
Citation: Ivošević, Š.; Vastag, G.;
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Abstract: The degradation of metal materials in a marine environment represents the consequence
of the electrochemical corrosion of metals under the influence of the environment. The application
of new materials in the maritime industry requires experimental, real-world research on the form
of corrosive damage and the intensity of the corrosion. This paper analyses the pitting corrosion of
a rod-shaped nickel–titanium (Ni–Ti) alloy that was produced by means of the continuous casting
method. In total, three samples were posted in a real seawater environment and analysed after 6,
12, and 18 months. Pits were detected on the Ni–Ti alloy after 18 months of exposure to the marine
environment. The database on pitting corrosion was created by measuring depth in mm, which was
performed by means of a nonlinear method, and by the generation of an artificial database of a total
of 120, gauged in critical pit areas. The data were obtained by the application of a nonlinear model,
and under the assumption that corrosion starts after 12 months of exposure in the corrosive marine
environment. The EDX analysis of the Ni–Ti alloy composition inside the pits and on the edges of the
pits indicated that the corrosion process in the hole of the pit occurs due to the degradation of the Ni.

Keywords: Ni–Ti alloy; pitting corrosion; seawater; EDX analysis; nonlinear; probabilistic

1. Introduction

Corrosion is well defined as the destructive attack on a material by a reaction with its
environment [1–4]. As a result of the corrosion process in different environments, the basic
materials lose some of the mechanical properties of the structure, such as strength, ductility,
and impact strength. The impact of corrosion depends on the industry, and can have a
major economic significance. The World Corrosion Organization (WCO) estimates that the
annual cost of corrosion worldwide is around USD 2.4 trillion (3% of the world’s GDP) [5].

Between different industrial fields, the corrosion process of marine environments has
been studied for many years, due to the different structural deterioration and product
loss in different structural elements of vessels, the offshore and oil industry, or marine
renewable energy sources (e.g., tidal energy, wave energy, ocean thermal gradient, salinity
gradient, offshore wind, and biomass energy) [6].

Various physical forms of corrosion, such as general, intergranular, pitting, galvanic,
crevice, stress, cavitation corrosion, corrosive fatigue, etc., can be found to date [7]. Between
the different physical forms of corrosion, previous studies were focused mainly on the
development of models of general corrosion and pitting corrosion.

Pitting corrosion is defined as localised corrosion of a metal surface, confined to a
point or small area that takes the form of cavities [8]. The total loss of the metal structure
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may be very small, but the local rate of corrosion attack can result in holes in the structure,
which can lead to early catastrophic failure (pollution). Development of a pit attack can
be described in four stages: passive film breakdown, pit initiation, metastable pitting, and
pit propagation [9].

In order to understand the pitting corrosion of steel structures, there are many tech-
niques that can identify the presence of pitting [10,11], such as visual inspection, non-
destructive testing (NDT), surface analysis techniques, and probabilistic approaches for
pit identification. All of these techniques can be used to describe structural failure due
to pitting, and to describe the characteristics of pits, such as pit depth, pit rate, or pit
density. Based on the reviewed literature it is obvious that problems connected with pitting
corrosion are stochastic and probabilistic, and require interdisciplinary concepts including
surface science, metallurgic science, materials science, hydrodynamics, and chemistry.
There are a lot of different corrosion models that describe pitting corrosion. Many au-
thors describe the corrosion process as depending on different environmental factors and
structural elements attacked by pitting corrosion. Using regression analysis, Katano et al.
proposed a predictive model for pit growth where pitting depth was a dependent variable
and environmental factors appeared as independent variables [12]. Melchers considered
the effect of dissolved oxygen and the effect of water velocity on pitting depth [13]; he
confirmed that depth is not an independent variable in marine immersion corrosion of
mild steel [14,15].

Guedes Scares et al. proposed a corrosion wastage model based on a nonlinear time-
dependent function that described the effects caused by different environmental factors
(i.e., salinity, temperature, dissolved oxygen, pH, and flow velocity) on the pitting corrosion
behaviour of steel plates totally immersed in saltwater conditions [16]. Melchers studied the
statistical characteristics of pitting corrosion, represented by the extreme “Gumbel” value
distribution [3]. Furthermore, he recommended using the normal distributions to represent
the extreme pit depth of super-stable pitting [13]. Khan et al. [17] recommended the use of
extreme value statistics in pitting corrosion to investigate extreme values, and proposed lin-
ear, power-law, and logarithmic extreme value models [17,18]. Mohammad et al. (2012) [19]
proposed a prediction model of pitting corrosion characteristics using artificial neural
networks (ANNs), while Valor et al. (2013) [20] proposed Markov chain models for the
stochastic modelling of pitting corrosion [20–22], and Velazquez et al. (2014) [5] described
the pit initiation as a non-homogeneous Poisson process (NHPP).

The development of the maritime industry in the 21st century requires the use of
smart materials, as they are shape-memory materials. The term “Shape-Memory Effect”
was recognised and described by William Buehler and Frederick Wang in a Ni–Ti alloy
(nitinol) in 1962 [23,24]. To date, nitinol has been used in the medical, transport, and robotics
industries, as well as different civil structures [25].

Shape-memory materials based on Ni–Ti can be produced with appreciable thermome-
chanical properties using different production techniques, such as conventional casting or
powder metallurgy processes. Conventional casting can be vacuum arc remelting (VAR) or
vacuum induction melting (VIM). Powder metallurgy production can be by conventional
methods (e.g., conventional sintering, self-propagating high-temperature synthesis, hot
isostatic pressing, metal injection moulding, spark plasma sintering) or advanced manufac-
turing (e.g., selective laser melting, selective laser sintering, laser-engineered net shaping,
electron beam melting) [26].

The subject of this research is the testing of a continuously cast Ni–Ti alloy in the shape
of a rod. Despite previous research [27–29], when the pitting corrosion rate was analysed in
this paper using a linear model (assuming the onset of corrosion after 0, 6, and 12 months)
we obtained a database from which we developed a nonlinear corrosion model (assuming
that the corrosion process started after 12 months of exposure). Furthermore, using the
EDX method, and analysing the changes in the chemical composition of the Ni–Ti alloy
at the edge and in the depth of the crater of the located pit, the corrosion process of Ni–Ti
pitting following immersion in seawater can be described.
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2. Materials and Methods
2.1. Preparation of the Ni–Ti Alloy

The Ni–Ti alloy in the shape of a rod was produced via vacuum remelting (furnace
Leybold Heraeus, Finland) and continuous casting processes with a laboratory-scale ver-
tical continuous casting device (Technica Guss, Würzburg, Germany). The furnace was
connected to a power source of 60 kW and produced a medium frequency (4 kHz) that
enabled the remelting and casting of the alloy. Pure components were used for preparation
of the Ni–Ti alloy: Ni (99.99 wt.%) and Ti (99.99 wt.%), delivered by Zlatarna Celje d.o.o.
(Zlatarna Celje d.o.o., Celje, Slovenia). The Ni:Ti weight ratio was 2:1. The Ni–Ti alloy
was cast into a rod with φ = 12 mm. To perform the experimental testing, samples with
dimensions of 2r = 12 mm and l = 50 mm were prepared with electro-erosion cutting. The
samples had an incision with a thinner diameter, so that we could tie a flex to them and,
thus, locate the samples at the desired location in the sea. All Ni–Ti alloy samples were
ground on the surface after electro-erosion to remove contamination, thus enabling the
performance of corrosion tests as realistically as possible. In total, three test Ni–Ti samples
were deposited in seawater and analysed after 6, 12, and 18 months of exposure.

Before testing in real seawater, the chemical composition of the test samples was
measured by inductively coupled plasma (ICP) and X-ray fluorescence (XRF), in order to
check the chemical composition of the Ni–Ti alloy samples.

2.2. Proposed Problem and Related Methodology

Motivated by previous research [29–32], in this paper we analysed the pitting corrosion
of a Ni–Ti alloy in the marine environment. Specifically, 3 test samples of Ni–Ti alloy were
immersed in the sea, near the coast, at a depth of three metres, during the period from
September 2018 to March 2020.

In a previous study, a linear corrosion model of pitting formed over an alloy exposed
to immersion in seawater for 18 months was analysed, varying the assumption of an initial
corrosion onset period of 0, 6, and 12 months [29]. As no pitting corrosion was observed on
the samples exposed to the influence of the sea after 6 and 12 months, this paper analyses
the rapid corrosion process, assuming that pitting occurs after 12 months of exposure.

During the research between August 2018 and March 2020, the parameters of the
seawater (i.e., temperature and salinity) were measured by the Institute of Biology at
the University of Montenegro. The minimum seawater temperature was in January 2019
(11.7 ◦C), while the maximum temperature was in August 2020 (25.90 ◦C). Considering
salinity at the measurement location, the minimum salinity was in December 2019 (14.00‰),
while the maximum salinity was in August 2019 (39.00‰). Some additional information is
part of the previous research [30].

Considering the above, the conceptual model of the research is shown in Figure 1. The
research was conducted in two ways: In the first, the nonlinear pitting corrosion model
was analysed on the basis of SEM measurements and artificial data collected on the basis
of the extreme pitting depth, expressed in millimetres. In the second direction, based on
EDX analyses, the values of the chemical composition of the pitting edge and hole were
collected, in order to analyse changes to the Ni–Ti alloy surface.

Figure 1. The scheme of the conceptual model of the research.
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2.2.1. SEM Observation

The SEM imaging was performed with a Quanta 200 3D (FEI, Hillsboro, OR, USA)
scanning electron microscope using the Everhart–Thornley Detector for secondary electrons,
with an acceleration voltage of 10 kV, in high-vacuum mode. For imaging, a magnification
of 50× with a working distance of around 29 mm was used, in order to maximise the
depth of field in the image. In order to reconstruct a 3D model from the images using
stereophotogrammetry, and to obtain pitting depth information calculated by trigonometry,
the sample must be viewed from several angles around the Z-axis [33]. The images of the
samples were taken at tilt angles from 10◦ to 50◦ with 5◦ steps. The software MountainsSEM
Expert (MountainsSEM Expert version 8.2.9564, Digital Surf, Besançon, France), was used
for the 3D model reconstructions and pitting depth measurements. The pitting depth
measurements were taken from the peak and valley positions of 6-line topographical
profiles at various locations on the pitting hole.

2.2.2. EDX Analysis

During the 18 months of exposure in the seawater environment, pitting was located
on the Ni–Ti sample, as shown in Figure 2.

Figure 2. Scheme of SEM imaging and 3D model reconstruction of the sample for depth measurements.

The chemical composition of the selected Ni–Ti alloy surfaces was determined through
the use of a high-resolution field emission SEM (Sirion 400 NC; FEI, Hillsboro, OR, USA),
equipped with an INCA 350 EDX detector (Oxford Instruments, Abingdon, Oxfordshire,
UK). The EDX semi-quantitative analysis determined the chemical composition of the Ni–Ti
alloy surface after corrosion, as well as the content of the elements on the surface edge and
hole of the pitting. Sixty spectra were considered in total. Five analysis locations were in
the hole of the pitting and five were on top of the edge. The chemical composition of the
metal surfaces was scanned for each analysis location—up to six spectra per location under
the magnification of 200 µm and 300 µm.

3. Results

Chemical analysis of the percentages of Ni and Ti of the initial test samples (before
being exposed to the seawater environment) is shown in Table 1 [32].
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Table 1. Chemical composition of Ni and Ti in the initial test samples.

Element/Analyses ICP (wt.%) XRF (wt.%)

Ni 62.6 62.5–62.6

Ti 35.9 35.9

3.1. Development of the Ni–Ti Alloy Nonlinear Probabilistic Pitting Model

The pitting depth measurements on the selected six-line topographical profiles on the
pitting hole are shown in Figure 3.

Figure 3. Pitting depth measurements from the line profiles of the pitting holes on the Ni–Ti samples,
produced with 3D models reconstructed from the SEM images. The depth was measured from the
difference between the peak and valley positions of the line profiles. (A–F) topographical line profile
at various location on the pitting hole.

Based on the performed SEM measurements, an artificial enlargement of the input
database was performed, testifying to the depth of corrosion. Specifically, on each image
A–F from Figure 3, a total of 20 measured values was generated in such a way that, on a
scale from 1 to 5 mm, the value of corrosion depth was selected and measured, as shown in
Figure 4. Out of a maximum of 50 measured data, 20 data were selected corresponding to
the critical shape of the pitting crater and the measured pitting depth values at a length of
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two millimetres. In this way, a total of 20 measured values was generated for each image
from A–F, i.e., a total of 120 measured values. The minimum, maximum, and average
values for each section from A–F are presented in Table 2.

Figure 4. Generation of 20 pitting depth measurements on the Ni–Ti surface in the critical part of the
pitting hole.

Table 2. Pitting depth from SEM on the Ni–Ti surface and artificial measurements.

Measurement 1 SEM Pitting Depth Artificial Pitting Depth Value

No. Value No. Min. Max. Avg.

Measurement A 1 0.7787 20 0.074 0.778 0.544
Measurement B 1 0.4490 20 0.135 0.449 0.460
Measurement C 1 0.6322 20 0.107 0.632 0.413
Measurement D 1 1.3750 20 0.339 1.375 0.897
Measurement E 1 0.5493 20 0.186 0.549 0.423
Measurement F 1 0.6889 20 0.099 0.689 0.350

1 All values of pit depth are measured in mm.

In order to summarise the sample of derived pitting corrosion values in a straightfor-
ward manner, the most common descriptive statistics are given in Table 3. Typical measures
of central tendency (i.e., mean value), with values of variability (i.e., variance, standard
deviation, coefficient of variation, standard error) and sample shape (i.e., skewness, ex-
cess kurtosis) [34], are presented in the first column of Table 2. The calculated values of
these statistics are given in the second column of Table 2. The next two columns show the
percentiles of the sample.

Table 3. Descriptive statistics of pitting corrosion measurements for the Ni–Ti sample.

Statistic Value Percentile Value

Sample Size 120 Min 0.010
Range 0.181 5% 0.015
Mean 0.069 10% 0.017

Variance 0.002 First quartile 0.041
Standard Deviation 0.041 Median 0.067

Coefficient of Variation 0.587 Third quartile 0.088
Standard Error 0.004 90% 0.108

Skewness 1.036 95% 0.180
Excess Kurtosis 1.378 Max 0.192

The corrosion loss of the Ni–Ti alloy exposed to the environment can be expressed as
a function of the strength of time [35,36]. Depending on the length of exposure of metal
structures to environmental influences, the observed time intervals are usually expressed
in months or years. Paik and Thayamball [36] proposed a corrosive model that takes into
account a time parameter that affects the delay of the onset of corrosive processes, and is
usually described as the effectiveness of a protective coating. This model can be displayed
in the following format:

d(t) =
{

c1(t− Tcl)
c2 , t > Tcl

0, otherwise
(1)
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where the corrosion depth is denoted by d(t), the time of exposure to the environment is
denoted by t, while Tcl is the time when the corrosive processes begin to develop. Parame-
ters c1 and c2 are unknown parameters that take positive real values, and are determined
in the process of fitting the model to the empirical data. The coefficient c1 represents the
corrosion rate, and is usually measured in mm/year or nm/month. Parameter c2 regulates
the intensity of the time component of the model. Values of c2 = 1 or c2 = 1/3 have been
suggested in the literature. Preliminary results of testing this model on empirical data for a
Ni–Ti alloy show that pitting corrosion did not occur until the 12th month of exposure of
the samples to environmental influences, so it is suitable for Tcl to be 12. However, the best
value for the parameter c2 is slightly higher than the suggested 1. Tests showed that, in the
case of a Ni–Ti alloy, the best fit of Model (1) is obtained if c2 = 1.1.

Bearing these preliminary results in mind, in the continuation of the statistical analysis,
a nonlinear model (Model (1)) is used, which takes the following form after the inclusion of
the experimentally determined parameters Tcl = 12 and c2 = 1.1:

d(t) =
{

c1(t− 12)1.1, t > 12
0, otherwise

(2)

Model (2) is used to describe the depth of pitting corrosion formed on the Ni–Ti alloy
samples. In the statistical analysis aimed at determining the value of the parameter c1, the
database described in Table 2 was used.

Corrosive processes can be viewed as deterministic and stochastic. Corrosion is a
process that depends on a large number of factors, and is subject to uncertainty. Therefore,
in this paper, the corrosion rate is treated as a stochastic continuous variable that depends
on the time of exposure of the samples to environmental influences. By expressing the coef-
ficient c1 from the formed Model (2), Model (3) is obtained, suitable for fitting continuous
distributions into the calculated values for corrosion rate:

c1 =
d(t)

(t− 12)1.1 , t > 12 (3)

Continuous distributions are described with the probability density function (PDF)
and cumulative density function (CDF). Common labels for PDF and CDF are f (x) and
F(x), respectively. The best fitted normal distribution was obtained using 120 values
for pitting corrosion depth and applying Model (3). Normal distribution was selected
as a candidate for adequate continuous distribution, based on recommendations from
the scientific literature dealing with pitting corrosive processes [13]. The optimal values
of the normal distribution parameter were determined using the maximum likelihood
estimation method [37]. The normal distribution thus formed is characterised by the mean
value µ = 0.069 and standard deviation σ = 0.041. More precisely, the best fitted normal
distribution describing the c1 (corrosion rate) parameter has PDF and CDF represented by
Formulae (4) and (5), respectively:

f (x) = 9.7303e−297.442(x−0.069)2
→ for−∞ < x < +∞ (4)

F(x) = 9.7303
∫ x

−∞
e−297.442(t−0.069)2

dt (5)

It is worth noting that the obtained value of the parameter µ = 0.069 is in accordance
with the mean value of the empirical data shown in Table 3. Knowing the formula for
CDF [38], the probability of occurrence of pitting corrosion depth values for a Ni–Ti alloy
can be estimated as follows:

P
(

r1(t− 12)1.1 ≤ d(t) ≤ r2(t− 12)1.1
)
= P(r1 ≤ c1 ≤ r2) ≈ F(r2)− F(r1), (6)
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where t > 0 denotes the elapsed time expressed in months from the beginning of the
exposure of the Ni–Ti alloy to the environmental influences.

The fitted model and the derived expression shown by Formula (6) can be used to
predict the value of corrosion depth after a given time of exposure of the Ni–Ti alloy sample
to the seawater environment. For example, if the alloy is released into the seawater environ-
ment for 15 months (i.e., t = 15), and if the corrosion rate is lower than 0.164 mm/month,
we come to the following conclusion:

P(c1 ≤ 0.164) ≈ F(0.164) ≈ 0.99 = P(d(15) ≤ 0.55). (7)

Thus, after 15 months of exposure of the Ni–Ti alloy to the influence of the marine
environment, with a probability of 0.99, it can be stated that the corrosion depth will reach
a value of 0.55.

A graph of the PDF of the best normal distribution function that describes the pitting
corrosion data of the Ni–Ti alloy adequately (represented by Formula (4)) is shown in
Figure 5. This figure additionally shows the empirical data of pitting corrosion grouped in
bins in the form of a histogram.

Figure 5. Probability density function (PDF) graphics for the best fitted normal (0.069, 0.041) distribu-
tion for the Ni–Ti alloy’s pitting corrosion rate.

The Kolmogorov–Smirnov (KS) test was applied, with the aim of determining the
goodness of fit of the previously formed normal distribution [39,40]. To determine how
effectively normal distribution monitors empirical data, the following hypotheses were set:

Hypothesis H0: Data follow the normal (0.069, 0.041) distribution;

Hypothesis Ha: Data do not follow the stated normal distribution.

Standard values of significance levels α (i.e., 0.2, 0.1, 0.05, 0.02, and 0.01) were ob-
served, and a corresponding critical value was calculated for each value. By comparing
the calculated values of the test statistics with the critical values determined in this way, it
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is possible to determine whether hypothesis H0 is rejected or not. In addition, the KS test
accepts the null hypothesis for all test statistic values less than the calculated p-values. As
can be seen in Table 4, the obtained value of the KS test statistic was less than the critical
values determined for all selected significance levels. Additionally, the KS test statistic was
lower than the p-value, indicating that H0 could not be rejected.

Table 4. Kolmogorov–Smirnov goodness of fit results.

Statistic 0.08428

p-Value 0.3422

α 0.2 0.1 0.05 0.02 0.01

Critical Value 0.09795 0.11164 0.12397 0.13857 0.14871

Reject? No No No No No

This section may be divided by subheadings. It should provide a concise and pre-
cise description of the experimental results, their interpretation, and the experimental
conclusions that can be drawn.

3.2. Ni–Ti Alloy Pitting Process

After the immersion of the Ni–Ti samples in seawater, SEM and EDX analyses were
used to detect the onset of pitting corrosion and the pit formation mechanism.

The EDX analyses detected several elements (C, Na, Mg, Al, Si, S, P, Cl, K, Ca, and Fe)
that were considered the remains of substances from the sea (Table 5 represents spectral
data for Figure 6b). The contents of Ti and Ni in the actual surface varied on the edges of
the pits and inside the pits. The weight percentage of Ti on the pit edges did not differ
significantly from that of the Ti detected inside the pits. On the other hand, the weight
percentage of Ni was considerably lower inside the pits than on the edges, indicating the
depletion in Ni content due to corrosion and material diminution. In most of the analysed
spectrums for the inner parts of the pits, Ni was not even detected, which particularly
lowered the mean value of Ni in 30 of the examined spectra. Table 6 shows the Ti and Ni
contents (in wt.%) of the analysed spectrums without the aforementioned elements from
the sea. Depending on the surface coverage of these elements, the detected Ti and Ni
contents can be as low as a few percent, while the other elements—not shown here—take
up the rest of the content in the given analysis site.

Table 5. EDX spectra for Figure 5b, representing Hole Site 5 from Figure 5a.

Spectrum C O Na Mg Al Si S Cl K Ca Ti Fe Total

Spectrum 1 17.10 53.30 1.67 0.77 0.69 1.25 1.21 2.25 21.76 100.00

Spectrum 2 13.80 43.91 0.97 0.88 1.32 2.44 1.48 3.18 32.01 100.00

Spectrum 3 22.29 46.48 1.64 1.33 0.52 0.72 0.52 1.92 2.64 21.95 100.00

Spectrum 4 10.75 51.04 0.93 1.49 7.34 15.76 2.36 4.56 1.17 4.60 100.00

Spectrum 5 29.15 49.91 2.18 1.34 1.13 2.92 13.38 100.00

Spectrum 6 11.48 37.16 0.50 0.74 1.21 3.91 44.99 100.00

Max. 29.15 53.30 2.18 1.49 7.34 15.76 0.52 1.92 2.36 4.56 44.99 4.60

Min. 10.75 37.16 0.93 0.77 0.50 0.72 0.52 1.13 2.36 2.25 1.17 4.60
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Figure 6. The Ni–Ti alloys after 18 months of exposure to the seawater environment: (a) the surface
points subjected to the EDX analysis of pitting corrosion, (b) the SEM image with selected points for
the EDX analyses.

Table 6. The results of EDX analyses of Ti and Ni on the surface of the Ni–Ti alloy.

Pitting Edge (Total 30 Spectrums) Pitting Hole (Total 30 Spectrums)

Min Max Mean Min Max Mean

Ti 3.20 90.39 27.49 1.03 61.77 24.76
Ni 1.00 62.66 13.30 3.17 38.37 1.38

Sea Product Elements / / Rest / / Rest
All results in weight %.

The EDX analysis’ lower detection limit is considered to be 0.1 wt.%. For major con-
stituents with a mass content greater than 10 wt.%, there is a relative uncertainty of±2% [41].
For minor constituents with a mass content lower than 10 wt.%, the relative uncertainty is
considered to be up to 50% for standardless analyses [42]. As the elemental wt.% between
samples varied significantly more than the described analysis errors, the obtained values
were considered relevant for the examination of these samples after their exposure to the
seawater environment.

Figure 7a–c show the surface of the Ni–Ti alloy after exposure to seawater for 6 months,
12 months, and 18 months.

Figure 7. Cont.
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Figure 7. The characteristic microstructure of the surface of the Ni–Ti SMA after exposure to seawater
for (a) 6 months (b) 12 months, and (c) 18 months.

Table 7 shows the average chemical composition of the Ni–Ti surface based on the
EDX analyses after varied lengths of exposure.

Table 7. The average chemical composition of the Ni–Ti surface based on the EDX analysis.

Average Chemical Composition (wt. %)

Month O Na Mg Si S Cl K Ca Ti Ni C

6 29.84 4.11 1.29 0.35 0.19 0.76 0.038 0.19 29.25 33.27 0
12 28.50 1.59 0.50 2.65 0.80 3.17 0 1.05 13.31 14.26 33.17
18 37.28 1.20 1.48 7.03 0.83 0.95 1.71 2.11 13.72 13.22 15.10

The identification of the time of the cracking point of the passive layer under the
influence of aggressive (chloride) ions, as well as the prediction of the pit changes over
time, plays an important role in the practical application of the Ni–Ti alloy. Therefore, an
additional EDX analysis of the examined Ni–Ti alloy determined the chemical composition
of particular pits whose depth varied between ~0.3 and 1.0 mm. The analysis was conducted
separately at five points on the pit edges and five points inside the pits. The chemical
composition of the metal surface was scanned for each analysed point with up to six spectra,
under the magnification of 200 µm and 300 µm. Figure 7 shows the locations of the pits
subjected to the EDX analysis.

Figures 8–10 exhibit the comparison of the content of particular chemical elements
that were detected by the EDX analysis on the pit edges and inside the pits. Figure 8 shows
the content of Ni in the pits and on the edge of the pits.

Figure 9a shows the content of Ti (a) and oxygen in the pits and on the edge of the pits.
Figure 10a shows the content of chlorides (a) and the total content of inorganic cations

in the pits and on the edges of the pits.
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Figure 8. The content of Ni on the pit edges and inside the pits, based on the EDX analysis.

Figure 9. The contents of (a) Ti and (b) oxygen on the pit edges and inside the pits, based on the
EDX analysis.

Figure 10. The content of (a) chloride and (b) inorganic cations on the pit edges and inside the pits,
based on the EDX analysis.
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4. Discussion

The conducted statistical analysis was motivated by three facts known in the literature:

• Corrosive processes can be modelled as a power function of environmental exposure times;
• Corrosive processes are stochastic in nature or, more precisely, the pitting corrosion

rate can be viewed as a continuous random variable;
• The normal distribution is suitable for representing the extreme depth of the pitting

corrosion process of a super-stable alloy.

By applying these assumptions over a database of 120 measurements of pitting corrosion
depth of a Ni–Ti alloy, a nonlinear probabilistic model for pitting corrosion rate was formed in
the process of fitting the theoretical (normal) distribution. Statistical analysis showed that the
pitting corrosion rate can be modelled very successfully as a continuous random variable that
behaves in accordance with the characteristics of the normal distribution.

The implemented statistical methodology for pitting corrosion modelling could be
applied to other continuous distributions, as well as to other types of alloys on which
pitting corrosion was detected. In addition, it is evident that the extreme values of pitting
show certain laws of behaviour, indicating the possibility of testing the extreme value
theory in describing the values of corrosive processes.

As shown in Figure 6a and Table 7, the surface of the Ni–Ti alloy that was exposed to
seawater for 6 months was covered unevenly with inorganic salts from the sea (Na, Mg, Ca,
K, Cl, Si, . . . , SO2−

4 ) and corrosion products (Ti and Ni oxides). The inhomogeneous layer
on the surface cannot ensure protection from corrosion [43,44], as confirmed by the EDX
analysis conducted after 12 months of the exposure of the alloy to seawater. The analysis
detected excessive corrosion on the alloy and a notable reduction in the contents of Ti and
Ni (Table 7). A low amount of chloride ions was also detected on the alloy’s surface by
means of the EDX analysis after 12 months of exposure (Cl < 0.8 wt.%).

Figure 6b shows that after 12 months of exposure to seawater, the surface of the
analysed Ni–Ti alloy was more homogeneous and contained fewer inorganic salts (Ca-
silicate) than after 6 months of exposure. The more homogeneous surface of the alloy was
the result of the formation of a uniform layer of oxides on the surface of the examined
alloy [45–47]. In that regard, previous studies indicated that the corrosion of Ni–Ti alloys
begins on surface defects that emerge after damage to the original oxide layer. During the
corrosion process Ni is usually released from an alloy, whereby the remaining Ti reacts
with dissolved oxygen from the aqueous solution and creates Ti oxides around the surface
defects [45,46]. This layer contains mainly Ti oxides in the outer layer and Ni–Ti in the inner
layer [48,49]. However, the oxide layer formed on the Ni–Ti alloy surface always contains
a certain amount of Ni that cannot be released in case of corrosion [50,51]. If the formed
oxide layer covers the entire surface of the Ni–Ti alloy, corrosion is inhibited temporarily,
because the oxide layer is resistant to chloride ions [47,52]. In the case of our examined
alloy, the contents of Ni and Ti did not decrease during the prolonged exposure (Table 7),
confirming the statement that the formed layer prevents further corrosion. The length of
exposure and the increase in the temperature of the corrosive solution notably decreased
the passivation ability of the Ni–Ti alloy [53].

On the other hand, the EDX analysis conducted after 12 months of exposure to seawater
detected a considerable content of carbon on the Ni–Ti alloy’s surface (Table 7) which,
according to previous studies, is the consequence of the presence of algae, mould, and other
organic marine deposits on the surface of the Ni–Ti alloy [54]. The presence of the marine
organisms was not surprising, considering the fact that the research was conducted in the
spring and summer (March—August 2020), when the activities of the marine organisms
are more prominent due to higher sea temperatures.

The amount of chloride ions detected on the Ni–Ti alloy surface after 12 months of
exposure was significantly higher (Cl~3 wt.%) than after the first 6 months, while pitting
corrosion was not detected on any of the analysed samples.

A thick layer of corrosion products (Figure 7c) with increased oxide content and
decreased carbon content (Table 7) was observed on the surface of the analysed Ni–Ti
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alloy after 18 months of exposure to seawater. Based on Table 7, the amounts of Ni and
Ti remained the same as they were after 12 months of exposure, substantiating the claim
that the formed layer successfully prevented corrosion. It should also be noted that the
amount of chloride ions on the alloy surface was reduced (Table 7), while the appearance of
damage in the form of pits increased, as shown in Figure 7c. This means that the additional
6 months of exposure to seawater led to the emergence of pitting corrosion on the surface
of the examined Ni–Ti alloy.

The obtained results confirm the findings of previous studies, which claim that the
extended exposure of alloys to a corrosive environment amplifies the oxide layer on the
surface of Ni–Ti alloys [45]. The amplified oxide layer is a consequence of the migration of
oxide ions through oxide anion vacancies. In addition to oxide anions, other anions found
in the corrosive environment can also migrate through the formed oxide layer [55]. The
migration of chloride ions is particularly important, as the concentration of chloride ions is
usually high—just below the concentration of oxide ions. The accumulation of chloride
ions was observed on the alloy surface after 12 months. After migration, the accumulation
of chloride ions between the metal surface and the formed oxide layer leads to the cracking
of the passive oxide layer, thus leaving the surface unprotected and susceptible to pitting
corrosion [55,56].

Hu et al. [45] described the mechanism of the formation of pits on the surface of alloys.
The amount of Ni registered on the pit edges and inside the pits (Figure 8) confirmed that the
pits on the surface of the Ni–Ti alloy that was exposed to seawater for 18 months appeared
in accordance with the mechanism described by Hu et al. Specifically, at all points measured
on the pit edges, the registered amount of nickel was changeable, while inside the pits
(regardless of the pit depth) nickel was almost non-existent (with the exception of one point).
The difference in chemical composition inside the pits and on the pit edges indicates that
the alloy corrodes through the initial release of nickel ions into the environment, while the
remaining Ti oxides enrich the alloy and form an oxide layer. This finding is substantiated
by the registered amounts of Ti and oxygen in the pits and on the pit edges (Figure 9a,b). As
illustrated in Figure 9a, there was not a significant difference in the content of Ti on the pit
edges and inside the pits, meaning that the Ti content does not vary significantly during the
formation of pits (Ti remains on the surface of the alloy during corrosion).

Figure 9b shows that, regardless of pit depth, the oxygen content measured at all points
inside the pits had approximately the same value and was, on average, slightly higher than
the oxygen content measured on the pit edges. This means that the bottom of the pits could
be covered with an oxygen layer. Similarly, T. Hu et al. stated that the pits formed during
corrosion are possibly blocked by the Ti oxides formed inside the pits [45–47].

The increased amount of chloride ions could be a consequence of the deposition of
inorganic salts on the bottom of the pits. However, this assumption was disputed by the fact
that the total content of inorganic cations that can form chlorides (Ca, Mg, Na) (Figure 10b)
was not notably higher inside the pits than on the edges. The increased content of chloride
ions was therefore not the consequence of the accumulated inorganic salts on the bottom of
the pits. As Hu et al. explained, chloride ions become incorporated into the passive layer
of Ti oxides over time, and cause the deepening of the pits.

5. Conclusions

From the research of a nonlinear probabilistic pitting corrosion model of Ni–Ti alloy
immersed in shallow seawater, the following can be concluded:

• The appearance of damage in the form of pitting on the Ni–Ti surface was first
registered after an exposure time of 18 months.

• The difference in chemical composition inside the pits and on the pit edges indicates
that the Ni–Ti alloy corrodes through the initial release of Ni ions into the environment,
while the remaining Ti oxides enrich the alloy and form an oxide layer.

• Chloride ions become incorporated into the passive layer of Ti oxides over time, and
cause the deepening of the pits.
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• The extreme value of pitting can be described as a continuous random variable with
the characteristics of normal distribution.

Author Contributions: Conceptualisation, Š.I., G.V. and R.R.; methodology, Š.I., G.V. and R.R.; soft-
ware, N.K., P.M. and G.V.; validation, Š.I., G.V. and R.R.; formal analysis, P.M., G.V. and N.K.; investi-
gation, Š.I., G.V., P.M. and R.R.; resources, Š.I. and R.R.; data curation, N.K. and G.V.; writing—original
draft preparation, Š.I., G.V., N.K. and R.R.; writing—review and editing, Š.I. and R.R.; visualisation,
N.K. and P.M.; supervision, R.R.; project administration, Š.I. and R.R.; funding acquisition, Š.I. and
R.R. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the BILATERAL PROJECTS Slovenia—Montenegro and
Serbia—Montenegro (BI-ME/18-20-024) and EUREKA PROGRAM PROCHA-SMA E!13080, funded
by the Ministry of Science of the Republic of Montenegro. This research was funded by Javna Agencija
za Raziskovalno Dejavnost RS (ARRS), grant number P2-0120 and I0-0029.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This paper is a result of the initial phase of the research of different aspects of the
sea and atmosphere to the production and application of smart materials of shape-memory alloy in
the nautical industry. Project PROCHA-SMA is a part of the EUREKA Project, which is jointly realised
by the Faculty of Stomatology in Belgrade, Zlatarna Celje, and the Faculty of Maritime Studies Kotor,
University of Montenegro.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

ANN Artificial neural network
EDX Energy-dispersive X-ray analysis
ICP Inductively coupled plasma
NDT Non-destructive testing
NHPP Non-homogeneous Poisson process
SEM Scanning electron microscopy
SMA Shape memory alloy
VAR Vacuum arc remelting
VIM Vacuum induction melting
WCO World Corrosion Organization
XRF X-ray fluorescence

References
1. Popolola, L.T.; Grema, A.S.; Latinwo, G.K.; Gutti, B.; Balogun, A.S. Corrosion problems during oil and gas production and its

mitigation. Intern. Jour. Ind. Chem. 2013, 4, 35. [CrossRef]
2. Melchers, R. Pitting corrosion of mild steel in marine immersion environment—Part 2: Variability of maximum pit depth.

Corrosion 2004, 60, 937–944. [CrossRef]
3. Melchers, R. Statistical characterization of pitting corrosion—Part 1: Data analyses. Corrosion 2005, 61, 655–664. [CrossRef]
4. Melchers, R.; Jeffrey, R. The critical involvement of anaerobic bacterial activity in modeling the corrosion behavior of mild steel in

marine environments. Electroc. Acta 2008, 54, 80–85. [CrossRef]
5. Valasquez, J.; Van Der Weide, J.; Hernandez, E.; Hernandez, H.H. Statistical modeling of pitting corrosion: Extrapolation of the

maximum pit depth-growth. Intern. Electrochem. Sci. 2014, 9, 4129–4143.
6. Nova Scotia Department of Energy. Marine Renewable Energy Legislation for Nova Scotia; Nova Scotia Department of Energy:

Halifax, NS, Canada, 2010.
7. Baumann, M.A. Nickel–titanium: Options and challenges. Dent. Clin. 2004, 48, 55–67. [CrossRef]
8. Abood, T.H. The Influence of Various Parameters on Pitting Corrosion of 316L and 202 Stainless Steel. Ph.D. Thesis, Department

of Chemical Engineering of the University of Technology, University of Technology, Hong Kong, China, 2008.
9. Zaya, P.G.R. Evaluation of Theories for the Initial Stages of Pitting Corrosion. Ph.D. Thesis, McMaster University, Hamilton,

ON, USA, 1984.

http://doi.org/10.1186/2228-5547-4-35
http://doi.org/10.5006/1.3287827
http://doi.org/10.5006/1.3278201
http://doi.org/10.1016/j.electacta.2008.02.107
http://doi.org/10.1016/j.cden.2003.11.001


Micromachines 2022, 13, 1031 16 of 17

10. Caines, S.; Khan, F.; Shirokoff, J. Analysis of pitting corrosion on steel under insulation in marine environments. J. Loss Prev.
Process Ind. 2013, 26, 1466–1483. [CrossRef]

11. ASM International. ASM Handbook: Friction, Lubrication, and Wear Technology; ASM International: Materials Park, OH, USA, 1992.
12. Katano, Y.; Miyata, K.; Shimizu, H.; Isogai, T. Predictive model for pit growth on underground pipes. Corrosion 2003, 59, 155–161.

[CrossRef]
13. Melchers, R. Statistical characterization of pitting corrosion—Part 2: Probabilistic modeling for maximum pit depth. Corrosion

2005, 61, 766–777. [CrossRef]
14. Melchers, R. Effect of immersion depth on marine corrosion of mild steel. Corrosion 2005, 61, 895–906. [CrossRef]
15. Melchers, R. The effect of corrosion on structural reliability of steel offshore structures. Corr. Sci. 2005, 47, 2391–2410. [CrossRef]
16. Guedes Soares, C.; Garbatov, Y.; Zayed, A.; Wang, G.; Melchers, R.; Paik, J. Non-linear corrosion model for immersed steel plates

accounting for environmental factors. Discussion. Trans. Soc. Nav. Archit. Mar. Eng. 2005, 113, 306–329.
17. Khan, F.; Howard, R. Statistical approach to inspection planning and integrity assessment. Insight Non Destr. Test. Cond. Monit.

2007, 49, 26–36. [CrossRef]
18. Kowaka, M.; Tsuge, H. Introduction to life Prediction of Industrial Plant Materials. Application of the Extreme Value Statistical Method for

Corrosion Analysis; Allerton Press: Headquaters, NY, USA, 1994.
19. Mohammad, H.M.; Hammadi, N.J.; Lafta, R.M. Prediction of pitting corrosion characteristics using artificial neural networks.

Int. J. Comput. Appl. 2012, 60, 4–8.
20. Valor, A.; Caleyo, F.; Alfonso, L.; Rivas, D.; Hallen, J. Markov chain models for the stochastic modeling of pitting corrosion.

Math. Probl. Eng. 2013, 2013, 108386. [CrossRef]
21. Valor, A.; Caleyo, F.; Alfonso, L.; Rivas, D.; Hallen, J. Stochastic modeling of pitting corrosion. A new model for initiation and

growth of multiple corrosion pits. Corros. Sci. 2007, 49, 559–579. [CrossRef]
22. Valor, A.; Caleyo, F.; Rivas, D.; Hallen, J. Stohastic approach to pitting corrosion-extreme modelling in low-carbon steel. Corros. Sci.

2010, 52, 910–915. [CrossRef]
23. Kauffman, G.B.; Mayo, I. The Story of Nitinol: The Serendipitous Discovery of the Memory Metal and Its Applications. Chem. Educ.

1997, 2, 1–21. [CrossRef]
24. Mohd Jani, J.; Leary, M.; Subic, A.; Gibson, M.A. A review of shape memory alloy research, applications and opportunities.

Mat. Des. 2014, 56, 1078–1113. [CrossRef]
25. Tabrizikahou, A.; Kuczma, M.; Nowotarski, P.; Kwiatek, M.; Javanmardi, A. Sustainability of Civil Structures through the

Application of Smart Materials: A Review. Materials 2021, 14, 4824. [CrossRef]
26. Musabikha, S.; Utama, I.K.A.P.; Mukhtasor. Corrosion in the Marine Renewable Energy: A Review. Int. J. Environ. Res. Clean

Energy 2017, 7, 1.
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