture more information about the complex printing
process. However, the sensors themselves can be prone to systematic and random errors,
and the sensors’ accuracy depends on the sensors’ calibration and measurement level.
Therefore, it is also important to capture the information from physics-based simulation to
negate errors from sensor information.

2.1. Experimental Data via Pyrometer

In this study, we use the melt pool images taken during the LMD process for printing
60-layer Ti-6Al-4V thin-walled structures, as is used in [35]. These data are measured by a
dual-wavelength pyrometer sensor, which is a part of the OPTOMEC Laser Engineered
Net Shaping (LENS) 750 printer. The setup of the system including the pyrometer is shown
in Figure 1. The pyrometer is mounted above the build plate, outside the chamber, and it
monitors the melt pool temperature in a vertical direction. The data of the pyrometer are
output to comma separated value (CSV) files, each of which contains a 752 × 480 (width ×
height) matrix of temperature values. In total, 1564 melt pool images are captured by the
pyrometer.

After the part is printed, X-ray computer tomography (CT) is used to catch its interior
features, specifically the melt pool porosity, in a non-destructive manner [8]. The measured
porosity is used to determine the part quality. The X-ray CT system used was Skyscan
1172 with a 1 µm resolution. However, the magnification in this case was a pixel size
set to 3 µm. It was attached vertically on a stage and rotated a full 360 degrees. The
X-ray beams transferred 100 KV voltage and 100 µ current. For further parameter settings
and the software package used for the CT scan and image reconstruction, please refer
to Experimental Setup section of [6]. The micro-CT can detect pores at least 0.05 mm in
diameter and so pores of diameters ranging from 0.05 mm to 0.99 mm were identified [8].

The CT scan returns an output of the pores as a circumscribed spherical shape with
approximate diameter sizes and their locations. Precisely, the CT scan captured pores with
an approximate diameter of 0.05 mm or greater at specific locations in the printed part. The
pyrometer captures melt pool images in the printed part at specific locations. If a specific
location (in a part containing a pore with an approximate diameter greater than 0.05 mm)
captured from a CT scan matches a specific location (in part of a melt pool image) captured
from the pyrometer, this is an indication that a pore is formed at this location, and then
that melt pool image is labeled as a true “bad” image (containing a pore). The CT scan
cannot identify pores with an approximate diameter less than 0.05 mm. As a result, the
CT scan does not capture a location with pores with an approximate diameter less than
0.05 mm. In that case, any remaining melt pool images are labeled as true “good” melt
pool images. This is because any remaining melt pool images’ locations captured by the
pyrometer do not match the locations captured from the CT scan, meaning that no pores
are formed at those locations. In sum, a melt pool image with the “bad” label indicates that
there is a pore of size 0.05–0.99 mm at the location where the melt pool is captured; a melt
pool image with the “good” label indicates that there is no pore or a pore of size less than
0.05 mm at the location where the melt pool is captured. Note that, if there is a pore of less
than 0.05 mm at a location, the melt pool captured at that location is labeled as “good”. If
the prediction for that melt pool image is also “good”, then it is a correct classification; if
the prediction is “bad”, then it is a false positive.
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Figure 1. Setup of the pyrometer [35].

2.2. Physics-Based Data via FEA

FEA is used to simulate the heat behavior of the process and predict print characteris-
tics in the simulated environment. FEA uses numerical approximations to solve analytical
laws of physics that are both space and time dependent. During a print, conduction within
the part and convection and radiation between the part and environment release thermal
energy. Those thermal gradients can impact stresses and eventual distortion of the print.
The moving heat source model within the FEA simulation captures the thermal gradients.
In particular, the simulation meshes, activates, and deactivates elements at individual time
steps to simulate the thermal behavior of the printing process [36]. The experimental pro-
cess parameters are used in the simulation. The detailed problem statement and boundary
conditions can be found in [26].

The simulated data captures the three-dimensional thermal behavior of the printing
process that the pyrometer sensor (limited to information from two-dimensional images)
cannot. The FEA model helps provide thermal behavior of the melt pools from numerical
approximations using physics laws of the printing process. If there are any data collection
errors from sensors or processing, the FEA model data incorporated into the custom physics
losses will help provide more information to the model of the printing process’ temperature,
and as a result, process-induced porosity. However, the simulation assumes constant gas
levels in printers, and thus it cannot capture the actual thermal behavior impacted by events
in the chamber (e.g., constantly changing oxygen and argon gas levels, hydrodynamic flow
influence, and laser–particle interaction, as well as coupled heat transfer) that can affect
the thermal behavior of the process [36]. Nevertheless, the simulation provides a proxy
of how the flow influence, coupled heat transfer, and laser–particle interaction will affect
the complex melting and solidification process [12]. It is integral to add these numerical
approximations of the FEA into the experimental thermography to understand the complex
AM process.

Finally, an algorithm augmented simulated and experimental data to have higher
predictive power. Precisely, the simulated melt pools were matched to experimental melt
pools based on sharing a similar time and location of print. How the FEA model’s melt
pools incorporated porosity is explained in [23].

3. Method

The overall framework of the proposed method is shown in Figure 2. Its top left
portion (in-process pyrometer sensing) and bottom left portion (finite element simulation)
are explained in Sections 2.1 and 2.2 , respectively. After the data pre-processing steps de-
scribed in Section 2, several deep learning models with various methods of implementation
(MoIs), as shown in the top right portion of Figure 2, with various custom loss functions
are developed, as shown in bottom right portion of Figure 2. First, a deep learning-only
model without any physics-informed custom loss function is trained with only the standard
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categorical cross-entropy loss function Lcee (which will be explained in Section 3.2) and
used as a baseline. The baseline is compared to 3 different MoIs that help to train the
physics-informed convolutional neural network (PICNN) model with the first custom
loss function (i.e., Lphy,1). In the first MoI, the custom loss function is used for all labeled
images in the training set, while in the second MoI, the custom loss function is used for
only the incorrectly labeled images (yi is a true label of image i, and i = 1, .., n, where n is
the number of incorrectly labeled images), while in the third MoI, the custom loss function
is used for incorrectly labeled “bad” images only (yij is a true label of true “bad” image
ij, and ij = 1, .., nb, where nb is the number of incorrectly labeled true “bad” images). The
best MoI is selected based on the validation loss and other performance metrics. Finally, in
Figure 2, the best MoI is used to train the PICNNs with 5 different custom loss functions
(i.e., Lphy,1, ..., Lphy,5), and the impact of custom loss functions on the performance of the
models is investigated. Through all of Figure 2, the training performance is evaluated by
comparing the predicted porosity labels with true porosity labels.

Next, we introduce the baseline deep learning-only model, the five custom loss
functions, and the three MoIs used in this work.

Figure 2. A data fusion for MoI framework that uses matched data from experimental melt pool
images with labeled porosity and simulated melt pools to train deep learning models with physics-
informed custom loss functions using three different MoIs.

3.1. Base CNN

First, a baseline deep learning-only model is constructed based on a CNN. CNNs can
effectively reduce many parameters without compromising quality and are well suited
to the given image classification task, where the images are high dimensional data. This
baseline model uses the same PyroNet model as [22]. In particular, a VGG16 architecture
[37] is chosen as the foundation of this model for its small 3 × 3 convolution cores, which
increase the depth of the network and allow it to identify more complex patterns. Moreover,
the VGG16 architecture has a relatively small number of parameters, a characteristic that
decreases computational time.

The CNN model accepts RGB images of pyrometer melt pools with a resolution of
224 × 224, “good” or “bad”, for each image. The VGG16 model (Figure 3) architecture
contains 13 convolutional layers (separated into 2 groups of 2 followed by 3 groups of
3), which extract features from the input images and have trainable weights. The kernel
size, stride, and pad of all convolutional layers are 3, 1, and 1, respectively. The model
also contains 5 max-pooling layers (1 after each group of convolutional layers), which
create a feature map of the most prominent features by selecting the maximum element
of a given region. The kernel size, stride, and pad of the max pooling layers are 2, 2,
and 0, respectively. These are followed by a flatten layer, which transforms the data
matrix into a one-dimensional array given to the fully connected layers. Next, two 4096-
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channel fully connected layers create a one-dimensional feature vector. These are fully
connected, followed by a dropout layer with a dropout rate of 0.5 (which removes some of
the parameters) to prevent overfitting. Aside from the max pooling and dropout layers, all
of the layers above use a rectified linear unit (ReLU) activation function). Finally, a third
fully connected layer maps the results of the model up until that point to an interpretable
classification label (in this case, “good” or “bad”). This final fully connected layer uses a
softmax activation function. Figure S1 shows a summary of the hyperparameters used in
this model and in the PyroNet model.

Figure 3. The VGG16 architecture modified for the PyroNet [22].

3.2. Physics-Informed Custom Loss Functions

This work explores the impact of incorporating five physics-informed loss functions
into the baseline deep learning model. Let Lphy,i (i = 1, ..., 5) be the ith loss function and N
be the number of images. The five loss functions are represented in Equations (1) to (5),
respectively.

Lphy,1 = Lcce(ytrue, ypred) +
1
N

N

∑
i=1

ReLU(Ri) (1)

Lphy,2 = Lcce(ytrue, ypred) +
1
N

N

∑
i=1

[
ReLU

(
li
wi
− (1 + δ)

)
+ ReLU

(
(1− δ)− li

wi

)]
(2)

Lphy,3 = Lcce(ytrue, ypred) + λt ×
1
N

N

∑
i=1

ReLU
(

ε̂ti −
δt − µt

σt

)

= Lcce(ytrue, ypred) + λt ×
1
N

N

∑
i=1

ReLU
(

εti − δt

σt

) (3)

Lphy,4 = Lcce(ytrue, ypred) + λr ×
1
N

N

∑
i=1

ReLU
(

εri − δr

σr

)
(4)

Lphy,5 = Lcce(ytrue, ypred) + λt ×
1
N

N

∑
i=1

ReLU
(

εti − δt

σt

)
+ λr ×

1
N

N

∑
i=1

(
εri − δr

σr

)
(5)

where Lcce(ytrue, ypred) = −∑C=2
i=1 tilog(si) = −t1log(s1)− (1− t1)log(1− s1) denotes the

loss calculated by the standard categorical cross-entropy loss function, which is part of
the Keras library. On its own, this categorical cross-entropy loss function measures the
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discrepancy between the true (or actual) label for each image (ytrue) and the label assigned
to each image by the model (predicted image or ypred). The categorical cross-entropy loss
accounts for C, the number of classes the images are being sorted into (e.g., “good porosity”
and “bad porosity”), ti is a tensor containing the true labels for all of the images in the
batch, and si is a tensor containing the predicted labels for all of the images in the batch. In
our case, it follows that t1 and s1 are tensors containing the true labels and predicted labels
for Class 1, respectively. Moreover, (1− t1) and (1− s1) are tensors containing the true
labels and predicted labels for Class 2, respectively. To be clear, the usage of “class” here
refers to the general categories of “good porosity” and “bad porosity” that images may
be sorted into, while the usage of “label” refers to the specific class assigned to a single
given image.

In Lphy,1, Ri := Tmeas
i − Tsim

i is the residual maximum melt pool temperature (i.e., the
difference between the measured (empirical) maximum melt pool temperature Tmeas

i and
the simulated maximum melt pool temperature Tsim

i ) for image i. As mentioned above,
“keyhole” porosity is a type of porosity defect that occurs due to the melt pool overheating
during the LMD process. To target and identify instances of this type of porosity, Lphy,1
penalizes instances where the observed (empirical) maximum melt pool temperature is
greater than the simulated (ideal) maximum melt pool temperature (where the usage
of the term “penalty” refers to an increase in loss). Expressly, residual maximum melt
pool temperature Ri of each image i creates a tensor. Subsequently, a rectified linear unit
(ReLU) activation function removes any negative values of Ri, leaving only the values
corresponding to images where the melt pool overheating occurs. The mean of these values
is then added to the loss function.

In Lphy,2, li and wi are the empirical melt pool length and width for image i, respec-
tively. Furthermore, Lphy,2 penalizes any instance in which the empirical length-to-width
ratio of a given melt pool deviates from the (ideal) simulated length-to-width ratio by more
than δ. As the simulated length-to-width ratio is 1 for every melt pool, this simply means
that any empirical length-to-width ratio between 1− δ and 1+ δ is filtered out by the ReLU
activation function after the calculations li

wi
− (1 + δ) and (1− δ)− li

wi
. When the empirical

melt pool length-to-width ratio falls outside of these bounds, the amount that it exceeds
the corresponding bounds (e.g., if the empirical melt pool length-to-width ratio for a given
image is 1.2 and δ = 0.1, then the entry for that image in the tensor would be 0.1) leaves a
tensor of values. The mean of these values is added to the loss function. The simulated
length-to-width ratio provided by the FEA model is 1 for every melt pool from the data
source which is a current limitation provided by the simulated data source. The simulated
model’s data can be improved to capture more realistic situations of the differing length
and width for a given melt pool as they may not always be the same. In experiments, the
length-to-width ratio will differ from 1 for each melt pool. This ratio can be manipulated to
adjust to true situations for future study. The idea behind tracking the ratio is that there
may be a specific ratio (resulting from an odd-sized melt pool from either a too-large width,
small length, or vice versa) that might result in an unhealthy melt pool that could cause a
pore to develop.

In Lphy,3, λt is the coefficient scaling temperature-informed term, and εti and ε̂ti are the
relative errors between the empirical maximum melt pool temperature and the simulated
maximum melt pool temperature for image i before and after normalization, respectively.
Moreover, Lphy,3 penalizes any instance in which the relative error εti exceeds a threshold
δt (before normalization). The relative error before normalization, εti , is calculated as
εti = |Ri/Tsim

i |. Then, the normalized percent error for each melt pool image ε̂ti can be
calculated as ε̂ti = (εti − µt)/σt, where µt and σt are the average and standard deviation of
the percent errors for all images, respectively. Correspondingly, a ReLU activation function
that filters out any instances in which the normalized percent error does not exceed δt can
be created, as shown in Equation (3).

In Lphy,4, λr is the coefficient scaling length-to-width ratio-informed term, and εri

and ε̂ri are the relative errors between the empirical melt pool length-to-width ratio and
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the simulated melt pool length-to-width ratio for image i before and after normalization,
respectively. Moreover, Lphy,4 penalizes any instance in which the relative error εri exceeds
a threshold δr (before normalization). The relative error before normalization, εri , is
calculated as εri = |(

li
wi
)− 1|, as the simulated melt pool length-to-width ratio is always

1. Then, the normalized percent error for each melt pool image can be calculated as

ε̂ri =
(εri−µr)

σr
, where µr and σr are the average and standard deviation of the percent

errors for all images, respectively. Correspondingly, a ReLU activation function filters
out any instances in which the normalized percent error does not exceed δr, as is shown
in (4). Please note that the principal difference between Lphy,3 and Lphy,4 is that the former
penalizes instances in which the maximum melt pool temperature exceeds the threshold,
while the latter penalizes instances in which the melt pool length-to-width ratio exceeds
the threshold.

Finally, Lphy,5 combines Lphy,3 and Lphy,4 to take both the simulated and empirical
maximum melt pool temperature as well as the simulated and empirical measures of melt
pool length and width into account.

In this study, the threshold values in Equations (2) to (5) are set as δ = δt = δr = 0.1.

3.3. Methods of Implementation (MoIs)

After the physics-informed custom loss functions are defined, they are implemented
by using three different MoIs.

The first MoI replaces the standard categorical cross-entropy function used for the
baseline deep learning-only model (i.e., Lcce(ytrue, ypred)) with one of the physics-informed
custom loss functions described above in Equations (1) to (5). In other words, the first MoI
adds physical data to the loss for every image during training.

For the second MoI, the training data set is run through the model once to obtain a
set of predicted labels for the images. A table or a dataframe (such as Figure S2) is created
which includes the predicted probability that an image belongs to the “good porosity” class,
the predicted probability that an image belongs to the “bad porosity” class, the predicted
label (which is binary—0 for the “good porosity” class or 1 for the “bad porosity” class),
the true (binary) label, and the normalized relative errors between the empirical maximum
melt pool temperature and the simulated maximum melt pool temperature. For example,
Figure S2 contains the physical data used in Lphy,1. Then, the model is trained. For each
image it evaluates, if the predicted label does not match the actual label, the dataframe
is used to identify the physical data corresponding to that image. These physical data
are then incorporated into the loss function using one of the physics-informed custom
loss functions. However, the standard categorical cross-entropy function is active if the
predicted label and true label match. Through this process, this second MoI seeks to mimic
the behavior of the standard categorical cross-entropy function, for which the loss increases
whenever the true and predicted labels for an image do not match.

While the third MoI utilizes a table containing the same elements as the second,
instead of targeting images for which the true and predicted label do not match, it only
targets “bad” images that the model incorrectly labels as “good”. In other words, for each
image the model evaluates, if the predicted label is “good”, but the true label is “bad”,
the table identifies the physical data which correspond to that image. These physical data
are then incorporated into one of the custom loss functions. However, in any other case,
the standard categorical cross-entropy function is used. Through this process, the third
MoI seeks to mimic the behavior of the standard categorical cross-entropy function while
also shifting particular focus towards correctly identifying the images that contain the
porosity defects.

4. Results
4.1. Training, Validation, Testing Splits

To properly train and assess the model, each image has a distinct porosity class for the
model to predict. The labeling procedure described in Section 2.1 results in 1486 “good”
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labeled images, 71 “bad” labeled images, and 7 images that could not be labeled. Those
unlabeled images are discarded from the analysis henceforth. Figure 4 provides an example
of a “good” image as indicated by a spread of temperature distribution (color ranges from
red to green) and a “bad” image indicated by a very hot temperature distribution (mostly
red) for the melt pool. In Figure 4, the scales of the x-axis and y-axis refer to the pixel row
and pixel column number, respectively. The legend refers to a subset of the 0–255 RGB
intensity value color scale; the lowest value of this subset is 150 (corresponding to 0 ◦C ) and
the highest is 255 (corresponding to 2107 ◦C). The observed melt pool temperatures ranged
from 0–2107 ◦C. Higher RGB intensity values correspond to higher melt pool temperatures.
The CT scan helps to indicate the location of the part containing identified pores. These
locations were matched to the melt pool image locations. While the CT scan provides the
pore location by identifying pores, the melt pool images that match the pore locations
reveal the temperature distribution that result in porous melt pools.

Figure 4. An example of a “good” pyrometer image (left) and a “bad” pyrometer image (right).

Training and assessing the performance of a CNN requires sorting images into a
training set and a test set. In addition, a portion of the training set is used as a validation set
to help carry out model selection by evaluating the accuracy of the model after each training
epoch, while the test set is used to assess the performance of the model selected from the
validation set on unseen data. The 1557 pyrometer images are therefore randomly sorted
into a training set containing 1237 “good” and 59 “bad” images and a test set containing
249 “good” and 12 “bad” images. In the current state, bias during training will occur since
there is an imbalanced data set (there are a lot more “good” images than “bad”). To fix this
imbalance, the “bad” images from the training set are augmented to create additional “bad”
images (as will be described in Section 4.2). The final training set contains 1237 “good” and
1237 “bad” images. A validation set consisting of 15% of the images in the training set
(185 “good” and 185 “bad” images) is then randomly portioned out.

4.2. Data Pre-Processing and Augmentation

Each empirical melt pool CSV file is converted to a grayscale image using OpenCV,
an open-source Python library for computer vision and machine learning. Each pixel
within each image scales to a value between 0 and 255. Next, OpenCV’s minMaxLoc
function locates the maximum temperature (denoted by the highest value pixel) for each
melt pool (each grayscale image). The images are cropped into 224 × 224-pixel squares
centered around the maximum temperature location. The crop allows OpenCV to tailor the
images to the proper input size for the VGG16 CNN architecture and remove extraneous
background pixels. The “jet” colormap is subsequently used to pseudocolor the images,
converting them from grayscale to RGB format.

As is mentioned in Section 4.1, there are significantly more “good” images in the
training data set (1237) than “bad” images (59). The “bad” images from the training set
are augmented to create additional data to remedy this class imbalance and minimize bias
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during model training. For 57 of the 59 original “bad” images, 20 other images are created
by randomly flipping the images horizontally, vertically, or both and altering the brightness
with a random value in the range [0.7, 1.3]. For each of the two remaining original
“bad” images, data augmentation creates 19 additional images using the aforementioned
bootstrapping methods. This process results in 1237 different “bad” images, the same as
the number of “good” images in the training data set. Figure 5 shows examples of these
augmented images.

Figure 5. An example of a “bad” pyrometer image (left) and the 20 additional images created from it
via data augmentation methods (right).

4.3. Results

Three metrics assess the performance of each version of the model: accuracy, weighted
average precision, and weighted average recall. These metrics capture the effectiveness of
the network in an intuitive fashion. In particular, a weighted average of both the precision
and recall values is used to account for the class imbalance in the test set (which is made
up of 95% “good” images and 5% “bad” images). Each metric uses the true porosity labels
measured by micro-CT and the predicted porosity labels generated by the model as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
× 100 (6)

Precision (weighted average) = (B× TP
TP + FP

+ G× TN
TN + FN

)× 100 (7)

Recall (weighted average) = (B× TP
TP + FN

+ G× TN
TN + FP

)× 100 (8)

where B and G are the percentages of the data set comprised of “bad” and “good” images,
respectively. Note that the “bad” porosity class is positive, and the “good” porosity class is
negative. Therefore, in Equations (6) to (8), TP denotes a true positive, or the number of
correctly identified “bad” images. Similarly, TN denotes a true negative, or the number of
correctly identified “good” images. Likewise, FP denotes a false positive, or the number of
instances of the model predicting that the label of a “good” image is “bad”. FN denotes a
false negative, or the number of instances of the model predicting that the label of a “bad”
image is “good” [26]. Live plots keep track of the accuracy and loss of the model after each
training epoch.

Let PICNNi (i = 1, ..., 5) be the PICNN that uses Lphy,i as the loss function. For each
training session, the model trains for 100 epochs but is stopped early if the validation loss
does not improve for 50 consecutive epochs. Furthermore, the learning rate is set to 0.001,
the batch size is set to 16, and the optimizer used is the stochastic gradient descent method.
This small learning rate and batch size are selected to optimize accuracy, as decreasing the
learning rate and batch size are standard techniques for enhancing model performance.
Google Colab, which uses a 12 GB NVIDIA Tesla K80 GPU, runs all training sessions.
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The best weights (based on lowest validation loss) from each training session generate
predictions for the training and validation data sets.

First, PICNN1 is trained via each of the three MoIs (see Section 3.3). In brief, the first
MoI involves adding physical data to the loss for every image during training, the second
MoI involves adding physical data to the loss only if the predicted label does not match
the true label for a given image, and the third MoI involves adding physical data to the
loss only if the predicted label is “good” but the true label is “bad” for a given image.
Table 1 shows the accuracy, weighted average precision, and weighted average recall for
both the training and validation data sets for PICNN1 when trained via each MoI. Table 1
also shows the number of true positives, true negatives, false positives, and false negatives
concerning the training and validation data sets for PICNN1 when trained via each MoI.

Table 1. Performance metrics for PICNN1 with respect to the training and validation data sets when
the model is trained via each MoI.

MoI Set Accuracy (%) Precision (%) Recall (%) TP TN FP FN(Weighted Avg.) (Weighted Avg.)

1 Train 82.22 84 82 757 973 79 295
Val 92.70 93 93 174 169 16 11

2 Train 84.07 85 84 790 979 73 262
Val 92.43 93 93 174 168 17 11

3 Train 84.51 86 85 792 986 66 260
Val 92.70 93 93 174 169 16 11

One can observe from Table 1 that the accuracy in the validation set is highest with
the first and third MoIs, though the accuracy does not vary much from one MoI to the
other. Additionally, note that each of the three MoIs yields the same weighted average
precision and weighted average recall values concerning the test data set. However,
Table 1 does not deduce the main difference between the three MoIs: training time. The
training session using the first MoI lasts approximately two hours, while the training
sessions using the second and third MoIs last about thirteen and eleven hours, respectively.
This discrepancy seems to result from the extra steps needed to traverse the dataframe
(Figure S2) in the second and third MoIs. Thus, since the performance metrics for each
of the three MoIs are similar, only the first MoI is used going forward to optimize both
accuracy and training time.

Next, each version of PICNN uses the best MoI (i.e., the first MoI). A baseline deep
learning-only model (see Section 3.1) is also trained using the regular Keras categorical
cross-entropy loss function. Under these conditions, the baseline deep learning-only model
achieves 98.86% accuracy, 99% precision (weighted average), and 99% recall (weighted
average) on the training set. Table 2 shows the accuracy, weighted average precision, and
weighted average recall for each version of the model (based on training set predictions).
For PICNN3 and PICNN4, multiple values of λt and λr, respectively, are tried. For
PICNN5, the values of λt and λr that yield the highest accuracy on the training set for
PICNN3 and PICNN4 are chosen. Moreover, Table 3 shows the number of true positives,
true negatives, false positives, and false negatives concerning the training data set for each
version of the PICNN model.
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Table 2. Performance metrics for the baseline deep learning-only model and each version of the
physics-informed model when tested on the training data set.

Model λt λr Accuracy (%) Precision (%) Recall (%)
(Weighted Avg.) (Weighted Avg.)

Deep Learning-Only - - 98.86 99 99

PICNN1 - - 82.22 84 82

PICNN2 - - 80.42 82 80

PICNN3

1 - 83.41 84 83
0.5 - 85.12 87 85
0.05 - 84.13 85 84

PICNN4

- 1 82.32 83 82
- 0.5 81.42 81 81
- 0.05 79.56 80 80

PICNN5 0.5 1 82.13 85 82

Table 3. The number of true positive (TP), true negative (TN), false positive (FP), and false negative
(FN) predictions for the baseline deep learning-only model and each version of the physics-informed
model when tested on the training data set.

Model λt λr TP TN FP FN

Deep Learning-Only - - 1028 1052 0 24

PICNN1 - - 757 973 79 295

PICNN2 - - 714 978 74 338

PICNN3

1 - 793 962 90 259
0.5 - 775 1016 36 277

0.05 - 783 987 65 269

PICNN4

- 1 778 954 96 274
- 0.5 851 862 190 201
- 0.05 884 790 262 168

PICNN5 0.5 1 716 1012 40 336

Google Colab, which uses a 12GB NVIDIA Tesla K80 GPU, runs all predictions on the
test set. Generating predictions on the test set takes approximately two to four minutes
for each version of the model. The baseline deep learning-only model achieves 93.87%
accuracy, 91% precision (weighted average), and 94% recall (weighted average) on the test
set. Table 4 shows the accuracy, weighted average precision, and weighted average recall
for each version of the model (based on test set predictions). For PICNN3 and PICNN4,
multiple values of λt and λr, respectively, are compared. For PICNN5, the values of λt
and λr that yielded the highest accuracy on the training set for PICNN3 and PICNN4 are
chosen. Table 5 shows results on the test data set regarding the number of true positives,
true negatives, false positives, and false negatives for each version of the PICNN model.
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Table 4. Performance metrics for the baseline deep learning-only model and each version of the
physics-informed model when tested on the test data set.

Model λt λr Accuracy (%) Precision (%) Recall (%)
(Weighted Avg.) (Weighted Avg.)

Deep Learning-Only - - 93.87 91 94

PICNN1 - - 88.89 91 89

PICNN2 - - 88.51 91 89

PICNN3

1 - 87.36 91 87
0.5 - 91.57 92 92
0.05 - 89.27 91 89

PICNN4

- 1 86.97 91 87
- 0.5 79.31 92 79
- 0.05 72.80 92 73

PICNN5 0.5 1 91.57 91 92

Table 5. The number of true positive (TP), true negative (TN), false positive (FP), and false negative
(FN) predictions for the baseline deep learning-only model and each version of the physics-informed
model when tested on the test data set.

Model λt λr TP TN FP FN

Deep Learning-Only - - 0 245 4 12

PICNN1 - - 1 231 18 11

PICNN2 - - 1 230 19 11

PICNN3

1 - 1 227 22 11
0.5 - 1 238 11 11
0.05 - 1 232 17 11

PICNN4

- 1 1 226 23 11
- 0.5 3 204 45 9
- 0.05 4 186 63 8

PICNN5 0.5 1 0 239 10 12

4.4. Discussion

The accuracy, weighted average precision, and weighted average recall values for the
training data set for each version of PICNN are lower than for the baseline deep learning-
only model. However, the discrepancy between the baseline and physics-informed models’
performance is smaller when evaluating the test set data. Notably, when tested on the
test data set, the version of PICNN3 in which λt = 0.5, as well as the version of PICNN4
in which λr = 0.5 or 0.05, yielded a 1% increase in weighted average precision over the
baseline deep learning-only model (with the other models yielding a weighted average
precision equal to that of the baseline deep learning-only model). Furthermore, while the
weighted average precision and recall values for the test data set are overall satisfactory, a
closer look at Table 5, which shows the actual number of true positives, true negatives, false
positives, and false negatives with regard to the test data set for each version of the model,
shows a consistent issue across all versions: a low number of true positive predictions.
The baseline model yielded 1028 true positives, 1052 true negatives, 0 false positives, and
24 false negatives when evaluating the training set. Therefore, the low number of true
positive predictions from each version of the model when evaluating the test set could
result from the model overfitting to the training set.

Furthermore, in terms of general patterns across the data, note that accuracy and
recall seem to be inversely related to precision, especially for PICNN4. For PICNN3, as
λt decreases, accuracy and recall increase (to a point) and then begin to decrease again.
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The opposite is true for precision. For PICNN4, as λr decreases, accuracy and recall also
decrease. Again, the opposite is true for precision.

While the described method of incorporating physics-informed constraints into the
loss function of the model only resulted in a performance increase with respect to weighted
average precision and not overall accuracy, this investigation has additional implications.
This experiment poses a novel way to incorporate physical data into a CNN model in a
way that integrates said data into the deep learning model architecture itself rather than
appending additional reasoning onto the end of the process. Furthermore, it shows a way
to incorporate both simulated physical data from an FEA model and empirical physical
data into the model.

We note that our baseline deep learning-only model was not able to achieve the
accuracy, precision, and recall of the PyroNet model on which it was based [26], which
is due to differences in hyperparameter settings, data augmentation, and data partition.
We also note that due to its magnitude, the improvement in weighted average precision
between the baseline model and some versions of PICNN3 and PICNN4, respectively,
could potentially be the result of different training instances. Further experiments are
needed to determine the causes of performance differences between each of the models,
which could then be used to further tune the model.

This experiment is focused on the choice of empirical physical data incorporated into
the loss function. While the FEA model was used to calculate several additional variables,
simulated melt pool length, simulated melt pool width, and simulated maximum melt pool
temperature were chosen in conjunction with their corresponding empirical measures for
simplicity. Future directions for this research could include an investigation of the impact
of different and more complex physical data on the loss function. A comparison of how
constraints informed only by the simulated physical data from the FEA and constraints
informed only by the empirical physical data impact model performance could also be
explored. Furthermore, this experiment focused on the objective function of the PICNN
model. The addition of physics-informed constraints on the standard CNN hyperparame-
ters (e.g., kernel size, padding, stride) and other changes to the overall architecture of the
CNN may improve upon the results produced by the method described in this work and
are potential directions for future research.

5. Conclusions

This work shows how incorporating both simulated and empirical physical LMD data
into a deep learning model by means of altering the loss function impacts the accuracy,
precision, and recall of said model as it attempts to predict porosity. While this physics-
informed model cannot improve the predictive capabilities of the deep learning model
in every respect, some versions can improve the precision of the baseline model. This
improvement in precision is due to an increase in the number of true positive predictions,
but comes at the expense of the model’s overall accuracy. Nonetheless, within the context
of our experiment, precision is a crucial metric. This increase in precision indicates that
some versions of the PICNN model have a higher true positive to total positive prediction
ratio than the baseline model, and therefore have some advantage over the baseline deep
learning-only model when it comes to identifying porosity. Additionally, while the second
and third MoIs were not more effective at identifying porosity defects in this case study,
they exhibited a novel approach to incorporating physical data into the CNN architecture
via a custom loss function. More generally, they displayed that it is possible to utilize
said methods to gain greater insight into and control over loss calculation when training
a CNN. Overall, these results indicate that further research on this topic is a viable and
worthwhile endeavor. Future directions for this work may include implementing further
changes to the loss function, the addition of physics-informed constraints on the standard
hyperparameters, and other changes to the architecture of the CNN as a whole.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/s22020494/s1, Figure S1: Hyperparameters of the PyroNet, Figure S2: An example of a table in
the form of a dataframe that can be used to train the model via the second or third MoI. In the text,
tempErrNorm is denoted ε̂ti .
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