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Nanogrid single-nucleus RNA sequencing reveals
phenotypic diversity in breast cancer
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Single cell RNA sequencing has emerged as a powerful tool for resolving transcriptional
diversity in tumors, but is limited by throughput, cost and the ability to process archival
frozen tissue samples. Here we develop a high-throughput 3’ single-nucleus RNA sequencing
approach that combines nanogrid technology, automated imaging, and cell selection to
sequence up to ~1800 single nuclei in parallel. We compare the transcriptomes of 485 single
nuclei to 424 single cells in a breast cancer cell line, which shows a high concordance
(93.34%) in gene levels and abundance. We also analyze 416 nuclei from a frozen breast
tumor sample and 380 nuclei from normal breast tissue. These data reveal heterogeneity in
cancer cell phenotypes, including angiogenesis, proliferation, and stemness, and a minor
subpopulation (19%) with many overexpressed cancer genes. Our studies demonstrate the
utility of nanogrid single-nucleus RNA sequencing for studying the transcriptional programs
of tumor nuclei in frozen archival tissue samples.
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he development of single cell sequencing technologies has

revolutionized many diverse fields of biology over the last

5 years® 2. Single cell RNA sequencing (RNA-seq) has
provided new insights into cancer progression by resolving
complex cell types’™, developmental hierarchies> % ©, and
phenotypic plasticity” 8. However, initial methods were limited
by low-throughput, high costs and extensive technical errors,
which inhibited their broad application in cancer research® !l
Recent technological innovations using microwells!>~1* and
microdroplet encapsulation'™ ' have increased the throughput of
single cell RNA-seq to thousands of cells and greatly reduced
associated costs. However, high-throughput methods do not
enable imaging or selection of single cells, leading to high doublet
error rates and the inclusion of many unwanted cells, such as
dead cells!!. Furthermore, the ability to sequence RNA in nuclei
instead of whole cells on these platforms has not been
demonstrated.

A second major challenge for single cell RNA-seq in cancer
research is that most methods require fresh tissue to be
dissociated into single cell suspensions for analysis!”. This is
logistically challenging and problematic in cancer research, since
most archival tissue samples have previously been flash frozen
and stored in cryobanks, a process that ruptures the cell
membranes. However, previous work has shown that nuclear
membranes remain intact during freeze-thaw cycles, and that
single nuclei can be isolated from frozen tissues'® that allow
nuclear suspension preparation'®?! and construction of cDNA
libraries while avoiding the use of proteases to dissociate whole
cells'8. Neuroscientists have also shown that RNA-seq of single
nuclei is feasible and highly representative of transcriptional
profiles from cells, when fresh tissues are dissociated!® 2224 and
even when postmortem brain stored long term at —80°C is

a MDA-MB231
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used!®. This is in contrast to whole brain cells, where the use of
proteases for whole-cell dissociation has been shown to activate
the crucial immediate early genes?. However, to date, no one has
investigated the transcriptional profiles of single tumor nuclei, to
determine if they are representative of whole tumor cells.

To address these limitations, we developed a nanogrid platform
and microfluidic depositing system that enables imaging, selec-
tion, and sequencing of thousands of single cells or nuclei in
parallel. We applied this nanogrid single-nucleus RNA-seq
(SNRS) system to compare the transcriptional profiles of cancer
cells and nuclei in cell lines and further applied this method to
study phenotypic diversity and subpopulations in a frozen tumor
sample from a triple-negative breast cancer (TNBC) patient.

Results

Concordance of bulk nuclei and cells from cell lines. Prior to
single cell analysis, we investigated whether the transcriptional
profiles of bulk cells and nuclear fractions are concordant in breast
cancer cell lines. We performed RNA-seq of nuclear and cellular
fractions isolated from millions of cells from four breast cancer
cell lines, including three triple-negative subtypes (BT549, MDA-
MB231, and MDA-MB-436) and an ER+/PR+ subtype (T47D).
Nuclear fractions were purified from cellular suspensions using a
detergent to lyse the plasma membrane, followed by three rounds
of purification to eliminate residual cytoplasmic RNA (Online
Methods). The nuclear suspensions were imaged in bright field
and fluorescence using DAPI to ensure that cellular membranes
and cytoplasm was no longer present (Supplementary Fig. 1).
RNA-seq was performed on the nuclear and cellular fractions
from each cell line at 20 million reads/sample, resulting in 50% of
the reads mapping to the CDS regions and 15-16K gene coverage
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Fig. 1 Bulk nuclear and cellular expression profiles from cell lines. a Scatter plots of gene expression [log,(counts +1)] from bulk cellular and nuclear
fractions isolated from four breast cancer cell lines. Significantly differentially expressed genes are highlighted in red and Spearman correlations are
indicated. b Gene expression heat map of 40 breast cancer genes identified in TCGA across three biological replicates of bulk cell and nuclei fractions from

the four breast cancer cell lines
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Fig. 2 Overview of the nanogrid single-nucleus sequencing method. a Nuclear or cellular suspensions are prepared and stained with DAPI (nuclei) or
Hoechst and propidium iodide (cells) for nanodispensing into the 5184 wells in the nanogrid. Each nanowell is 400-600 pm, and the well depth range is
950 pm-2.2 mm. The 500 pm scale bar indicates the well diameter. b The nanowells are imaged using automated scanning fluorescent microscopy and
~1800 wells containing single nuclei or cells are selected, while nanowells containing multiple cells, no cells or dead cells are excluded. ¢ In the selected
nanowells, the nanodispensor deposits lysis buffer and WTA reagents to perform reverse transcription of mRNA to cDNA using SCRB-Seq chemistry.
This process also adds a UMI, well barcode and P5 adapter sequence to the (A), tail. N represents A, C, G, or T; B represents C, G, or T; and V represents
A, C, or G. d The barcoded cDNA with adapter sequences is pooled into a single reaction. e Nextera tagmentation is performed followed by PCR
amplification to generate sequencing libraries with Illumina |7 indexes. f Next-generation sequencing is performed on the pooled libraries, after which the

individual cell data is demultiplexed using the well barcodes

for each cell line. Correlations in gene expression levels between
the nuclear and cellular suspensions were very high (r,> 0.9), with
only 3-38 discordant genes in each sample (Fig. 1a). In total,
BT549 showed 13/15,699 discordant genes, while MDA-MB231
showed only 3/15,592 discordant genes, MDA-MB-436 showed 4/
16,479 discordant genes, and T47D showed 6/16,314 discordant
genes between cells and nuclei. Importantly, most genes had dif-
ferences in expression levels, rather than having a complete
absence of expression in the cells or nuclei. However, EIF3CL was
only detected in BT549 whole cells and was not detected in the
nuclei. We speculate that this mRNA is the result of rapid
transportation between cellular compartments, since the sequen-
cing depth was sufficiently high in both samples to rule out false
negatives. Other genes, such as NBPF11, were found to have 2.1-
fold-increased expression in the nuclei of MDA-MB436 and 3.5-
fold-increased expression in the nuclei of MDA-MB231. Notably,
six differentially expressed genes were read-through transcripts
(Fig. 1a). We also examined the gene expression levels for a tar-
geted set 40 breast cancer genes that were previously reported to
be frequently deregulated in a study in The Cancer Genome Atlas
project?. These data show only minor variations between cells

NATURE COMMUNICATIONS | 8: 228

and nuclei that were not statistically significant (false discovery
rate (FDR)-adjusted p value >0.05 or llog,(fold change)l < 1)
across three biological replicates in each of the four cell lines
(Fig. 1b). Collectively, these experiments suggested that the tran-
scriptional profiles of bulk nuclear RNA are highly representative
of cellular RNA in breast cancer cell lines.

Nanogrid SNRS. We developed a high-throughput nanogrid
SNRS approach by incorporating the ICELL8 system (Wafergen,
Inc.) (Fig. 2, Online Methods). The nanogrid system consists of
three main components: (1) an alloy nanogrid with 5184 nano-
wells, (2) a nanodispensing system, and (3) an automated imaging
system. First, single cell or single-nucleus suspensions are pre-
pared from cell lines or frozen tissues and stained with propidium
iodide (PI) and Hoechst (cells) or stained with DAPI (nuclei).
The suspensions are then diluted to one cell or nucleus/50 nL and
dispensed into the nanogrid resulting in a Poisson distribution
of cell occupancies across the 5184 nanowells with ~1800 wells
that are expected to have single cells or nuclei (Fig. 2a, and
Supplementary Fig. 2). Each well in the nanogrid has a unique
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Fig. 3 Imaging and data metrics of single SK-BR-3 nuclei and cells. a Nuclear suspensions were stained with DAPI (blue) and cytotracker (red), while cellular
suspensions were stained with Hoechst (blue) and cytotracker (red) for fluorescent microscopic imaging at x40 magnification to visualize the nucleus and
cytoplasm. The 100 pm scale bar indicates the cell size as a reference. b Nanodispensed nuclei and cells were imaged in nanowells using DAPI, or Hoechst
and Pl ¢ Nanogrid maps of cells or nuclei that were selected for RNA-seq. d Sequence data metrics were calculated for single nuclei and single cells

from the SK-BR-3 breast cancer cell line, where the boxes indicated the 75% interquartile range and whiskers showed the default values of the boxplot, with

N =485 for single nuclei and N =424 for whole cells

11 bp well barcode (WBC) that is preprinted in the chip that
also contains an oligo dT sequence, a 10 bp unique molecular
identifier (UMI) and a P5 Illumina adapter sequence. After the
cells or nuclei are dispensed, automated imaging is performed
within 10 min using a fluorescent microscope with a robotic stage
to image all 5184 wells (Fig. 2b). The software automatically
identifies nanowells containing single cells or nuclei, and excludes
wells with doublets or no cells. The user can then choose to
manually select a subset of the prioritized cells based on the
morphology parameters, PI, Hoechst, or DAPI staining. Only
wells with live cells (PI-, Hoechst+) or intact nuclei (DAPI+) are
selected for depositing reagents for lysis and whole-transcriptome

4 |8:228

amplification (WTA) (Fig. 2b). The WTA reaction is performed
using SCRB-Seq?’, which uses template switching to select
polyadenylated RNA and incorporate a P5 adapter sequence
along with the WBC and UMI into the 3’ end of each
RNA molecule (Fig. 2¢). A second adapter is added to the 5" end
(RT-E50LIGO) by template switching for second-strand synth-
esis and subsequent PCR enrichment. The nanogrid is then
inverted and all of the barcoded cell libraries are pooled together
into a single reaction for PCR amplification followed by QC for
size distributions (Fig. 2d). The ¢cDNA is then used to generate
IMlumina sequencing libraries with one-sided tagmentation and
PCR amplification (Fig. 2e). A detailed figure of the steps involved
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in constructing barcoded libraries from nanowell adapters is
provided in Supplementary Fig. 2 and the Poisson distribution of
single cells and nuclei in nanowells is shown in Supplementary
Fig. 3. The pooled libraries are then sequenced on the Illumina
system, and individual FASTQ files are demultiplexed using the

WBC identifiers for downstream data processing and analysis
(Fig. 2f and Supplementary Fig. 4).

Single nuclei and cell concordance in a cancer cell line. To
determine if the transcriptional profiles of single nuclei were
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representative of whole cells, we applied nanogrid SNRS to isolate
and sequence nuclei and cells from an isogenic Her2+ breast
cancer cell line (SK-BR-3) (Fig. 3). Nuclear and cellular suspen-
sions were prepared and stained with a nuclear stain (Hoechst)
and cytoplasmic stain (cytotracker) to confirm that the
cytoplasmic membrane was no longer intact in the nuclear sus-
pensions (Fig. 3a). We subsequently stained the nuclear suspen-
sions with DAPI and the cellular suspensions with PI
and Hoechst, and dispensed single cells into the nanogrid for
automated imaging (Fig. 3b). In total, we selected 525 single
nuclei and 525 live cells in the nanogrids for sequencing (Fig. 3c).

To understand global expression differences in the data, we
computed a number of metrics for the single cell and nuclei data
sets (Fig. 3d). On average, we sequenced 1.3 million reads/nucleus
or cell, achieving a coverage of 4600-5500 genes and average
unique molecular identifier (UMI) count of 34,690 (£12,609 SD)
for cells and 34,540 (10,570 SD) for nuclei. Single cells or nuclei
with poor metrics were filtered, resulting in final data sets of 485
nuclei and 424 whole cells (Online Methods). Although the
difference in variance for most distributions was determined to be
significant by Kolmogorov-Smirnov test (P <0.05) due to large
numbers of nuclei in each distribution, most metrics, including
mapped read fractions, 5" UTR tags, 3" UTR tags, rRNA reads,
and gene coverage showed very low percent changes (2-5%)
between nuclei and cells. However, we did observe an 8.5%
increase in intron tags and 9.2% decrease in CDS tags in the
single nuclei data, which is consistent with the dogma that nuclei
contain unprocessed pre-mRNA that have not yet undergone
splicing and export from the nucleus®® 2°. To compare our data
to another platform, we performed Drop-Seq analysis of SK-BR-3
cells and compared the sequencing metrics to downsampled
nanogrid RNA data (Supplementary Table 4). These data revealed
similar per cell gene-detection rates, but higher UMI counts/cell
on the nanogrid platform.

We next investigated whether any biological differences could
be detected between nuclear and cellular transcriptomes. Our
data suggest that the overall expression level and abundance of
genes are very similar (r;=0.95) between nuclei and whole cells,
consistent with the bulk experiments (Fig. 4a). Analysis of gene
expression variance showed a bell-shaped curve, high correlation
(p=0.451, Spearman correlation) of gene expression values
between all cells, and gene dropouts at lower expression levels,
justifying for the use of the zero-inflated negative binomial single
cell differential expression (SCDE) statistical model (Supplemen-
tary Fig. 5). In total, we detected only 6.66% (196/2942) genes that
were significantly differentially expressed using SCDE*® (FDR-
adjusted p values <0.05 and llog,(fold change)l>=1). Gene
ontology and pathway analysis of these genes showed higher
levels of LincRNAs, pseudogenes, and nuclear-function genes in
the nucleus compared to cells, while conversely the nuclei showed
low levels of mitochondrial and transmembrane genes, which
showed higher levels in the cells (Fig. 4b and Supplementary
Tables 1 and 2). We also investigated whether known RNA or
protein localization in specific cellular compartments showed any
correlation with whether RNA was expressed at high levels in the

nuclei versus whole cells (Fig. 4c). These data show that proteins
and RNA that localize to the nucleus are significantly elevated in
nuclei, whereas proteins and RNA that localize to the cytoplasm
are higher in cells.

We further investigated whether any cancer genes or pathways
were differentially expressed in the nuclei and whole cells. We
performed gene set variation analysis (GSVA) analysis®! using
189 oncogenic gene set signatures (MSiDB v5.2)*2, which showed
that most signatures (97.35%) were highly concordant, but that
5/189 gene sets were differentially expressed (Fig. 4d and
Supplementary Table 3). The differentially expressed gene
signatures include three pathways that were upregulated in the
nucleus (EIF4E translation and nuclear export factors, RB cell
cycle signaling, and CSR serum starvation response up-regulated)
and two pathways that were upregulated in the whole cells (NFKB
inflammation and CSR serum starvation response up-regulated).
We also examined the expression levels of 40 breast cancer genes
that are frequently deregulated in TCGA?® (Fig. 4e). Only one
gene, CDC28 protein kinase regulatory subunit 1B (CKS1B), was
found to be significantly lower (2.4-fold) in the nuclei compared
to the cells. We also applied the PAM50 gene signature®® to
classify single cells into the five major clinical breast cancer
expression subtypes (normal-like, luminal A, luminal B, human
epidermal growth factor receptor 2 (Her2) or basal-like). The
relative frequency shifted slightly in each group, however, it was
not significant by concordance test (p value >0.4). These data
showed that most of the single cells and nuclei were classified as
Her?2 positive, consistent with the report that SK-BR-3 is a Her2-
positive cell line by immunohistochemistry>*. However, we also
found that a subset of the single cells were classified as luminal B
(10.7, 23.6%), basal-like (1.8, 5.9%), normal-like (0.4, 1.4%), or
luminal A (2.4, 3.3%) in both the nuclei and cells (frequency
concordance P> 0.4), suggesting that the population of cells
represented a composite mixture of molecular subtypes (Fig. 4f).

We used the single cell gene expression data to calculate
genomic copy number profiles at ~1 megabase resolution (Online
Methods). A similar approach was previously applied to single
cell RNA-seq data from glioblastoma patients®. In our data, we
found that the copy number profiles of nuclei and whole cells
were highly concordant (Pearson’s r = 0.91) and identified several
large-scale amplifications, including 1q (MDM4), 7p, 8q (MYC),
17q (HER2), 19 and 20 (BCASI) and deletions of 6q, 11p, 13, 17p
(TP53), 18 (DCC) and Xp (Fig. 4g). However, neither the single
cell nor nuclei copy number profiles could accurately resolve the
smaller (<10 mb) chromosome deletions and amplifications and
did not detect the MET amplification on chromosome 7q. The
correlation between the single cell or nuclei profiles and the
whole-genome sequencing was r=0.38 (Pearson correlation).
Collectively, these data suggest that transcriptome profiles of
nuclei are highly representative of whole cells, and can be used to
study many cancer genes and signaling pathways.

Phenotypic diversity of single nuclei from a breast tumor. We
applied nanogrid SNRS to study tumor subpopulations and
transcriptional diversity in a triple-negative (ER—, PR—, and

Fig. 4 RNA-seq of single nuclei and cells in SK-BR-3. a Scatter plot of average gene expression [log,(count +1)] of 485 single nuclei and 424 single cells,
with 196 significantly differential genes labeled in purple and Spearman’s correlation values indicated. b Heat map of selected differentially expressed genes
that are LincRNAs, pseudogenes, nuclear-function genes, mitochondria or transmembrane. ¢ Protein and RNA localization enrichment analysis comparing
genes overexpressed in the nucleus or cells. d Venn diagram and volcano plot of GSVA scores for 189 oncogenic gene sets expressed in nuclei or cells.
e Boxplots for 40 TCGA breast cancer genes grouped by nuclei or cells, with a star indicating significant differential expression in the CKS1B gene

(SCDE model, FDR-adjusted p value <0.05). f Breast cancer subtypes of single cells or nuclei predicted with the PAM50 gene signature. The frequency
concordance was determined as non-significant by the Wilcoxon-matched pairs signed-rank test, where p value >0.4. g Clustered heat map of single cell or
nuclei copy number profiles calculated from RNA data, compared to whole-genome-sequencing data labeled as pop. Breast cancer genes are annotated on

the WGS track
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HER2-) breast tumor that was cryopreserved for 2 years. Nuclear
suspensions were generated from the frozen tumor and 502 nuclei
were sequenced using cDNA obtained with the nanogrid
platform. In total, we identified 1421 wells with single nuclei
during the imaging step and selected 502 wells with larger nuclei
(>8 microns) to increase the tumor purity and avoid sequencing
normal stromal cells. The tumor purity was estimated by

1 2 345 6 7 891011

1213141516 1718 1920.. X

Stromal
cells

£
£
E

T ST

MR g

Iam

|
|
T

o

Copy number
ratio (logp)

R

191onu a|Buis 288

TP53 —plpltimdilaip

Del l . Amp
d

NIDMA SN St o
! [ (7
I
IIII‘
I \ i
I

IIIIIII II Il III

ZKSCAN3
LINC00338
REXO1L1

IIIIIIII,I |
IIIII I"'I |HHII ]II|‘||I1I|"I il

8l LI | I} 1 SLPI
| | LW | GLRX

A N (T (1]
| ] | | KRT7
JLLI | | /1] Egﬁgﬂm
| I I | II[ KLK7
III | I | I II il sesn
W 18} Il | III IIIIIIIIII 1] 7o
L bttt
0l et I IIIIII I i
| m o

II III IIIIIII II I IIII‘I I III 1

IIIIII II I I || III I | III | I III II
i | IlIJ IIII;III Il ) II Ih II ‘ l‘w
| III II III IIII III III II III| II | IIII IIII II I1II III II I II Y, H CENPE

IHIII | I | I | IIIII II II HISTZHSA

II| I II I I IIII |
(] Il 1l II
0] LIl L
| II I IIIIIIIIIIIIIIIIII IIIIII ‘[

| I Y |
I IEEEELE | I|II 0 B | | IIIIIIlI

| i ’ il "IH JM -

[1
1y II | | 1l
I IIII II III | III IIIIII
! H! I CCNB1
IIII' IIIII [ I (I 1 5RcAz

|| | IIII I IIIIII 1)1 III | III IIII‘IIII
| I Il I 1l I I I| l| EcT2
ey | e

11

III IIII [ IIIIIIII 1 IIII IIIIIIIIII III II I | IIIIII | IIII IIII III IIIIII I e
LI | | III l[II III 11 lIIII [ III

| I TUBB4B

IIII IIIIII IIII | III II‘I‘ IIII IIIIII IIII“ III
! ]11II [T III‘IIIIh I IIhIII FAM166A

i | I”‘

| | )
| II]III[I 110l KRT8

| PRC1

UL
I NCAPD2

I CISORFES

I
II‘II‘I

dsubA MsubB EsubC  Single nuclei

Gene set score
—_—

012345

NATURE COMMUNICATIONS | 8: 228

|| ARHGAP11A

histopathology to be 41%. The data metrics resulted in an average
of 975,097 reads, 14,886 UMI counts, and 3619 genes/nucleus
(Supplementary Fig. 6). We also used nanogrid SNRS to sequence
380 nuclei from a normal breast tissue sample. To distinguish
between tumor and stromal cells, we calculated the genomic copy
number profiles of each nucleus and clustered the data together
with the normal breast tissue nuclei that showed diploid copy
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number profiles (Fig. 5a). In our previous work, we have shown
that most tumor cells in breast cancer are aneuploid, while most
normal cells have diploid profiles with no evidence of somatic
mutations®® 2!, The hierarchical clustering of the copy number
data identified 5/502 cells with normal diploid copy number
profiles representing stromal cells (Fig. 5a, green arrows) and 497
cells with aneuploid tumor profiles. The aneuploid tumor cells
had amplifications in chromosomes 1q (MDM4), 19q (AKT2),
and deletions on chromosome 1p, 3, 4, 11p, 12q (MDM2), 17p
(TP53), 19q, 22. These data suggest that the purity of the tumor
cells was increased from 41 to 99% using the automated imaging
and selection of nanogrid wells with larger nuclei (Fig. 5b).

We first applied MAST?> 3¢ to identify differentially expressed
cancer genes (FDR-adjusted p value <0.05 and [log, (fold
change)] > 1) between single tumor cells (N =497), stromal cells
(N=5), and normal breast cells (N=240). This analysis
identified 30/229 known cancer genes (T200 targeted platform)
and 11/40 TCGA breast cancer genes that were differentially
expressed relative to the normal breast cells, including KRAS,
GATA3, CCNDI, CDH1, GNAS, and several others. Most of these
genes were expressed across all tumor cells, however, a few cancer
genes, including AURKA and TOP2A, were restricted to a minor
subpopulation (Supplementary Fig. 7).

To further understand phenotypic variability within the tumor
cells, we focused on the 416 aneuploid tumor cells that past our
QC filters (Online Methods) and performed principle component
analysis (PCA) linear dimension reduction to identify the top
variable genes from the first five principal components (49.34%
variance explained) for unsupervised clustering using shared
nearest neighbor (SNN) modularity optimization 7 (Fig. 5¢) and
t-distribution stochastic neighbor embedding (t-SNE)*%, which
was implemented using the SEURAT package!® (Fig. 5c-e). This
analysis identified three subpopulations of tumor cells (clusters A,
B, and C). Subpopulation A consisted of 217 nuclei (52.2%) and
showed overexpression of seven genes compared to other tumor
subpopulations, which did not include any known cancer genes.
Subpopulation B consisted of 121 cells (29.1%) and showed
overexpression of 13 genes, including seven cancer genes (HSPBI,
ANXAI1, SLPI, KRT8, KRT19, KLK7, and ABL2) and several
Keratin genes (KRT8, KRT7, KRT19, and KRT6B). Subpopulation
C was the rarest subpopulation (18.8%), consisting of 78 cells, but
had the highest number of cancer genes (N=13) that were
overexpressed (MKI67, TPX2, TOP2A, PRCI1, CDKI, AURKA,
CKS2, BIRC5, DEPDCI UBE2C, NEK2, BRCA2, and RAD51API).
Several genes that were differentially expressed in subpopulation
C are involved in DNA damage repair (BRCA2, RAD51API, and
HMGB2), apoptosis (BIRC5, DEPDCI) and mitosis or cell cycle
regulation, including high expression of Ki-67 (MKI67), a marker
of cell proliferation. To determine if the expression of the 13
cancer genes were truly restricted to the minor C subpopulation,
we plotted the individual gene expression levels of single cells
using Violin plots (Fig. 5e). These data confirmed that most of the
cancer genes were highly elevated in subpopulation C, and had
low expression in the A and B subpopulations.

Due to the high levels of Ki-67 in subpopulation C,
we performed gene signatures analysis for the cell cycle stages
(GL, S, M, and G2) in all of the tumor nuclei (Fig. 5g). These
data showed that many of the subpopulation C tumor cells
were in the G2 or M phase of the cell cycle, suggesting an
actively proliferating subpopulation, while many cells from
subpopulation A and B were in the G1 phase or GO (absence of
scores). Our data suggest that while subpopulation C was the
minor subpopulation in the tumor mass, it also had the most
malignant cancer phenotypes. The nuclei in subpopulation C are
likely to be in the G2 or M phase, because the nuclear membrane
does not break down until prometaphase of mitosis and is
reformed during telophase. Therefore, there are still some nuclei
in prophase, prometaphase, telophase, and cytokinesis that are
mitotic. Interestingly, the imaging data of nuclear size estimated
from nuclear signal intensity showed that cells in the G2 or
M phase had significantly larger sizes compared to other stages
of the cell cycle (Supplementary Fig. 8), which is consistent
with previous data on the nuclear diameters of G2/M cells*® 4°.
Our analysis of the cell cycle data estimate that 18.75% of the
cells were in the G2/M stage of the cell cycle, suggesting that we
did not bias strongly against other cell cycle stages by the
selection of larger nuclei by DAPI staining during the nanowell
imaging steps.

We further investigated the diversity of the classical breast
cancer subtypes and oncogenic gene signatures at single cell
resolution. GSVA analysis identified variation in the gene
signatures for a number of cancer phenotypes, including
stemness, proliferation, and angiogenesis (Fig. 5f). Consistent
with our previous analysis, we found that subpopulation C was
enriched for cell proliferation, while subpopulation A showed low
scores for proliferation. The GSVA data further showed that
subpopulation B had higher scores for hypoxia, invasiveness,
migration, apogtosis, and glycolosis. Next, we used the PAM50
gene signature®® to investigate the diversity of the five major
breast cancer subtypes, and found that most cells were of the
basal-like (156/416) subtype, which is expected since this subtype
is commonly associated with TNBC patients®*. However, we also
identified a significant fraction of single tumor nuclei that were
Her2 positive (15.6%), luminal A (3.4%), luminal B (26.4%), and
normal like (17.1%), suggesting that the tumor was a mixture of
different subtypes (Fig. 5h). Studies have also shown that TNBC
patients can be further classified into six additional subtypes
based on gene expression signatures: mesenchymal (M),
mesenchymal stem-like (MSL), luminal androgen receptor
(LAR), immunomodulatory (IM), basal-like 1 (BL1) and basal-
like 2 (BL2)**. We applied the TNBC subtype signature to the
tumor nuclei predicted by PAM50 to be basal-like, which showed
that most nuclei were classified as MSL (90.6%), but that a few
cells were IM (4%) or belonged to the other TNBC subclasses
(Fig. 5h). These data suggest that single tumor nuclei show
diverse cancer phenotypes and subtype classifications within a
single patient’s tumor.

Fig. 5 Single-nuclei sequencing of a TNBC. a Clustered heat map of single nuclei RNA copy number profiles isolated from tumor tissue or normal breast
tissue. Green arrows indicate five stromal cells from the tumor with diploid copy number profiles. Bar-plot shows increase in tumor purity after image

selection of larger nuclei. b Enrichment of tumor cells using nanogrid SNRS from 41 to 99%. ¢ t-SNE projection of single nuclei in high-dimensional space
with SNN clustering of three subpopulations a, b, ¢ indicated by color. d Clustered heat map of single nuclei RNA expression profiles using differentially
expressed genes. Cancer genes are highlighted in red and the three major clusters are indicated by color. e Violin plots of single cells expression levels of
individual genes across the three tumor subpopulations. f GSVA scores for a subset of oncogenic phenotypes with single nuclei sorted by each row

independently with header bars indicating their identities of the predicted subpopulations. g Clustered heat map of cell cycle signature scores for single
nuclei with subpopulation indicated in the header. h Subtype signature classifications for single tumor nuclei predicted by PAM50 for the five breast cancer

subtypes (left) and for the six TNBC subtypes (right)
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Discussion

In this study we report a nanogrid SNRS technology that
performs high-throughput single-nuclei imaging, selection, and
sequencing in an integrated platform. Nanogrid sequencing has
several technical advantages over existing hi%h—throughput single
cell RNA-seq methods that use microwells'”~'# or microdroplet
encapsulation!> 16, Our system enables automated imaging of the
5184 wells that contain single cells or nuclei with fluorescent
channels, followed by selection of specific nanowells for
nanodepositing of WTA reagents. Imaging and selection of single
cells is not technically feasible using microdroplet or microwell
methods'> 1°. With nanogrid imaging, we can reduce cell
doublets and exclude dead cells by imaging. Another technical
study using the nanowell platform estimated the doublet error
rate to be 2.4% by human-mouse mixing experiments?!. In
addition, by staining nuclei with DAPI, our approach can select
larger nuclei, and thereby increase the purity of the tumor cells to
99%. This addresses a major issue in standard RNA-seq studies
of tumor tissues in which many normal stromal cells often
affect gene signature analysis. While a previous study has
combined robotic micromanipulation and imaging*? to perform
low-throughput single cell RNA-seq (about 10 min/cell) and
individual single cell library construction, the nanogrid system
completes imaging of all 5184 wells in only 10 min and requires
only a single sequencing library to be constructed for sequencing
analysis. This greatly reduces the cost to about $2.20/cell, with the
cost per 1800 cell library at $1.10/cell and the sequencing cost at
$1.10/cell for achieving 220K reads/cell on a HiSeq4000 system
(Illumina). Another study developed a nanowell system that uses
barcoded mRNA capture beads to create a portable, low-cost
system called Seq-Well*>. While very cost effective and high
throughput, this system does not allow selection of imaged
nanowells, which is an advantage of our platform.

We applied the nanogrid SNRS to study the transcriptional
differences of cells and nuclei in a breast cancer cell line, which
showed a high concordance in transcript abundance and
expression levels. These data challenge the long-standing para-
digm that nuclear transcriptomes are not representative of whole
cells. However, our data are consistent with recent studies in
neural cell types that have reported a high concordance between
the transcriptional profiles of nuclei and whole cells'® 22-24, we
further applied nanogrid SNRS to study a frozen tumor sample
from a TNBC patient that was cryopreserved for about 2 years.
On a parenthetical note, we do not expect that length of freezing
will have a major effect on the stability of nuclear RNA, however,
multiple freeze-thaw cycles may lead to RNA degradation. In the
TNBC tumor data, we identified a minor (19%) subpopulation
of tumor cells that were highly proliferative and overexpressed
many cancer genes. Our data also showed phenotypic hetero-
geneity in stemness, angiogenesis, and proliferation, as well as the
co-existence of multiple breast cancer subtypes in single cells
from an individual tumor. These data are consistent with a recent
single cell RNA-seq study in glioblastoma that showed variation
in EMT and the co-existence of many clinical subtypes within the
same patient’s tumors. This striking amount of pre-existing
phenotypic variation may explain why TNBC fatients evolve
rapid resistance to neoadjuvant chemotherapy*4-46,

Although the majority of nuclear and cytoplasmic genes were
concordant, we did identify a few differences in LincRNAs,
pseudogenes, mitochondrial genes, and nuclear-function genes.
These data are consistent with previous data showing that
pseudogenes and LincRNAs are transcribed and preferentially
located in the nucleus over the cytoplasm*”> 48, Our data also
show that mitochondrial genes are not expressed at high levels in
the nucleus, which is consistent with the localization of the
mitochondria in the cytoplasm?®. We also found an increased
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abundance of intronic sequences in the nucleus, which is expected
based on our knowledge of alternative splicing of pre-mRNAs in
the nucleus®® 2°. Importantly, our data suggest that these gene
expression differences did not have a major influence on the
measurements of most cancer genes and signaling pathways.

In closing, the SNRS nanogrid system opens up new avenues of
investigation into the analysis of single nuclei transcriptomes
from frozen tissue sections. In addition to imaging live and dead
cells, or nuclear size as estimated from intensity, the nanogrid
imaging approach is flexible and can be applied broadly to
identify cell types of interest based on fluorescent markers. We
expect that the SNRS nanogrid approach will benefit not only
cancer research, as demonstrated in this study, but will also
benefit many diverse fields of biomedical research, where the
analysis of single nuclei from frozen tissue samples can provide
new insights into human diseases.

Methods

Breast cancer tissue samples and cell line. The SK-BR-3 breast cancer cell was
obtained from Characterized Cell Line Core (CCLC) Facility at the University of
Texas MD Anderson Cancer Center, Houston, TX. The cell line was tested and
found to be mycoplasma-negative and authenticated with the short tandem repeat
method by the CCLC facility. A frozen tumor sample was obtained from an
invasive ductal carcinoma patient in collaboration with Dr Hong Zhang and

Dr Funda Meric-Bernstam at MD Anderson Cancer Center. The study was
approved by the internal review board at the University of Texas MD Anderson
Cancer Center and the patient consented to the study. The triple-negative status of
this tumor sample was determined by immunohistochemistry for estrogen receptor
(<1%) and progesterone receptor (<1%), and fluorescence in situ hybridization
analysis of HER2 amplification using the CEP-17 centromere control probe
(ratio of HER2/CEP-17 < 2.2).

Preparation of single-nucleus suspensions. Nuclei from frozen tumors were
isolated using a NST/DAPI buffer (800 mL of NST (146 mM NaCl, 10 mM

Tris base at pH 7.8, 1 mM CaCl,, 21 mM MgCl,, 0.05% BSA, 0.2% Nonidet P-40)),
200 mL of 106 mM MgCl,, 10 mg of DAPI, and 5 mM EDTA. The frozen tumors
were dissociated into nuclear suspensions by mincing with no.11 surgical scalpels
in 1 mL of NST-DAPI cytoplasmic lysis buffer at 4C using ice blocks in a plastic
Petri dish. Nuclear suspensions were filtered through 37-pm plastic mesh (Falcon).
The final suspension was diluted to 1000 pL of 1 cell/50 nL with 1x PBS and
D-RNase free water (0.35 x PBS in the final dilution). For the SKBR3 cell line, a
10 cm cell plate at ~100% confluence was tryspinized and washed two times
with 1x PBS. The nuclei were released and stained with DAPI/NST lysis buffer,
re-pelleted, suspended in DAPI-NST, and then filtered through a mesh filter.

As with the tumor single-nucleus suspension, the final suspension was diluted to
1000 pL of 1 cell/50 nL with 1x PBS and D-RNase free water.

Preparation of single cell suspension. The single cell SK-BR-3 experiment was
completed on the same day as the single-nucleus SK-BR-3 experiment and used the
same passage of cells. A 50% confluent 10 cm plate of SKBR3 cells was trypsinized,
washed two times with 1x PBS, filtered, and stained with Hoechst 33342 and PI to
distinguish live/dead cells according to the manufacturer’s recommendations
(ThermoFisher). The whole-cell suspension was dispensed in the same manner as
the nuclear suspension.

Imaging QC of nuclear and cellular suspensions. To ensure that the nuclear
fractions did not have any evidence of cytoplasmic membranes, we stained the
nuclear fractions with Hoechst and Cytotracker Red for imaging at x40 on the
Nikon Eclipse fluorescent microscope. Similarly, we stained cellular fractions with
Hoechst and Cytotracker Red to image the cytoplasm and nucleus. Z-stack images
were collected in fluorescent channels, in addition to bright field imaging, and
images were merged to observe the cytoplasm and nucleas of the cell suspensions.

Nanogrid single cell/nucleus sequencing system. The ICELL8™ single cell
nanogrid RNA-seq system consists of three main components. The first component
is an ICELL8™ nanogrid chip manufactured in a square layout (72 x 72) in a

41 mm? aluminum alloy with 5184 nanoliter wells (150 nL) using standard
manufacturing processes®’. Each nanowell was preprinted with barcoded

primers (UMIs) with poly(dT) ends during manufacturing. This chip-based
technology has been 2published previously in targeted sequencing and real-time
PCR applications" >2. The second component is a multisample nanodispenser that
uses microsolenoid-control to precisely dispense 50 nL volumes into the nanowells.
The third component is an automated imaging system composed of an Olympus
BX43 microscope fitted with a x4 objective, a robotic stage, and a CCD camera that
is programmed to take images of all 5184 wells using a customized version of
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uManager open source software, followed by automated image analysis software
called CellSelect™ that is used to analyze acquired images and identify single cell or
nuclei containing wells. A more detailed technical description of the ICELL8
nanogrid single cell sequencing system and its hardware components is provided
elsewhere®".

Nanodispensing of nuclei and cells. Disaggregated nuclear or cellular
suspensions were diluted to 20 cells/uL in eight wells of a 384-well plate (Al
through D2) and dispensed into the WaferGen ICELL8™ chip resulting in a Poisson
distribution with about 30% of nanowells with single nuclei or cells. Poisson
distribution of cells or nuclei in the chip nanowells is achieved because each 50 nL
dispense on average dispenses a single cell when cells are at 20 cells/uL. Addressing
every well of the ICELLS chip takes 12-15 min. Every nanowell contains an adapter
sequence with a well Barcode (WB, 11 nt), UMI®? (10 nt) and a 30-mer oligo-dT
that is subsequently incorporated into the 3’ end of the transcript during

WTA using the SMRT-Seq2%* chemistry.

Nanowell imaging and selection of single nuclei and cells. Following cell
dispensing, the microchip is centrifuged at 300xg for 5 min to collect cells in a
single plane and the nanogrid wells are automatically imaged using an Olympus
BX43 fluorescent microscope with a robotic stage. The image acquisition takes
about 6 min (3 min/fluorphore). After imaging, the microchip is sealed, placed in
freezing chambers, and stored at —80 °C until reverse transcription (RT). Custom
CellSelect™ software identifies wells with single cells, and filters cells with no cells
or multiple cells based on multiple automatic and user adjustable imaging
parameters. The nanowells with single cells or nuclei are then prioritized and the
user can manually review images and fluorescent channels to identify live cells or
nuclei for selection. A file containing positional information on identified candidate
wells (dispense file) instructs the nanodispensor to deposit reagents only in the
selected wells for WTA.

3’ RT and PCR amplification. Frozen chips were thawed, and 50 nL of RT solution
(88 uL 5 x RT buffer, 44 pL 10 mM RT dNTPs, 4.4 uL 100 pM RT-E50LIGO, 57.2
pL D-RNase-free water, and 26.4 pL 200 U/uL RT enzyme) was deposited into each
selected well using the nanodepositing system. For chips with single nuclei, the
57.2 pL D-RNase free water was replaced with 52.8 pL D-RNase free water and 4.4
pL Triton X-100 to promote lysis of the cellular membrane. After RT, cDNA
products from selected wells were pooled together, purified, and underwent
exonuclease I treatment (2 pL 10x exonuclease buffer, 1 pL 20 U/pL exonuclease I)
to remove excess, unannealed primers. The pooled barcoded cDNA libraries
then underwent PCR amplification (5 pL 10x amplification buffer, 1 pL 50x
amplification dNTPs, 1 pL amplification primer, 1 pL amplification enzyme, 22 pL
D-RNAse free water) for 18 cycles for cells or 19 cycles for nuclei. The PCR
products were purified with 0.6x AMPure XP beads and eluted in 12 pL D-RNase
free water. The size distribution of cDNA was QCed using the Qubit dsDNA HS
fluorometric assay and Agilent’s high sensitivity DNA chip on the Bioanalyzer
system.

Library construction and next-generation sequencing. The pooled cDNA was
diluted to 0.2 ng/pL and used to construct Nextera XT (Illumina) DNA libraries
with i7 index primers following the manufacturer’s instructions. The final libraries,
containing barcoded single nuclei or single cell transcriptomes, were sequenced at
100 paired-end cycles on the HiSeq4000 system (Illumina). Data were processed
using the CASAVA 1.8.1 pipeline (Illumina Inc.), and sequence reads were
converted to a master FASTQ files.

Bulk RNA-seq of nuclei and cells. RNA was extracted from the nuclear and
cell fractions isolated from four breast cancer cell lines (MDA-MB-436, BT-549,
MDA-MB-231, and T47D). One 10 cm dish at 60-85% confluence was used for
each biological replicate (three biological replicates/cell line) and was washed with
9 mL of 1x PBS (/- for calcium and magnesium). Cells were then resuspended in
1 mL trypsin and 9 mL cold PBS (1x, —/-). 60 pL of the trypsinized cells were set
aside to prepare slides for whole-cell imaging and microscopy. The remainder of
the cells was spun at 200 rcf for 5 min. The supernatant was subsequently removed,
and the cells were resuspended again in 2 mL PBS (1x, —/-). One mL of the PBS
cellular suspension was removed for whole-cell RNA extraction, spun at 100 rcf for
5 min at 4C, and resuspended in 2 mL trizol. A 20G needle was used to break apart
the insoluble trizol pellets, and whole-cell RNA extraction was performed
according to the manufacturer’s instructions (Fisher TR 118-100ML). The other
mL of the PBS cellular suspension was removed for nuclear RNA extraction, spun
at 100 rcf for 5 min at 4 °C, and resuspended in 1 mL DAPI/NST with EDTA. The
DAPI/NST solution was incubated at room temperature for 4 min, spun at 8000 rcf
for 5 min at 4C, and resuspended in 1 mL DAPI/NST. After a final spin at 8000 rcf
for 5 min at 4C, the nuclei were resuspended in 1 mL trizol. A 20G needle was used
to break apart the nuclear pellet, and an additional 1 mL of trizol was added to the
suspension. Nuclear RNA extraction was performed according to the manu-
facturer’s instructions (Fisher TR 118-100ML).

10
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RNA-seq QC and data processing. The master FASTQ file containing total reads
was demultiplexed into individual fastq files with each representing one single cell
or one population of cells using a Perl script. Sequencing reads in each single fastq
file were mapped to the human transcriptome using bowtie2>, and gene expres-
sion levels were summarized into expected count and transcripts per kilobase
million (TPM) values using RNA-seq by expectation maximization (RSEM)>°.
Only uniquely mapped reads were used for analysis. A quality-control step was
performed on the tophat2®” aligned bam files using RSeQC*® and

samtools (0.1.19)*° to summarize distributions of reads that were mapped to
rRNAs, mtRNA, introns, CDS, 5" UTR, 3’ UTR and 10 kb up-/downstream of
transcripts. The number of UMISs for each gene was counted by dropping reads that
had duplicated UMISs using custom Perl scripts. However, we did not include UMI
assays in this study.

Differential gene expression analysis. We compared the gene expression in single
nuclei to whole cells using a Bayesian method for SCDE'* analysis, which fits indi-
vidual error models for single cell RNA-seq data using a Bayesian approach based on
a zero-inflated negative binomial model process. The differentially expressed genes are
defined as FDR-adjusted p value <0.05 and llog,(fold change)l> = 1. We removed
genes that were detected with counts <10 in <30 cells. We applied an Empirical Bayes
hierarchical model (EBSeq)®” for population RNA-seq differential expression analysis
at gene levels. The differentially expressed genes are defined as those had posterior
probability of being DE >0.95 and llog,(fold change)l> = 1. Clustered heat maps of
gene expression were generated with R package “heatmap3”2” based on log,(count +
1), logo(TPM + 1), or z-scores. Differentially expressed genes were analyzed with
Ingenuity IPA for pathway analysis and cellular organelle localization annotations. To
identify differentially expressed cancer genes in TNBC tumor cells, we combined the
three subpopulations of single nuclei that had aneuploidy copy number aberrations
(CNAs) profiles as tumor cell populations and combined the predicted matched
normal nuclei and normal nuclei from another patient as the normal cell populations.
We then performed differential gene expression analysis between the two groups of
single nuclei using MAST?> 36, The differential genes were defined as having FDR-
adjusted p value <0.05 and llog, (fold change)l > 1. Finally, differentially expressed
cancer genes in tumor cells were identified by intersecting the DE gene list with T200
clinical gene panel and with a 40-gene TCGA breast cancer gene list.

Breast cancer subtype prediction. We used the intrinsic gene centroids signature
(PAM50)®! to classify single cells and nuclei into five established intrinsic breast
cancer molecular subtypes (normal-like, basal, luminal A, luminal B, and Her2
amplification) using “genefu” package®? with log,(TPM + 1) data matrix. Single
cells or nuclei with low prediction confidence (<0.7) are set as undefined. In a
separate analysis, single nuclei were classified into six TNBC subtypes, including
two basal-like (BL1 and BL2), an IM, a mesenchymal (M), a MSL, and a LAR
subtype®3. The ER+ cells were excluded from the TNBC subtype prediction.

GSVA. We applied single-sample GSVA (ssGSVA)?! to determine the molecular
phenotypes of single cells and nuclei using log,(TPM + 1) data. We first obtained
GSVA scores for 189 oncogenic gene sets (MSiDB version 5.2)%? for each single

nuclei or whole-cell sample, and then compared the nuclei enrichment scores to

whole cells by using R package “limma”®*. Differentially enriched gene sets were
defined as FDR-adjusted p value <0.05 and Iscore differencel> =0.1.

Cell cycle analysis of single nuclei. Cell cycle genes from gene ontology set
(version 5.2 MSiDB)®*~¢7 with annotations of “G1 phase of mitotic cell cycle” for
G1 phase genes, “S phase of mitotic cell cycle” for S phase genes, “M phase of
mitotic cell cycle” for M phase genes were used. A G2 phase gene list that was
previously defined in synchronized HeLa cells was also used®®. We then defined the
four cell phase (G1, S, G2, and M) scores as the average expression [log,(TPM + 1)]
of curated cell cycle genes and defined the cell cycle phase by hierarchical clustering
of centered phase scores using R package “heatmap3”2°.

High-dimensional reduction data analysis. The normalized log,(count + 1)
matrix was centered and scaled to z-scores to perform PCA using “prcomp”
function in R (www.r-project.org). Genes that were detected in <30 cells were
excluded from the analysis. The first five components were selected based on
“elbow” principle and top 20 loading genes were sent for clustering using a

SNN modularity optimization-based method>” and then marker genes for each
detected clusters were selected using normalized log,(count + 1) matrix with the
“bimodal”-based gene expression analysis®® that was built in the “Find AllMarkers”
function in R package “Seurat”’’. The t-SNE38 method was applied based on the
pair-wise Euclidean distances of the log,(count + 1) matrix. Hierarchical clustering
with “ward.D2” linkage and “Euclidean” distance was performed on log,(count + 1)
matrix or z-scores using R package “heatmap3”2°.

Copy number calculation from single cell RNA data. Single cell and nuclei copy
number was calculated from the log,(TPM + 1) matrix using a “moving average”
approach that was adapted from a previous study>. We use the log,(TPM + 1)

values as gene expression values and we further scaled the total expression of all
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cells to 100,000 to normalize gene expressions within each single cells to
comparable scales and avoid floating the variance among highly expressed genes.
We sorted the analyzed genes by their genomic coordinates that were annotated by
University of California Santa Cruz gene list containing a total of 23,346 genes. We
excluded genes that have expression values <0.15 on average, and ended up with
~3000 genes across the genome and ~130 genes/chromosome on average (except
that Y chromosome had only one or two genes). To define the copy number
baseline, we also sequenced a set of 380 normal breast tissue single cells, and took
their average expressions of each gene as the normal copy number base line. We
normalized single cell gene expression to this baseline to obtain a relative gene
expression for each gene location. To mitigate the bias caused by extreme gene
expression levels, we replaced the relative gene expression values that are >3 with 3
and relative expressions <—3 with —3. We then obtained “moving average” of
adjacent 50 gene relative expression values to represent the log,(copy number
ratio) of the genomic location. We normalized the log,(copy number ratio) to their
mean values for each cell to center around zeros. Last, we performed hierarchical
clustering?® of all tested single cell CNAs with the normal breast tissue cells to
identify aneuploid tumor and normal diploid cell populations.

Data availability. The data from this study have been deposited into the
Sequencing Read Archive and are available for download under accession
SRP095350.

Received: 3 February 2017 Accepted: 12 June 2017
Published online: 09 August 2017

References

1. Navin, N. E. The first five years of single-cell cancer genomics and beyond.
Genome Res. 25, 1499-1507 (2015).

2. Gawad, C., Koh, W. & Quake, S. R. Single-cell genome sequencing: current state
of the science. Nat. Rev. Genet. 17, 175-188 (2016).

3. Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in
primary glioblastoma. Science 344, 1396-1401 (2014).

4. Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma
by single-cell RNA-seq. Science 352, 189-196 (2016).

5. Ramskold, D. et al. Full-length mRNA-Seq from single-cell levels of RNA and
individual circulating tumor cells. Nat. Biotechnol. 30, 777-782 (2012).

6. Treutlein, B. et al. Reconstructing lineage hierarchies of the distal lung
epithelium using single-cell RNA-seq. Nature 509, 371-375 (2014).

7. Lee, M. C. et al. Single-cell analyses of transcriptional heterogeneity during drug
tolerance transition in cancer cells by RNA sequencing. Proc. Natl Acad. Sci.
USA 111, E4726-4735 (2014).

8. Kim, K. T. et al. Single-cell mRNA sequencing identifies subclonal
heterogeneity in anti-cancer drug responses of lung adenocarcinoma cells.
Genome Biol. 16, 127 (2015).

9. Wang, Y. & Navin, N. E. Advances and applications of single-cell sequencing

technologies. Mol. Cell 58, 598-609 (2015).

. Brennecke, P. et al. Accounting for technical noise in single-cell RNA-seq
experiments. Nat. Methods 10, 1093-1095 (2013).

. Kolodziejczyk, A. A., Kim, J. K, Svensson, V., Marioni, J. C. & Teichmann, S. A.
The technology and biology of single-cell RNA sequencing. Mol. Cell 58,
610-620 (2015).

12. Bose, S. et al. Scalable microfluidics for single-cell RNA printing and

sequencing. Genome Biol. 16, 120 (2015).

13. Yuan, J. & Sims, P. A. An automated microwell platform for large-scale single
cell RNA-Seq. Sci. Rep. 6, 33883 (2016).

14. Fan, H. C. & Fu, G. K. Fodor SPa. Combinatorial labeling of single cells for gene
expression cytometry. Science 347, 1258367-1258367 (2015).

15. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of
individual cells using nanoliter droplets. Cell 161, 1202-1214 (2015).

16. Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to
embryonic stem cells. Cell 161, 1187-1201 (2015).

17. Saliba, A. E., Westermann, A. J., Gorski, S. A. & Vogel, J. Single-cell RNA-seq:

advances and future challenges. Nucleic Acids Res. 42, 8845-8860 (2014).

. Grindberg, R. V. et al. RNA-sequencing from single nuclei. Proc. Natl Acad. Sci.
USA 110, 19802-19807 (2013).

19. Leung, M. L., Wang, Y., Waters, J. & Navin, N. E. SNES: single nucleus exome

sequencing. Genome Biol. 16, 55 (2015).

20. Wang, Y. et al. Clonal evolution in breast cancer revealed by single nucleus
genome sequencing. Nature 512, 155-160 (2014).

21. Navin, N. et al. Tumour evolution inferred by single-cell sequencing. Nature
472, 90-94 (2011).

22. Krishnaswami, S. R. et al. Using single nuclei for RNA-seq to capture the
transcriptome of postmortem neurons. Nat. Protoc. 11, 499-524 (2016).

1

f=1

1

—

1

el

23.

24.

25.

26.

27.

28.

29.

31.

32.

33.

34,

35.

36.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

Lake, B. B. et al. Neuronal subtypes and diversity revealed by single-nucleus
RNA sequencing of the human brain. Science 352, 1586-1590 (2016).

Habib, N. et al. Div-seq: single-nucleus RNA-seq reveals dynamics of rare adult
newborn neurons. Science 353, 925-928 (2016).

Lacar, B. et al. Nuclear RNA-seq of single neurons reveals molecular signatures
of activation. Nat. Commun. 7, 11022 (2016).

Cancer Genome Atlas N. Comprehensive molecular portraits of human breast
tumours. Nature 490, 61-70 (2012).

Soumillon, M., Cacchiarelli, D., Semrau, S., Oudenaarden, Av.

& Mikkelsen, T. S. Characterization of directed differentiation by high-
throughput single-cell RNA-Seq. BioRxiv http://dx.doi.org/10.1101/003236
(2014).

Zhang, G., Taneja, K. L., Singer, R. H. & Green, M. R. Localization of pre-
mRNA splicing in mammalian nuclei. Nature 372, 809-812 (1994).

Han, |, Xiong, J., Wang, D. & Fu, X. D. Pre-mRNA splicing: where and when in
the nucleus. Trends Cell Biol. 21, 336-343 (2011).

30. Kharchenko, P. V., Silberstein, L. & Scadden, D. T. Bayesian approach to single-

cell differential expression analysis. Nat. Methods 11, 740-742 (2014).
Hanzelmann, S., Castelo, R. & Guinney, ]. GSVA: gene set variation analysis for
microarray and RNA-seq data. BMC Bioinformatics 14, 7 (2013).

Bild, A. H. et al. Oncogenic pathway signatures in human cancers as a guide to
targeted therapies. Nature 439, 353-357 (2006).

Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406,
747-752 (2000).

Lehmann, B. D. et al. Identification of human triple-negative breast cancer
subtypes and preclinical models for selection of targeted therapies. J. Clin.
Invest. 121, 2750-2767 (2011).

Finak, G. et al. MAST: a flexible statistical framework for assessing
transcriptional changes and characterizing heterogeneity in single-cell RNA
sequencing data. Genome Biol. 16, 278 (2015).

McDavid, A., Faridani, O. R. & Yajima, M. MAST: model-based analysis of
single cell transcriptomics. Genome Biol. 16, 278 (2015).

37. Waltman, L. & van Eck, N. J. A smart local moving algorithm for large-scale

modularity-based community detection. Eur. Phys. ]. B 86, 471 (2013).
Maaten, L. J. Pvd & Hinton, G. E. Visualizing high-dimensional data using
t-SNE. J. Mach. Learn. Res. 9, 27 (2008).

Yoshii, Y., Saito, A. & Nose, T. Nuclear morphometry and DNA densitometry
of human gliomas by image analysis. J. Neurooncol. 26, 1-9 (1995).
Rabinovitch, P. Introduction to Cell Cycle Analysis (Phoenix Flow Systems, Inc,
1994).

Goldstein, L. et al. Massively parallel nanowell-based single-cell gene expression
profiling (in the press).

Lohr, J. G. et al. Whole-exome sequencing of circulating tumor cells provides a
window into metastatic prostate cancer. Nat. Biotechnol. 32, 479-484 (2014).
Gierahn, T. M. et al. Seq-well: portable, low-cost RNA sequencing of single cells
at high throughput. Nat. Methods 14, 395-398 (2017).

Carey, L., Winer, E., Viale, G., Cameron, D. & Gianni, L. Triple-negative breast
cancer: disease entity or title of convenience? Nat. Rev. Clin. Oncol. 7, 683-692
(2010).

Carey, L. A. Directed therapy of subtypes of triple-negative breast cancer.
Oncologist 15, 49-56 (2010).

Schneider, B. P. et al. Triple-negative breast cancer: risk factors to potential
targets. Clin. Cancer Res. 14, 8010-8018 (2008).

Derrien, T. et al. The GENCODE v7 catalog of human long noncoding RNAs:
analysis of their gene structure, evolution, and expression. Genome Res. 22,
1775-1789 (2012).

Cabili, M. N. et al. Localization and abundance analysis of human IncRNAs at
single-cell and single-molecule resolution. Genome Biol. 16, 20 (2015).

Boore, J. L. Animal mitochondrial genomes. Nucleic Acids Res. 27, 1767-1780
(1999).

Joseph, V., Amjad, H. & Shivji, A. Apparatus for high-throughput chemical
reactions US patent 8252581 B2 (2015).

Herazo-Maya, J. D. et al. Peripheral blood mononuclear cell gene expression
profiles predict poor outcome in idiopathic pulmonary fibrosis. Sci. Transl.
Med. 5, 205ra136 (2013).

De Wilde, B. et al. Target enrichment using parallel nanoliter quantitative PCR
amplification. BMC Genomics 15, 184 (2014).

Islam, S. et al. Quantitative single-cell RNA-seq with unique molecular
identifiers. Nat. Methods 11, 163-166 (2014).

Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat.
Protoc. 9, 171-181 (2014).

Langdon, W. B. Performance of genetic programming optimised Bowtie2 on
genome comparison and analytic testing (GCAT) benchmarks. BioData Min. 8,
1 (2015).

Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq
data with or without a reference genome. BMC Bioinformatics 12, 323 (2011).
Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of
insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

|8:228 | DOI: 10.1038/541467-017-00244-w | www.nature.com/naturecommunications 1


http://dx.doi.org/10.1101/003236
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

58. Wang, L., Wang, S. & Li, W. RSeQC: quality control of RNA-seq experiments.
Bioinformatics 28, 2184-2185 (2012).

59. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics
25, 2078-2079 (2009).

60. Leng, N. et al. EBSeq: an empirical Bayes hierarchical model for inference in
RNA-seq experiments. Bioinformatics 29, 1035-1043 (2013).

61. Dai, X,, Li, Y., Bai, Z. & Tang, X. Q. Molecular portraits revealing the
heterogeneity of breast tumor subtypes defined using immunohistochemistry
markers. Sci. Rep. 5, 14499 (2015).

62. Gendoo, D. M. et al. Genefu: an R/Bioconductor package for computation of
gene expression-based signatures in breast cancer. Bioinformatics 32,
1097-1099 (2016).

63. Chen, X. et al. TNBCtype: a subtyping tool for triple-negative breast cancer.
Cancer Inform. 11, 147-156 (2012).

64. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-

sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

. Liberzon, A. A description of the molecular signatures database (MSigDB) web
site. Methods Mol. Biol. 1150, 153-160 (2014).

. Liberzon, A. et al. The molecular signatures database (MSigDB) hallmark gene
set collection. Cell Syst. 1, 417-425 (2015).

. Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics
27, 1739-1740 (2011).

. Whitfield, M. L. et al. Identification of genes periodically expressed in the
human cell cycle and their expression in tumors. Mol. Biol. Cell 13, 1977-2000
(2002).

69. McDavid, A. et al. Data exploration, quality control and testing in single-cell

qPCR-based gene expression experiments. Bioinformatics 29, 461-467 (2013).

70. Satija, R. Seurat: R toolkit for single cell genomics. http://www.satijalab.org/

seurat.html (2016).

6

u

6

[=2)

6

J

6

<=l

Acknowledgements

This work was supported by grants to N.N. from the Lefkofsky Family Foundation, NCI
(IRO1CA169244-01), and from the American Cancer Society (129098-RSG-16-092-01-
TBG). N.N. is a T.C. Hsu Endowed Scholar, AAAS Wachtel Scholar, and Andrew Sabin
Family Fellow. The study was supported by grants from the Breast Cancer Research
Foundation and the Swedish Cancer Society to T.F. and the Soderberg Fellowship to N.C.
The work was also supported by a Sister Institution Network Grant (SINF) through the
Global Access Program (GAP) at MD Anderson). The study also supported by a TL1
fellowship (TL1TR000369 and UL1TR000371) and American Legion Auxiliary
fellowship to C.K., and a Susan Komen Postdoctoral Fellowship (PDF17487910)

and AACR-John and Elizabeth Leonard Family Foundation Basic Cancer Research
Fellowship (17-40-42-GAO) to R.G. We also thank support from the UT MD Anderson

|8:228

Cancer Center Sequencing Core grant (CA016672 SMF). We are also grateful to the
employees of Wafergen Inc. for their support and collaboration and Adriana Paulucci for
assistance with microscopy. We thank Aislyn Schalck for preparing illustrations that
were used in the figures.

Author contributions

R.G. analyzed data and prepared the manuscript. C.K. performed experiments and wrote
the manuscript. E.S. performed experiments. T.F. and F.K. analyzed data and wrote the
manuscript. L.C. provided technical assistance. M.S. analyzed data and wrote the
manuscript. H.Z. and F.M.-B. collected tissue samples. N.N. analyzed data and wrote the
manuscript.

Additional information
Supplementary Information accompanies this paper at doi:10.1038/541467-017-00244-w.

Competing interests: L.-K.C. and M.S. are employees of WaferGen BioSystems
and hold stock in the company. The remaining authors declare no competing financial
interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

BY Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2017

| DOI: 10.1038/541467-017-00244-w | www.nature.com/naturecommunications


http://www.satijalab.org/seurat.html
http://www.satijalab.org/seurat.html
http://dx.doi.org/10.1038/s41467-017-00244-w
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Nanogrid single-nucleus RNA sequencing reveals phenotypic diversity in breast cancer
	Results
	Concordance of bulk nuclei and cells from cell lines
	Nanogrid SNRS
	Single nuclei and cell concordance in a cancer cell line
	Phenotypic diversity of single nuclei from a breast tumor

	Discussion
	Methods
	Breast cancer tissue samples and cell line
	Preparation of single-nucleus suspensions
	Preparation of single cell suspension
	Imaging QC of nuclear and cellular suspensions
	Nanogrid single cell/nucleus sequencing system
	Nanodispensing of nuclei and cells
	Nanowell imaging and selection of single nuclei and cells
	3&#x02032; RT and PCR amplification
	Library construction and next-generation sequencing
	Bulk RNA-seq of nuclei and cells
	RNA-seq QC and data processing
	Differential gene expression analysis
	Breast cancer subtype prediction
	GSVA
	Cell cycle analysis of single nuclei
	High-dimensional reduction data analysis
	Copy number calculation from single cell RNA data
	Data availability

	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS




