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Summary 
L-sdectin (leukocyte adhesion molecule 1/MEL14), a member of the sdectin family of cell adhesion 
molecules, mediates leukocyte rolling and leukocyte adhesion to endothelium at sites of inflammation. 
In addition, L-selectin mediates the binding of lymphocytes to high endothelial venules (HEV) 
of peripheral lymph nodes. The strong amino acid sequence conservation of the cytoplasmic 
domain of I~sdectin between humans and mice suggests an important role for this region. Deletion 
of the COOH-terminal 11 amino acids from the "~17 amino acid cytoplasmic domain of I, sdectin 
diminated binding of lymphocytes to HEV in the in vitro frozen section assay, and also abolished 
leukocyte rolling in vivo in exteriorized rat mesenteric venules, but did not alter the lectin activity 
of bselectin. Pretreatment of ceils with cytochalasin B, which disrupts actin microfilaments, 
also abolished adhesion without affecting carbohydrate recognition. Therefore, the cytoplasmic 
domain of I~selectin regulates leukocyte adhesion to endothelium independent ofligand recognition, 
by controlling cytoskeletal interactions and/or receptor avidity. 

L ukocyte traffic into sites of inflammation and through 
secondary lymphoid organs is governed by members of 

several families of cell adhesion molecules, including the 
selectins, integrins, and Ig superfamily (1, 2). Selectins recog- 
nize specific carbohydrates, unlike the integrins and Ig su- 
perfamily members, whose counterreceptors are proteins (3). 
The selectins are composed of an NHz-terminal C-type 
lectin domain, followed by an epidermal growth factor (EGF)- 
like domain, a variable number of short consensus repeat (SCR) 
domains, a transmembrane domain, and a cytoplasmic do- 
main (4-10). Although significant homology (40-60%) exists 
between the corresponding extracellular domains of the 
selectins, no significant homology exists between their trans- 
membrane or cytoplasmic domains. However, the cytoplasmic 
domains of the selectins are highly conserved between human 
and mouse, suggesting an important function for this do- 
main. The cytoplasmic domain of P-selectin has been shown 
to control sorting of newly synthesized P-selectin to or-granules 
and Weibel-Palade bodies (11). In this report, evidence is 
presented that the cytoplasmic tail of L-selectin is essential 
for both lymphocyte adhesion to HEV and leukocyte rolling, 
although it is not required for carbohydrate recognition. 

Materials and Methods 

Generation of a bSelectin cDNA Truncated in the Cytoplasmic Do- 
main. Insertion of a stop codon at position 1175 of the p leuko- 

cyte adhesion molecule 1 [LAM-1] cDNA (4) was carried out by 
PCR-based site-directed mutagenesis. Amplification used an an- 
dsense oligonucleotide 5' AAGAATTCCTCTTC~ATTTCTAGC- 
CTTTTTT 3; which inserts a stop codon at amino acid position 
375 (4), and includes an EcoRI site, and a sense oligonucleotide 
located in the plasmid 54 bp 5' of the pLAM-1 cDNA. The PCR 
product was gel purified, kinased, ligated into the SmaI site of the 
pSP65 vector (Promega Corp., Madison, WI), and sequenced by 
the dideoxy chain termination method, confirming the fidelity of 
the mutagenesis. This mutation, which is designated LAcyto, de- 
letes the COOH-terminal 11 amino acids (KKSKRSMNDPY) of 
the predicted 17 amino acid intracytoplasmic domain of L-selectin, 
but retains the RRLKK sequence which is predicted to be immedi- 
ately proximal to the membrane and which is similar to the se- 
quence of amino acids at the corresponding positions of E-selectin 
(endothelial leukocyte adhesion molecule 1 [ELAM-11) and P-selectin 
(platelet activation dependent granule external membrane pro- 
tein/granule membrane protein 140 [PADGEM/GMP-140]/CD62). 

Production of Stable Transfectants. The L-selectin and LZk~yto 
cDNA were subcloned into the pZIPneoSV(X) vector (12), and 
used to transfect the mouse pre-B cell line 300.19 (13) by electropo- 
ration. Transfectants were sdected in medium containing 0.5 mg/ml 
G418 (geneticin; Sigma Immunochemicals, St. Louis, MO), and 
transfected cells expressing L-selectin or LAcyto were isolated by 
panning. Stable transfectants arising from three independent trans- 
fections with the L~cyto cDNA were used in these experiments, 
and had essentially identical properties. 

Flow Cytometry. Expression of L-selectin was evaluated by in- 
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direct immunofluorescence staining with the anti-LAM1-3 mAb 
(14) followed by goat anti-mouse IgG-FITC. For analysis of the 
lectin activity of bselectin, cells were incubated with phos- 
phomannan monoester complex core polysaccharide (PPME), a com- 
plex carbohydrate isolated from the cell wall of the yeast Hansenula 
holstii PPME, which had been conjugated to FITC (15) (PPME- 
FITC), washed, and analyzed by flow cytometry on an Epics Profile 
(Coulter Immunology, Hialeah, FL). Fluorescence histograms are 
displayed on a three-decade logarithmic scale. 

Immunoprecipitation Analysis. Cells were surface labeled by the 
glucose/glucose oxidase/lactoperoxidase method, as described (16), 
and immunoprecipitations were performed using anti-LAM1-3 mAb 
conjugated to Affigel (Bio-Rad Laboratories, Melville, NY), and 
analyzed by SDS-PAGE. 

HEV Assays. Rat LN from freshly euthanized Lewis rats were 
snap frozen in isopentane/liquid nitrogen and stored at -70~ 
in isopentane until use. For the HEV assay, 5 x 106 of the indi- 
cated cells were incubated on three 12-/~m tissue sections/slide with 
gentle rotation for 25 rain at '~4~ The excess cells were gently 
removed, and the slides were placed vertically in ice-cold fixative 
(PBS/2.4% glutaraldehyde) overnight. The slides were then coun- 
terstained with Gill's hematoxylin, overlaid with glycerol gelatin, 
and cover slips were applied. The number of lymphocytes bound/ 
HEV was quantitated for each slide. Data are expressed as the mean 
number of cells/HEV of 100-200 HEV counted, and are typical 
of at least four independent experiments. Treatment of cells with 
cytochalasin B (100 #M) was for 30 min at 37~ 

Rolling Assays. Rolling of leukocytes in vivo was investigated 
as described. (l.,selectin is necessary and sufficient for leukocyte 
rolling; Ley, K., T. F. Tedder, and G. S. Kansas, manuscript sub- 
mitted for publication). Briefly, rolling of 300.19 cells labeled with 
carboxyfluorescein diacetate (Sigma Immunochemicals 30 #g/ml 
in M199 medium [Gibco, Grand Island, NY]) was investigated in 
venules of the exposed mesentery of Sprague-Dawley rats (250-300 
g) anesthetized with ketamine and pentobarbital. Through an ab- 
dominal midline incision, a small polyethylene catheter was inserted 
retrogradely into the ileocecal artery. The exposed mesentery was 
superfused with a physiological salt solution at low pO2 and ob- 
served through an intravital microscope (E. Leitz, Inc., Kockleigh, 
NJ; objective SW 25/0.60) modified for telescopic imaging (17). 
Both rolling and freely flowing cells were observed with stroboscopic 
(50 s-1, Strobex 236; Chadwick Helmuth, Mountain View, CA) 
epifluorescence illumination (filter block Leitz I2) and recorded on 
video tape. The minimal (critical) velocity a freely flowing cell could 
assume was determined from the cell size, the venule diameter, and 
the velocity of freely flowing cells as described (18, 19). The number 
of rolling fluorescent cells (below critical velocity) is expressed as 
leukocyte flux, defined as the mean fraction of injected leukocytes 
observed to be roiling in a given length of venule. 

Results and Discussion 
The mouse pre-B cell line 300.19, which does not express 

L-selectin, was transfected with either human L, selectin cDNA, 
vector without cDNA, or LAcyto cDNA, and cells stably 
expressing either native L-selectin or LAcyto were isolated. 
L-selectin and LAcyto were expressed at nearly identical levels 
on the surface of  transfected cells (Fig. 1 A), and the LAcyto 
molecule was recognized by each of a panel of 13 mAbs directed 
against distinct epitopes present in all three extracellular do- 
mains of L-selectin (data not shown). In addition, the LAcyto 
protein exhibited the expected Mr in SDS-PAGE analysis 

Figure 1. Expression and lectin activity of l~selectin and LAcyto on 
transfected 300.19 cells. (A) Equivalent levels of the L-selectin and LAcyto 
molecules are present on the cell surface as detected by flow cytometry. 
Indirect immunofluorescence staining was performed as described in 
Materials and Methods. The shaded histogram (/eft) is the level of back- 
ground staining obtained with an irrelevant isotype-matched mAb. The 
relative mean channel fluorescence values for the L-selectin and LAcyto 
cells were 32.1 and 31.6, respectively. Cells transfected with vector only 
did not express L-selectin and gave results identical to the negative control 
(data not shown). (B) SDS-PAGE analysis of the L-selectin and LAcyto 
molecules. Positions of molecular weight markers (kD) are indicated. ((7) 
Binding of PPME by L-selectin and Lz~'yto. The mean channel fluores- 
cence values for the l,,selectin and LAcyto cells were 4.0 and 4.5, respec- 
tively. Cells transfected with vector only did not bind PPME, and gave 
results identical to the negative control (data not shown). 

(Fig. 1 B). The ability of native bsdect in  and LAcyto to bind 
PPME was assessed. PPME models the natural ligand of 
bselectin and binds selectively to the lectin domain of l:selectin 
(20, 21). This assay offers a measure of lectin domain activity 
and the overall functional integrity of  L-selectin independent 
of direct lymphocyte adhesion assays. Importantly, the Lz~'yto 
transfectant bound PPME as well as the L-selectin transfec- 
tant (Fig. 1 C). The structural features and lectin activity 
characteristic of L-selectin have therefore been preserved in 
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Figure 2. Binding of (A) L-selectin-transfected 300.19 ceils 
or (B) LAcyto-transfected 300.19 cells to lymph node HEV. 
x200. 

the LAcyto mutant, and these properties were observed in 
ceUs derived from several independent transfections. 

To determine if lectin activity is sufficient for adhesive func- 
tion, the ability of the L-sdectin and LAcyto transfectants 
to bind to lymph node HEV in the Stamper-Woodruffin vitro 
frozen section assay was examined (22). The L-selectin trans- 
fectant bound well to HEV (Fig. 2). In contrast, the L~cyto 
transfectants bound at very low levels, equivalent to the mock- 
transfected 300.19 cell line (Figs. 2 and 3). Thus, the cyto- 

plasmic domain of L-selectin is required for lymphocyte adhe- 
sion to lymph node HEV. 

The cytoplasmic domains of several adhesion receptors are 
thought to interact with the cytoskeleton, thereby stabilizing 
adhesion. Therefore, L-selectin transfectants were pretreated 
with cytochalasin R which disrupts actin mierofilaments (23), 
to determine if cytoskeletal function was required for lym- 
phocyte adhesion to HEV. HEV binding was eliminated by 
this treatment (Fig. 3), in agreement with previous observa- 
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Figure 3. HEV binding activity of the bselectin-, LAcyto-, and mock- 
transfected 300.19 cells. HEV binding assays were as described in Materials 
and Methods. (L) bselectin; (cyto B) cytochalasin B. 

tions (24), but PPME binding was unaffected (data not 
shown). An intact actin microfilament system is therefore 
necessary for l.,selectin-mediated adhesion to HEV, suggesting 
that disruption of an effective linkage between L, selectin and 
the cytoskeleton may be responsible for the abrogation of HEV 
binding by cytoplasmic domain truncation or cytochalasin 
B treatment. 

In addition to lymphocyte adhesion to HEV in LN, bselec- 
tin mediates leukocyte rolling at sites of inflammation and 
tissue injury (25, 26). This adhesive event constitutes the 
earliest interaction between leukocytes and endothelium (27), 
and is essential for subsequent firm adhesion and leukocyte 
extravasation into tissues (28, 29). Therefore, the effect of 
the cytoplasmic domain truncation of L-selectin on leuko- 
cyte rolling was examined. Leukocyte flux, defined as the frac- 
tion of injected cells that were observed rolling, approached 
20% for the L-selectin transfectant (Fig. 4). In contrast, the 
LAcyto transfectant failed to exhibit any detectable rolling. 
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Hgure 4. Leukocyte rolling requires the cytoplasmic domain of l.,selectin. 
Rolling studies were performed in exteriorized mesenteric venules of 
anesthesthetized rats as described in Materials and Methods. Abbrevia- 
tions as for Fig. 3. 

Furthermore, as was observed for HEV binding, rolling of 
the L-selectin transfectant was abolished by pretreatment of 
the cells with cytochalasin B (Fig. 4). Thus, the cytoplasmic 
domain of L-selectin and an intact actin cytoskeleton are each 
required for both HEV binding and leukocyte rolling in vivo. 

These data demonstrate for the first time that the cyto- 
plasmic domain of a selectin is required for cell adhesion, and 
therefore at least partially account for the high degree of con- 
servation between the cytoplasmic domains of human and 
mouse L-selectin. That pharmacologic disruption of actin 
microfilaments precisely recapitulated the phenotype of the 
cytoplasmic domain truncation strongly suggests that inter- 
actions between the cytoplasmic domain of L-selectin and one 
or more cytoskeletal proteins may be essential to L-selectin 
function. It is likely that some level of association between 
bselectin and one or more cytoskeletal proteins is constitu- 
tively present, allowing for a steady state level of lymphocyte 
recirculation through peripheral LN, as well as a rapid roiling 
response upon appearance of ligand on venular endothelium 
in inflamed or injured tissues. In addition, it is possible that 
differences in either the degree of association between L-sdectin 
and one or more cytoskeletal proteins, or the particular 
cytoskeletal protein(s) with which bselectin associates, may 
occur in different cell types and/or under different conditions. 
These differences may underlie known differences between 
the behavior of different leukocyte types with respect to HEV 
binding or rolling. In particular, such differences may at least 
partially explain why a much higher fraction of normal neu- 
trophils than lymphocytes can utilize L-selectin for rolling, 
and conversely, why lymphocytes but not neutrophils leave 
the circulation via HEV of LN (27, 29, 30). Thus, the cyto- 
plasmic domain of bsdectin may play an important role in 
governing the migration patterns of different classes of leu- 
kocytes. 

Interactions between L-selectin and the cytoskeleton may 
also be induced or significantly enhanced by stimuli present 
in vascular beds at sites of inflammation or tissue injury, as 
has been demonstrated for TCIL-induced association of LFA-1 
with ol-actinin and vinculin (31). An additional, not mutu- 
ally exclusive possibility, is that stimuli emanating from acti- 
vated vascular endothelium may activate leukocytes and in- 
duce the transient increase in the affinity of L, sdectin for ligand 
(32). Both cytoskeletal engagement and receptor activation 
would be expected to be mediated through the cytoplasmic 
domain of L-sdectin. 

These studies reinforce the concept that leukocyte adhe- 
sion to endothelium, including leukocyte roiling, is a dynamic 
process, involving active participation by the ceils involved, 
and is not merely the passive adsorption of leukocytes by 
receptors on the endothdial surface. The present studies ex- 
tend this concept to the sdectins. Similar observations have 
been made regarding the cytoplasmic domains of several other 
adhesion receptors, including the 81 (33-35) and 82 (36, 37) 
integrins, and CD44 (38, 39), which mediate firm adhesion. 
Collectively, these observations indicate that the cytoplasmic 
domains of several classes of leukocyte adhesion molecules 
are required to translate ligand recognition into cell adhesion. 
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