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Kidney renal clear cell carcinoma (KIRC) is a common aggressive malignancy of the urinary
system. COVID-19, a highly infectious and severe disease caused by SARS-CoV-2, has
become a significant challenge for global public health. Cancer patients have been
reported to be more vulnerable to SARS-CoV-2 infection and have a higher risk for
serious complications than the general population. However, the correlation between
KIRC and COVID-19 remains incompletely elucidated. In this study, we comprehensively
investigated the expression and prognostic significance of 333 SARS-CoV-2
infection–related genes in KIRC using the TCGA dataset and identified 31 SARS-CoV-
2–related differently expressed genes between KIRC and normal renal tissues. Based on
these genes, we constructed and validated a 5-gene prognostic signature (including
ACADM, CENPF, KDELC1, PLOD2, and TRMT1) to distinguish low- and high-risk KIRC
patients of poor survival in TCGA and E-MTAB-1980 cohorts. Gene set enrichment
analysis (GSEA) showed that some inflammatory/immune-related pathways were
significantly enriched in the high-risk group. The ESTIMATE analysis indicated that
patients in the high-risk group had higher stromal and immune cell scores, therefore
lower tumor purity. Moreover, they presented higher proportions of macrophages M0,
regulatory T cells (Tregs), and T follicular helper cells and higher expression of immune
checkpoints CTLA-4, LAG-3, TIGIT, and PDCD1 than low-risk patients. Besides, we also
developed a nomogram to expand clinical applicability, which exhibits excellent predictive
accuracy for survival. In conclusion, we identified a novel prognostic signature and
nomogram based on SARS-CoV-2–related genes as reliable prognostic predictors for
KIRC patients and provided potential therapeutic targets for KIRC and COVID-19.
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INTRODUCTION

Renal cell carcinoma (RCC) has been considered as the third
most common malignancy of the urinary system in adults, with
high morbidity and mortality (Cohen and McGovern, 2005; Rini
et al., 2009). More than 300,000 new cases are diagnosed, and over
100,000 patients die from it per year worldwide; it has gradually
become a global public health burden (Siegel et al., 2020). Kidney
renal clear cell carcinoma (KIRC) is the most frequent
histopathologic subtype of RCC, accounting for approximately
75% of all primary RCCs (Jonasch et al., 2014; Moch et al., 2016).
Despite recent improvements in multiple therapeutic methods,
including radical resection, chemoradiotherapy, targeted therapy,
and immunotherapy, the prognosis for most KIRC patients
remains poor because of the high risk of local recurrence and
distant metastasis (Barata and Rini, 2017; Choueiri and Motzer,
2017). The recurrence rate of KIRC after initial curative
nephrectomy varies from 20 to 30% within 5 years, and the 5-
year overall survival rate of metastatic KIRC patients is less than
10%. Up to 30% of KIRC patients already had metastases at the
first time of diagnosis and missed the optimal treatment
opportunity (Cohen and McGovern, 2005; Rini et al., 2009).
Thus, it is imperative to explore novel reliable biomarkers for
early diagnosis and prognosis prediction and provide prognostic
indicators and treatment targets for KIRC.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2), a new coronavirus infecting humans, was first identified in
Wuhan, China, in December 2019 and spread rapidly around the
world and caused a global coronavirus disease 2019 (COVID-19)
pandemic within several months (Tian et al., 2020; Wang et al.,
2020). As of December 26, 2021, more than 279 million
confirmed cases of SARS-CoV-2 infection and 5.39 million
COVID-19–related deaths have been reported worldwide,
based on the latest statistics from Johns Hopkins University
(https://coronavirus.jhu.edu/map.html). Epidemiological
studies so far have demonstrated that patients diagnosed with
cancer have a higher risk of SARS-CoV-2 infection and resulted
in serious complications and poor prognosis, especially in
patients undergoing anticancer treatments (chemotherapy,
surgery, or radiotherapy) and patients with hematologic
malignancies (Dai et al., 2020; Liang et al., 2020; Wang and
Zhang, 2020; Yu et al., 2020).

A recent study revealed that the SARS-CoV2 receptors or
auxiliary proteins ACE2, ANPEP, ENPEP, and DPP4 are highly
expressed in renal tumor, especially in KIRC. Furthermore, these
SARS-CoV2 receptors are closely correlated with immune
infiltrates and immune response in KIRC (Mihalopoulos et al.,
2020; Tripathi et al., 2020). However, besides the several
aforementioned SARS-CoV-2–related proteins, more than 300
SARS-CoV-2–interacting human proteins have been identified
(Gordon et al., 2020), and the correlations between their
expression, prognosis, and immune cell infiltration in KIRC
tissues have not been elucidated. Thus, our study was carried
out to explore the expression levels, prognostic value,
and immune perspective of these SARS-CoV-2–related
proteins in KIRC and further construct a SARS-CoV-2–related

prognostic signature for KIRC. This study revealed the
important roles of SARS-CoV-2–interacting proteins in KIRC
and illustrated the susceptibility of KIRC patients to SARS-CoV-2
infection and the underlying mechanism of COVID-19 in KIRC
patients.

MATERIALS AND METHODS

Data Collection and Processing
The mRNA expression profile data and corresponding clinical
information of 539 KIRC samples and 72 adjacent non-tumor
samples were acquired from TCGA website, and the 333 SARS-
CoV-2 infection–related proteins (Supplementary Table S1)
were summarized in the Human Protein Atlas (HPA)
database. Then, we utilized the “limma” R package to identify
the differentially expressed genes (DEGs) between KIRC tissues
and adjacent normal tissues in the TCGA-KIRC cohort and
calculated the intersections between DEGs and SARS-CoV-
2–related genes using an online tool Venny2.1. The threshold
for significance was set at a false discovery rate (FDR) < 0.05 and |
log2fold change (FC)| ≥ 1. Besides, the interaction network for
overlapping SARS-CoV-2–related DEGs was generated by the
“GeneMANIA” online database to predict their function (Franz
et al., 2018).

Construction of a Prognostic
SARS-CoV-2–Related Gene Signature
Based on SARS-CoV-2–related DEGs, the “survival” R package
was used to construct a prognostic model. The KIRC patients in
the SARS-CoV-2–related gene signature building and validation
need to meet the following inclusion criteria: 1) complete SARS-
CoV-2–related DEG expression profile; 2) complete clinical data
(including age at diagnosis, gender, TNM stage, histological
grade, survival status, and survival time); 3) the follow-up or
survival time must be longer than 30 days. After that, 501 KIRC
patients were included for the subsequent signature construction
in total. We randomly divided the TCGA-KIRC dataset (n = 501)
into a training cohort (n = 252) and a testing cohort (n = 249) to
construct and validate the prognostic signature, respectively.

Next, we performed a univariate Cox regression analysis to
evaluate the prognostic value of SARS-CoV-2–related DEGs in
the training cohort and screen genes significantly associated
with the overall survival (p < 0.01). Subsequently, the multiple
stepwise Cox regression analysis was applied to develop an
optimal predictive model for the overall survival on the
preliminary-screened prognosis-related genes. According to the
smallest Akaike information criterion (AIC) value, the regression
coefficients of each gene in this signature were generated (Song
et al., 2020). The risk score for each KIRC patient was calculated as

follows: Risk score � ∑
n

i
(Expression of gene i ×Coefficient i).

The patients were ordered according to their risk scores and
categorized into the high-risk and low-risk groups based on the
median risk score.
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Evaluating the Prediction Power of the
Prognostic Signature and Validation
The Kaplan–Meier method was used to plot survival curves and
compare the differences of survival between high- and low-risk
groups in the training cohort (n = 252). Additionally, the time-
dependent receiver operating characteristic (ROC) curve analyses
were implemented to assess the predictive capability for 1-, 3-,
and 5-year OS of the prognostic signature and other clinical
parameters by using the “survivalROC” R package. We also
performed univariate and multivariate analyses with Cox
regression to estimate the effect of the gene signature together
with other clinical characteristics on survival (Long et al., 2019).

Meanwhile, the robustness and accuracy of the gene signature
were further validated in the testing cohort and the entire TCGA-
KIRC cohort. Besides, the E-MTAB-1980 dataset included 101
KIRC patients with reliable prognostic information which was
downloaded from the ArrayExpress database for external
validation (Sato et al., 2013).

Expression and Prognostic Significance
Verifying
The online database GEPIA was utilized to confirm the differential
mRNAexpression of the signature constituent SARS-CoV-2–related
genes based on GTEx and TCGA datasets, and the protein
expression was detected in the Human Protein Atlas (HPA)
database (Tang et al., 2019; Huang et al., 2020). The association
of the signature constituent genes with OS was further verified in the
Kaplan–Meier Plotter website, and the genetic alteration analyses
were performed through the cBioportal database (Gao et al., 2013;
Nagy et al., 2021). Besides, the relationships between the mRNA
expression levels of risk signature genes and six immune cells
(B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages,
and Dendritic cells) infiltration were investigated by using the
TIMER database (Li et al., 2017).

PCA and Gene Set Enrichment Analysis
PCA scatter plots were generated to profile the distribution
patterns of KIRC patients in two groups via using the
“scatterplot3d” R package. Gene set enrichment analysis (GSEA)
was achieved byGSEA v4.0.3 software to detect different functional
phenotypes between the high- and low-risk groups based on GO
Biological Process ontology gene sets. FDR <0.25 and a nominal
p-value < 0.05 were considered to be significant.

Immune Infiltration Analysis in the Entire
TCGA-KIRC Cohort
We used the “CIBERSORT” R package to analyze the profiles of
22 tumor-infiltrating immune cells and quantify the relative
proportions in the entire KIRC cohort (p < 0.05). Then, we
further analyzed the correlations between the 22 types of immune
cells (Newman et al., 2015). The “ESTIMATE” algorithm was also
applied to calculate the immune and stromal scores and infer the
tumor purity of each KIRC sample using gene expression data
(Yoshihara et al., 2013). In addition, the correlations between the
risk score signature and five immune checkpoints (CTLA-4,

LAG-3, TIGIT, TIM-3, and PDCD1) were determined by the
Pearson correlation test, and their expression levels were
compared between high- and low-risk patients.

Developing and Validating a Predictive
Nomogram
The clinical parameters including age, gender, TNM stage,
histological grade, and the risk score signature were included
in the development of the predictive nomogram to predict the
overall survival of KIRC patients in the training test via the “rms”
R package (Balachandran et al., 2015). The training test was split
into two groups: high- and low-score groups, based on the total
points of the nomogram. Then, we generated the Kaplan–Meier
survival curve, ROC curve, and calibration plots of 1,3,5-OS to
assess the predictive performance of this prognostic nomogram.
Additionally, the good prediction performance of the nomogram
was also further validated in the testing set, entire KIRC cohort,
and E-MTAB-1980 dataset.

Statistical Analysis
All statistical analyses were conducted by R software 3.6.3. The
survival comparisons were carried out through the Kaplan–Meier
method with the log-rank test. The p < 0.05 was considered to be
statistically significant, unless otherwise stated.

RESULTS

The flowchart of our study was presented in Figure 1.

Identifying DEGs and SARS-CoV-2–Related
DEGs in the TCGA-KIRC Dataset
The TCGA-KIRC dataset contains RNA sequencing data of 539
tumors and 72 adjacent normal tissues, and a total of 3,626 DEGs
(2,513 upregulated and 1,113 downregulated) were identified
between KIRC and normal kidney tissues (Figure 2A). We
obtained the SARS-CoV-2–related gene list which contains 333
genes from the HPA online database and acquired 31 overlapped
genes (SARS-CoV-2 related DEGs) including 15 upregulated and
16 downregulated between all DEGs and SARS-CoV-2–related
genes by applying the Venn diagram (Figure 2B). The volcano plot
and heatmap showing 31 SARS-CoV-2–related DEGs in Figures
2C,D. Moreover, the protein–protein interaction (PPI) network
of SARS-CoV-2–related DEGs constructed using GeneMANIA
uncovered these genes were primarily responsible for extracellular
matrix and structure organization, exosome, and exonucleolytic
nuclear-transcribed mRNA catabolic process, and deadenylation-
dependent decay (Supplementary Figure S1).

Constructing the SARS-CoV-2–Related
Gene Signature in the Training Set
In total, 501 KIRC patients were eligible for our inclusion criteria
and included in the risk score model construction and validation.
All of them, 252 patients were randomized to the training set for
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model construction, and 249 were randomized to the training set
for model validation. The detailed clinical information of these
patients is summarized in Table 1. Through univariate Cox
regression analysis, we detected 11 SARS-CoV-2–related DEGs
significantly associated with prognosis (p < 0.01) in the training set
(Supplementary Figure S2A). Subsequently, the stepwise
multivariate Cox regression analysis was performed based on
above 11 prognostic SARS-CoV-2–related genes, and a 5-gene
prognostic signature was constructed in the training set
(Supplementary Figure S2B; Supplementary Table S2). The
detailed description about Covid-19 bait, tissue specificity, blood
specificity, and subcellular location of the five hub SARS-CoV-
2–related genes (ACADM,CENPF,KDELC1, PLOD2, andTRMT1)
in this predictive model is listed in Supplementary Table S3.
Among these five genes, only downregulated ACADM was the
protective factor with Cox HR < 1, and the other upregulated
CENPF, KDELC1, PLOD2, and TRMT1 were unfavorable factors
with Cox HR > 1. According to the expression and multivariate
Cox regression coefficients of these five genes, we can calculate the
risk score of each KIRC patient as follows: Risk score = (−0.4955 *
ACADM Exp) + (0.3805 * CENPF Exp) + (0.2904 * KDELC1 Exp)
+ (0.2048 * PLOD2 Exp) + (0.4925 * TRMT1 Exp).

Then, the 252 KIRC patients in the training set were separated
into low-risk (n = 126) or high-risk (n = 126) subgroups, using the
median of the 5-gene signature risk scores as the cut-off
(Figure 3A). The scatter plot for survival time and survival

status distribution of each patient in the training cohort is
illustrated in Figure 3B; patients with high risk usually had a
higher likelihood of death earlier than those with low risk.
Furthermore, the expression profile of the five genes in this
signature was displayed as a heat map (Figure 3C). The
Kaplan–Meier survival curves of two groups demonstrated
that high-risk patients had a significant shorter survival time
than those patients in the low-risk group, with p < 0.001
(Figure 3D). Moreover, the area under the curve (AUC)
values of time-dependent ROC curves at 1-, 3-, and 5-years
reached 0.766, 0.705, and 0.770, respectively; the results
indicated that our prognostic signature had an excellent
predictive ability (Figure 3E). Besides, the multivariate Cox
regression analyses of the risk score signature and other
clinical characteristics (age, gender, grade, and stage) were
performed in the training set, and the risk score signature (HR
= 1.302, 95% CI = 1.196–1.417, p < 0.001) was considered as an
independent prognostic indicator for OS (Figures 3F,G;
Supplementary Table S4).

Validating the 5-Gene Risk Score Signature
in the Testing Set and Entire TCGA-KIRC
Cohort
To further examine the predictive ability of this risk score model,
we also calculated the risk scores of the KIRC patients in the

FIGURE 1 | Workflow of this study.
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testing cohort (n = 249) using the same formula (Figure 4). The
Kaplan–Meier survival analysis for two groups demonstrated that
high-risk patients had a significant poor prognosis than patients
with low risk, with p < 0.001 (Figure 4D). And, the AUC values of
time-dependent ROC curves at 1-, 3-, and 5-years reached 0.741,
0.715, and 0.712, respectively (Figure 4E). Besides, the results of
multivariate Cox regression analyses revealed that the risk score
signature (HR = 1.142, 95% CI = 1.072–1.218, p < 0.001) was an
independent prognostic indicator for OS in the testing cohort
(Figures 4F,G; Supplementary Table S4). In addition, we also
obtained the similar results in the entire TCGA-KIRC cohort (n =
501) (Figure 5).

Verification of Expression Levels and
Prognostic Significance of the Five Genes
The mRNA and protein expression levels of the five hub genes
(ACADM, CENPF, KDELC1, PLOD2, and TRMT1) were
validated in GEPIA and HPA databases. The mRNA
expression level of ACADM was significantly reduced in KIRC

tissues, while those of CENPF, KDELC1, PLOD2, and TRMT1
were significantly increased in KIRC tissues, which was
determined by GEPIA (Figure 6A). The protein expression
levels were detected through immunohistochemistry analyses
in the HPA database, and the immunohistochemistry results
further confirmed their expression difference between normal
kidney tissues and KIRC tissues (Figure 6B). The cBioPortal
online database includes 446 KIRC samples with complete
genetic alteration data, 89 (20%) of them with alteration in the
five genes, and the mRNA upregulation was the most frequent
alteration type (Figure 6C). Besides, the KM survival curves of
the five SARS-CoV-2–related genes were generated by the
Kaplan–Meier plotter (splitting the patients by the best cut-
off) to determine their relationship with OS. The results
showed that a higher expression of ACADM (p = 7.7e-13) in
KIRC predicted better OS, but instead the KIRC patients with
higher expression levels of CENPF (p = 4.9e-09), KDELC1 (p =
0.0013), PLOD2 (p = 1.8e-06) and TRMT1 (p = 5.2e-10) exhibited
worse OS (Figure 6D). Moreover, it seems that these genes and
their somatic copy number alteration were associated with the

FIGURE 2 |Differentially expressed SARS-CoV-2–related genes in KIRC. (A) Volcano plot of all DEGs; (B) Venn diagram to identify SARS-CoV-2–related DEGs; (C)
Volcano plot of 31 SARS-CoV-2–related DEGs; (D) Heat map of 31 SARS-CoV-2–related DEGs.
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infiltration of B cells, CD4+ T cells, CD8+ T cells, neutrophils,
macrophages, and dendritic cells in KIRC (Supplementary
Figure S3). The correlation between the expression of the five
genes is presented in Supplementary Figure S4; there was the
greatest positive correlation between KDELC1 and PLOD2 (r =
0.39) and the greatest negative correlation between ACADM and
TRMT1 (r = −0.45).

Stratification Analyses According to the
Different Clinical Characteristics in the
Entire TCGA-KIRC Cohort
To further confirm the prognostic potential of the SARS-CoV-
2–related gene signature in KIRC with different
clinicopathological factors, we conducted series of subgroup
survival analyses based on age, gender, grade, and stage in
the entire TCGA-KIRC cohort. Survival curves revealed that
patients in the high-risk group had a worse outcome
compared to those in the low-risk group among different
age (≤65 and >65), gender (male and female), grade (G1, G2,
G3, and G4), and stage (I, II, III, and IV) subgroups (Figures
7A–H). The clinical characteristics of each patient in the entire
TCGA-KIRC cohort and their corresponding risk score are
summarized in Figure 7I, including the five model gene
expression profiles. We also found that dead patients were
more likely to have higher risk scores than alive patients (p <
0.001), suggesting that a higher risk score predicts a poorer
prognosis (Figure 7J). For males, the risk scores were
significantly higher than females (p < 0.001) (Figure 7K).
Furthermore, the risk score was particularly relevant to the
tumor malignant phenotype; patients with a higher tumor
stage and historical grade usually had higher risk scores, which
demonstrated that the prognostic signature could predict the
progression of KIRC (Figures 7L,M).

PCA and GSEA Analyses
In order to investigate the distribution patterns of patients in
high- and low-risk groups, according to the expression of genes in
the signature, we performed PCA analyses in the training cohort,
testing cohort, and entire KIRC cohort. The results in the three
cohorts all showed that patients from different risk groups were
distributed in two distinct directions (Figures 8A–C).

Viral infection is associated with inflammation; SARS-CoV-2
infection could induce severe inflammatory responses and
cytokine storms, contributing to serious events. To further
illuminate the underlying biological processes related to the
risk score signature, GSEA was implemented between high-
and low-risk groups in the entire TCGA-KIRC cohort. We
found some antiviral defense and inflammatory/immune-
related processes were active in patients with high risks
(Figures 8D–I), such as positive regulation of the defense
response to the virus by the host (NES = 2.08, FDR = 0.003),
regulation of the acute inflammatory response (NES = 2.17, FDR
= 0.002), cytokine production involved in the inflammatory
response (NES = 1.62, FDR = 0.03), lymphocyte migration
(NES = 2.96, FDR < 0.001), T-cell differentiation involved in
the immune response (NES = 2.77, FDR < 0.001), and regulation
of T-cell–mediated immunity (NES = 2.02, FDR = 0.004). Taken
together, the 5-gene risk score signature based on SARS-CoV-
2–related genes could reflect the immune status and deduct the
immune landscapes of KIRC patients, and high-risk patients were
more likely to have a strong inflammatory response to SARS-
CoV-2.

The Immune Infiltration Landscapes
Between the High- and Low-Risk Groups
To obtain comprehensive insights into the infiltration of tumor-
infiltrating immune cells in KIRC, the CIBERSORT algorithm

TABLE 1 | Clinical characteristics of 501 KIRC patients involved in the 5-gene prognostic signature construction and validation.

Characteristics Entire TCGA-KIRC cohort Detailed data

(N = 501) Training
cohort (N = 252)

Testing
cohort (N = 249)

Status
Dead 167 (33.3%) 80 (31.7%) 87 (34.9%)
Alive 334 (66.7%) 172 (68.3%) 162 (65.1%)

Gender
Male 330 (65.9%) 162 (64.3%) 168 (67.5%)

Female 171 (34.1%) 90 (35.7%) 81 (32.5%)
Age at diagnosis (years)

≤65 332 (66.3%) 172 (68.3%) 160 (64.3%)
>65 169 (33.7%) 80 (31.7%) 89 (35.7%)

Histological grade
G1 11 (2.2%) 7 (2.8%) 4 (1.6%)
G2 217 (43.3%) 104 (41.2%) 113 (45.4%)
G3 201 (40.1%) 107 (42.5%) 94 (37.7%)
G4 72 (14.4%) 34 (13.5%) 38 (15.3%)

TNM stage
I 250 (49.9%) 128 (50.8%) 122 (49.0%)
II 53 (10.6%) 24 (9.5%) 29 (11.6%)
III 116 (23.1%) 59 (23.4%) 57 (22.9%)
IV 82 (16.4%) 41 (16.3%) 41 (16.4%)
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combined with the LM22 leukocyte signature matrix was utilized
to calculate the proportions of 22 immune cell types in high- and
low-risk KIRC patients from the entire cohort. In total, 404
patients from the entire TCGA-KIRC cohort met the inclusion
criteria (p < 0.05), and their composition of 22 immune cells is
summarized in Figure 9A. Besides, the proportions of different
tumor-infiltrating immune cell subsets were moderately to
weakly correlated (Figure 9B). Between the two groups, the
fractions of immune cells in KIRC varied significantly. The
KIRC patients in the high-risk group had significantly higher
fractions of macrophages M0 (p < 0.001), T follicular helper cells

(p < 0.001), regulatory T cells (p < 0.001), dendritic cells activated
(p < 0.01), and plasma cells (p < 0.05), and lower fractions
of dendritic cells resting (p < 0.001), mast cells resting (p <
0.001), macrophages M2 (p < 0.01), macrophages M1 (p <
0.05), and monocytes (p < 0.05) than patients with low risk
(Figure 9C).

In addition, we further assessed the tumor microenvironment
of KIRC based on the ESTIMATE method and found that
patients in the high-risk group had significantly higher stromal
scores (p = 0.0056) and immune scores (p < 0.001) than those in
the low-risk group (Figure 10A). At present, the immune

FIGURE 3 | Risk score analysis of the 5-gene signature based on SARS-CoV-2–related genes in the training set. (A–C) Distribution of risk scores, OS status, and
gene expression of model genes; (D) Kaplan–Meier curves of the high- and low-risk subgroup patients; (E) Time-dependent ROC curves for predicting 1-, 3-, and 5-year
OS; (F) Univariate and (G) multivariate Cox regression analyses in the training set.
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checkpoint blockade therapy has become an important antitumor
strategy by reversing the immunosuppressive state. Then, the
relationships between the expression levels of several key immune
checkpoint molecules (CTLA-4, LAG-3, TIGIT, TIM3, and
PDCD1) and risk scores were assessed. We observed that the
risk scores were significantly positively associated with the
expression of CTLA-4, LAG-3, TIGIT, and PDCD1 (p < 0.05)
(Figure 10B), and the expression levels of CTLA-4, LAG-3,
TIGIT, and PDCD1 were significantly higher in the high-risk
KIRC patients than those in the low-risk patients (p < 0.001)
(Figure 10C).

A Predictive Nomogram Development and
Validation
In addition, to further extend the clinical applicability and
availability of the prognostic model, a predictive nomogram
for 1-, 3-, and 5-year OS combined with age, gender, grade,
and risk scores was developed in the training set, where predictors
were included in the nomogram (Figure 11A). Calibration plots
demonstrated that the nomogram had a similar performance
than the ideal model for predicting 1-, 3-, and 5-year OS
probability, and there was a good agreement between the
predicted and actual observed survival (Figure 11B). The

FIGURE 4 | Risk score analysis of the 5-gene signature based on SARS-CoV-2–related genes in the testing set. (A–C) Distribution of risk scores, OS status, and
gene expression of model genes; (D) Kaplan–Meier curves of the high- and low-risk subgroup patients; (E) Time-dependent ROC curves for predicting 1-, 3-, and 5-year
OS; (F) Univariate and (G) multivariate Cox regression analyses in the testing set.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org January 2022 | Volume 9 | Article 7446598

Huang et al. Prognostic Signature for KIRC

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


KIRC patients in the training set (n = 252) were segregated into
high-nomogram score (n = 126) and low-nomogram score (n =
126) groups determined by the median nomogram score, and
Kaplan–Meier analysis indicated that the patients with low-
nomogram scores tend to have a significantly worse survival
(p < 0.001) (Figure 11C). The AUCs of the nomogram in the 1-,
3-, and 5-year ROC curves were 0.880, 0.804, and 0.781, which
outperformed the 5-gene signature (Figure 11F; Supplementary
Table S5).

Additionally, we further validated the predictive nomogram in
the testing set (n = 249) and the entire KIRC cohort (n = 501), and

similar results were observed in Kaplan–Meier analysis and ROC
curve analysis (Figures 11D,E,G–H; Supplementary Table S5).
Altogether, these results indicated that the risk score signature in
combination with other clinical parameters might have higher
predictive power for OS.

Validation of the 5-Gene Signature and
Nomogram in the E-MTAB-1980 Dataset
In order to further determine the reliability and robustness of our
prognostic signature and nomogram, we used the E-MTAB-1980

FIGURE 5 | Risk score analysis of the 5-gene signature based on SARS-CoV-2–related genes in the entire TCGA-KIRC cohort. (A–C) Distribution of risk scores,
OS status, and gene expression of model genes; (D) Kaplan–Meier curves of the high- and low-risk subgroup patients; (E) Time-dependent ROC curves for predicting
1-, 3-, and 5-year OS; (F) Univariate and (G) multivariate Cox regression analyses in the entire TCGA-KIRC cohort.
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FIGURE 6 | Expression and prognostic value of the five model genes (ACADM, CENPF, KDELC1, PLOD2, and TRMT1) in KIRC. (A) mRNA expression level
between KIRC tissues and normal renal tissues in GEPIA; the cutoff of |log2FC| was set to 0.5, and the p-value was 0.05; (B) Protein expression level detected by
immunohistochemistry in HPA; (C) Alteration frequency of the five hub SARS-CoV-2–related genes in 446 KIRC patients; (D) Prognostic value of five hub SARS-CoV-
2–related genes in KIRC by the Kaplan Meier–plotter.
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dataset for external validation. Table 2 displayed the clinical
characteristics of KIRC patients in the E-MTAB-1980 dataset.
Risk scores of these patients were calculated using the previous
following formula. Similar to our results above, the K-M survival
analysis indicated the OS of patients in the high-risk group was
significantly shorter than that in the low-risk group (p < 0.001)
(Figure 12A). The AUC values of the 5-gene prognostic signature
for 1-, 3-, and 5-year OS reached 0.798, 0.783, and 0.807,
respectively (Figure 12B). Moreover, the univariate and
multivariate Cox regression analyses also demonstrated that
the 5-gene signature could predict KIRC patients’ prognosis
independently (HR = 2.659, 95% CI = 1.375–5.141, p = 0.004)
in Figures 12C,D. We then validated the nomogram in the
E-MTAB-1980 dataset and found that KIRC patients with
high nomogram scores had poorer prognosis than those with

low nomogram scores (p < 0.001) (Figure 12E). The AUC of the
nomogram for 5-year OS was 0.875, which exceeded the 5-gene
signature and other clinical features (Figure 12F). These
results in the E-MTAB-1980 dataset further confirmed the
reliability and robustness of the 5-gene prognostic signature
and nomogram.

DISCUSSION

COVID-19 pandemic is becoming a serious global public health
problem; the older patients with basic diseases such as
hypertension, diabetes, chronic kidney disease, and cancer
were considered at an increased risk of COVID-19 infection
(Ma et al., 2020; Salzberger et al., 2021). This susceptibility may

FIGURE 7 | Stratified analyses based on the prognostic signature in the entire TCGA-KIRC cohort; (A–H) Kaplan–Meier survival analyses in different clinical
characteristic subgroups; (I) Gene expression and clinicopathologic feature distribution of low- and high-risk groups; (J–M) Risk scores of patients stratified by survival
status, gender, grade, and stage.
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also be related to the aberrant expression of some key SARS-CoV-
2-interacting proteins, especially ACE2 (Li Y. et al., 2020; Ashraf
et al., 2021; Rezaei et al., 2021). SARS-CoV-2 utilizes ACE2 as
an entry receptor to infect cells, and an increased ACE2
expression may result in an elevated SARS-CoV-2 infection
risk (Cao et al., 2020; Wu et al., 2021). Some studies have
found that ACE2 is aberrantly expressed in some cancers,
such as lung adenocarcinoma, renal carcinoma, and stomach
adenocarcinoma, and it is correlated with prognosis and immune
infiltrates (Hoang et al., 2020; Kong et al., 2020; Tripathi et al.,
2020; Chen L. et al., 2021; He et al., 2021). Moreover, the other key
SARS-CoV-2 infection–related host cell receptors or entry

related-proteins, TMPRSS2, CTSL/B, USP13, HSPA5, Furin,
and ADAM17 have recently been reported to play important
roles in SARS-CoV-2 infection (Chen et al., 2020; Ibrahim et al.,
2020; Zipeto et al., 2020; Tang et al., 2021). They were also
observed to be aberrantly expressed in several cancers;
dysregulation of their expression in cancer patients’ tissues
should affect the susceptibility and severity of SARS-CoV-2
infection (Li H. et al., 2020; Ravaioli et al., 2020; Süt, 2020; Fu
et al., 2021; Zhou and Gao, 2021). These findings suggest that
SARS-CoV-2 infection–related genes may play essential roles in
virus infection, and they also participate in development of many
cancers. To date, over 300 SARS-CoV-2 infection–related genes

FIGURE 8 | PCA and GSEA analyses. (A–C) PCA plots of the training set, testing set, and entire TCGA-KIRC cohort; (D–I) GSEA analyses for the biological
processes in the entire TCGA-KIRC cohort.
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have been identified, but their roles in KIRC remains unclear. It is
important to evaluate their expression in KIRC tissues, for
predicting the KIRC patients’ susceptibility to SARS-CoV-2
infection and outcome. Therefore, the goal of our study was to
develop a robust SARS-CoV-2–related gene signature, which can
predict the clinical outcome for KIRC patients.

In the present study, we systematically analyzed the expression
of 333 SARS-CoV-2–related genes in the TCGA-KIRC cohort
and found 31 SARS-CoV-2–related DEGs between KIRC and
normal tissues. Moreover, we further investigated the association
between these SARS-CoV-2–related DEGs and overall survival of
KIRC patients by using univariate Cox regression, multiple
stepwise Cox regression, and K-M survival analyses and
generated a novel prognostic model comprising five SARS-
CoV-2–related genes. In the training set, the median risk score
was used as the cut-off to categorize KIRC patients into high-risk
or low-risk groups, and the high-risk patients had unfavorable
prognosis. Multivariate analyses demonstrated that the risk
score signature was an independent prognostic factor for OS
prediction of KIRC patients. The ROC curves exhibited that the
AUC values of the SARS-CoV-2–related gene signature were

greater than 0.7 at 1, 3, and 5 years, indicating that the 5-
gene signature had a good predictive performance to
screen out the KIRC patients with poor prognosis.
Additionally, we further validated the risk score model in the
testing set, entire TCGA-KIRC cohort, and E-MTAB-1980
dataset and observed the similar results and equally good
performance. Stratification analysis suggested that the risk
score signature had wide applicability for predicting
prognosis of KIRC patients with distinct molecular features
and clinicopathological characteristics. The 5-gene signature
was able to accurately distinguish the KIRC patients who had
a high risk with poor overall survival in different clinical
subgroups. All these results indicated that our risk score
model was a robust indicator for predicting KIRC patients’
prognosis.

The prognostic signature which we constructed consisted of
five SARS-CoV-2–related genes (ACADM, CENPF, KDELC1,
PLOD2, and TRMT1). Of the five genes, CENPF, KDELC1,
PLOD2, and TRMT1 were upregulated in KIRC tissues and
were correlated with poor survival and higher susceptibility to
SARS-CoV-2. In contrast, ACADMwas downregulated and act as

FIGURE 9 | Immune infiltration landscape of KIRC patients in low- and high-risk groups. (A) Relative percentage of 22 immune cells in low- and high-risk KIRC
patients; (B) Correlation analyses between 22 types of immune cells; (C) Fractions of 22 immune cells between low- and high-risk groups. *p < 0.05; **p < 0.01; ***p <
0.001.
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a protective factor for KIRC patients; the higher ACADM
expression may contribute to better survival and lower
likelihood of SARS-CoV-2 infection. Centromere protein F
(CENPF), a gene located in chromosome 1q41, encodes a
microtubule-binding protein that is associated with the cell
cycle and regulate chromosome segregation; it begins to
accumulate during the S-phase and reaches maximal
expression levels in the G2/M phase cells (Shahid et al., 2018;
Sun et al., 2019). CENPF has been reported to be upregulated
in various types of malignant tumors and serve as a prognostic
indicator for multiple cancers, such as prostate cancer, breast
cancer, pancreatic cancer, lung adenocarcinoma, and renal
cancer; the high expression of CENPF is associated with worse
prognosis and metastasis in these cancers (Sun et al., 2019;
Chen H. et al., 2021). Some studies have found that CENPF
and FOXM1 are major regulators in prostate cancer
development; they synergistically promote prostate cancer
malignant progression and metastasis (Aytes et al., 2014).
Moreover, CENPF also promotes breast cancer progression
and bone metastasis by activating the AKT/mTOR
signaling pathway (Sun et al., 2019). Knockdown of CENPF
could inhibit the progression of lung adenocarcinoma by
suppressing the ERβ2/5 pathway (Hexiao et al., 2021).
KDELC1, also called POGLUT2, is a protein
O-glucosyltransferase which participates in O-glucose

modification and modulates Notch trafficking and signaling
(Takeuchi et al., 2018; Mehboob and Lang, 2021). Currently,
few research studies are available regarding the role of
KDELC1 in cancer. In this research, we first uncovered that
KDELC1 was upregulated in KIRC and associated with poor
survival. PLOD2 is one of the members of the PLOD family,
encodes for lysyl hydroxylases 2which mediates stabilized
collagen cross-link formation in the extracellular matrix.
Many lines of evidence suggested that PLOD2 is a tumor
metastasis-promoting gene; it promotes tumor aggressive
metastasis and invasion through mediating cross-links of
collagen (Yamauchi and Sricholpech, 2012; Chen et al.,
2015). In recent years, increasing research has revealed the
pivotal role of PLOD2 in various cancer types, particularly
in breast cancer, hepatocellular carcinoma, bladder cancer,
sarcomas, and renal cell carcinoma (Du et al., 2017; Qi and
Xu, 2018). In these cancer tissues, PLOD2 is significantly
overexpressed, and the high PLOD2 expression was
significantly associated with tumor metastasis and shorter
survival time. Obviously, PLOD2 is an independent factor
of poor outcomes and could serve as a prognostic
biomarker for patients with these cancer types (Du et al.,
2017). Several previous studies have shown that the
expression PLOD2 could be regulated by HIF-1α (Gilkes
et al., 2013). Besides, in a tumor microenvironment, PLOD2

FIGURE 10 | Tumor microenvironment between different risk groups. (A) Estimate scores, stromal scores, and immune scores of different groups; (B) Correlation
between the risk score and the expression of immune checkpoints; (C) Significant differentially expressed immune checkpoints between high- and low-risk patients.
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could modulate the collagen–cross-linking activity of cancer-
associated fibroblasts and promote tumor cell migration
and invasion (Chen et al., 2015; Qi and Xu, 2018). TRMT1
encodes tRNA methyltransferase 1, an RNA methyltransferase
responsible for N2, N2-dimethylguanosine (m2,2G) formation
in cytosolic and mitochondrial tRNAs (Dewe et al., 2017;

Jonkhout et al., 2021). TRMT1 has been considered as the
cause of autosomal-recessive intellectual disability (Zhang
et al., 2020), but its role in cancers has not yet been
reported. Herein, our study has reported the prognostic
value of TRMT1 in KIRC for the first time. ACADM
encodes medium-chain acyl-CoA dehydrogenase which is

FIGURE 11 | Developing and validating a nomogram for predicting prognosis in the TCGA-KIRC dataset. (A) Nomogram constructed in the training set to predict
1-, 3-, and 5-year OS; (B) Calibration plots of the nomogram for 1-, 3-, and 5-year OS; (C–E) Kaplan–Meier survival analysis based on the nomogram scores in the
training set, testing set, and entire TCGA-KIRC cohort; (F–H) Time-dependent ROC curves of the nomogram for 1-, 3-, and 5-year OS in the training set, testing set, and
entire TCGA-KIRC cohort.
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involved in fatty acid oxidation and lipid metabolism (Smith
et al., 2010). Inhibition of ACADM could alter hepatocellular
carcinoma cell lipid metabolism and promote cell lipid
accumulation, ultimately drive hepatocarcinogenesis (Li
et al., 2019). Additionally, a recent study showed
that ACADM was highly expressed in ferret models after
SARS-CoV-2 infection and played a crucial role in SARS-
CoV-2 infection progression (Liu et al., 2020). In
summary, two of the prognostic model genes (CENPF and
PLOD2) have been reported to be associated with KIRC
patients’ prognosis in previous studies, while the remaining
three genes (KDELC1, TRMT1, and ACADM) were first
reported to be correlated with the prognosis of KIRC in the
current study.

Evidence has suggested that the immune dysregulation may
be highly linked to the pathological process of COVID-19.
Given the significance of the immune system in antiviral and
antitumor responses, we further investigated the immune
cell infiltration status between KIRC patients with low and
high risks based on the prognostic signature. The ESTIMATE
analysis showed that patients in the high-risk groups were
identified to have significantly higher stromal scores and
immune scores and lower tumor purities. Recent studies have
revealed that major stromal components within the tumor
microenvironment can not only favor tumor growth and
metastasis but it could also affect the antitumor immune
response, leading to unfavorable prognosis (Quail and Joyce,
2013; Turley et al., 2015). Our results were in agreement with
these previous findings that high stromal infiltration and low
tumor purity levels correlated with worse prognosis in many
cancers (Zhang et al., 2017). Furthermore, the CIBERSORT
algorithm was used to evaluate the abundance of 22 immune

cell types in KIRC, and the higher proportions of macrophages
M0, regulatory T cells (Tregs), and T follicular helper
cells were observed in high-risk patients than low-risk
patients. Tumor-associated macrophages and Treg cells are
immunosuppressive cells that inhibit the antitumor immune
response and secrete various immunosuppressive cytokines,
promoting the tumor immune escape (Dunn et al., 2002;
Sica et al., 2006). Moreover, we noted that the high-risk KIRC
patients had significantly higher levels of the CTLA-4, LAG-3,
TIGIT, and PDCD1 expressions than the low-risk patients,
and high expression levels of immune checkpoints are effective
predictors for responses to immune checkpoint inhibitors
(Pardoll, 2012; Qin et al., 2019). Notably, Treg cells also
expressed immune checkpoint molecules, including CTLA-
4 and PDCD1 (Romano et al., 2015). The above results
indicated that the worse survival of the KIRC patients
with high-risk scores is likely due to the higher
immune checkpoint expression levels and more potent
immunosuppressive tumor microenvironment. Besides, these
results also suggested that patients in the high-risk group
will benefit more from the immune checkpoint blockade
therapy than those in the low-risk group, thereby contributing
to a better prognosis.

Additionally, we further established a novel predictive
nomogram by integrating our risk signature with several
clinical characteristics with superior prediction performance.
The AUCs of this nomogram for 1-, 3-, and 5-year survival
are all greater than 0.750 in the training set, testing set, entire
TCGA-KIRC cohort, and E-MTAB-1980 dataset, which
indicated our nomogram and prognostic signature have
excellent predictive ability for both short- and long-term
follow-up patients. We also found the AUC values of this
nomogram exceeded that of the 5-gene signature both in
predicting 1-, 3-, and 5-year OS, indicating combination of the
5-gene signature with other prognosis-related clinical parameters
would further improve the predictive power for survival and
expand the clinical practicability.

To our knowledge, our study for the first time proposed a
novel prognostic signature and nomogram for KIRC based upon
SARS-CoV-2–related genes and provided some new insights into
the relationship between KIRC and SARS-CoV-2 infection.
However, some limitations of our study still existed. First, the
study was based on retrospective cohorts; our results needed to be
further confirmed by future prospective studies. Second, the
underlying biological functions and molecular mechanisms of
the fivemodel genes in KIRC and SARS-CoV-2 infection have not
been examined in this study and remain to be further studied in
the future.

In summary, we developed a novel prognostic signature and
nomogram based on five SARS-CoV-2–related genes for the first
time, which exhibited good performance both in the TCGA
cohort and external validation dataset. This prognostic model
was confirmed to have independent prognostic significance for
KIRC patients and may provide some new potential therapeutic
targets for KIRC patients and protects them from SARS-CoV-2
infection.

TABLE 2 | Characteristics of KIRC patients in the external validation cohort
(E-MTAB-1980 dataset).

Characteristics E-MTAB-1980
dataset (N = 101)

Status
Dead 23 (22.8%)
Alive 78 (77.2%)

Gender
Male 77 (76.2%)

Female 24 (23.8%)
Age at diagnosis (years)

≤65 57 (56.4%)
>65 44 (43.6%)

Histological grade
G1 13 (12.9%)
G2 59 (58.4%)
G3 22 (21.8%)
G4 5 (5.0%)

Unknown 2 (1.9%)
TNM stage

I 66 (65.3%)
II 10 (9.9%)
III 13 (12.9%)
IV 12 (11.9%)
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