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Abstract: Noise maps and action plans represent the main tools in the fight against citizens’ exposure
to noise, especially that produced by road traffic. The present and the future in smart traffic control is
represented by Intelligent Transportation Systems (ITS), which however have not yet been sufficiently
studied as possible noise-mitigation tools. However, ITS dedicated to traffic control rely on models
and input data that are like those required for road traffic noise mapping. The present work developed
an instrumentation based on low-cost cameras and a vehicle recognition and counting methodology
using modern machine learning techniques, compliant with the requirements of the CNOSSOS-EU
noise assessment model. The instrumentation and methodology could be integrated with existing
ITS for traffic control in order to design an integrated method, which could also provide updated
data over time for noise maps and action plans. The test was carried out as a follow up of the
L.I.S.T. Port project, where an ITS was installed for road traffic management in the Italian port city
of Piombino. The acoustic efficacy of the installation is evaluated by looking at the difference in the
acoustic impact on the population before and after the ITS installation by means of the distribution
of noise exposure, the evaluation of Gden and Gnight, and the calculation of the number of highly
annoyed and sleep-disturbed citizens. Finally, it is shown how the ITS system represents a valid
solution to be integrated with targeted and more specific sound mitigation, such as the laying of
low-emission asphalts.

Keywords: intelligent transportation systems; sound mitigation; noise maps; traffic measurements;
machine learning; YOLO; vehicle detection; noise exposure; annoyance; Gden

1. Introduction

The prevention of citizens’ noise exposure is fundamental in modern society in order
to avoid the onset of health effects such as sleep disorders [1,2], learning impairment [3],
diastolic blood pressure and hypertension [4,5], ischemic heart disease [6], and annoy-
ance [7,8]. Road traffic is the most impacting source, with 82 million of Europeans affected
by long-term day–evening–night (Lden) traffic noise levels of at least 55 dB (A) [9]. The
common guideline to prevent noise was outlined in 2002 when the European community
issued the Environmental Noise Directive (END) [10]. In this document, acoustic mappings
were prescribed in order to estimate the noise emitted in certain areas by the main noise
sources. Acoustic mappings represent the first step toward the calculation of the number
of citizens exposed to certain noise levels and, consequently, which mitigation actions
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should be planned, every 4 years, when noise exposures are close to health disturbances
thresholds. In the noise mapping phase, models can calculate the propagation of noise
in the environment only if appropriate input data are inserted. For road traffic [11–14],
usual input data are represented by traffic flow and average speed for the different vehicles
categories according to the CNOSSOS-EU model [15], as well as the type of road pavement.

In this light, many studies were devoted to the investigation of the parameters affecting
road traffic noise. Besides engine noise, tire/road interaction—also known as tire/road
noise—is the main generation mechanism acting in the speed range cars usually have in
urban and suburban contexts [16]. Tire/road noise depends on both the tire model [17] and
the type of road surface [18,19], since the effect of its properties such as road texture [20–22]
and its job mix formula [23,24] can be considered when optimizing pavements from an
acoustic point of view. Low-noise pavements represent an effective tool in road traffic noise
mitigation, not only because they reduce noise acting on the sound power of the source, but
also because, compared to other solutions—such as ordinary noise barriers—they yield a
smaller impact on the surrounding environment and on the citizens. Usually, the mitigation
of noise through new pavements occurs where barriers cannot be placed or are not accepted,
but they can also be used in combination in order to maximize the insertion loss. In any
case, the cost of the shares depends on their extent.

A further solution for noise reduction could be represented by Intelligent Transporta-
tion Systems (ITS), which represent the current and future perspectives in the field of
road transportation. However, to the best of the authors’ knowledge, their potential as
noise mitigation has been studied only marginally in the scientific literature by a couple of
studies [25,26], not yet receiving the attention they deserve.

A number of different systems fall within the ITS category, all aiming to promote
transport safety, mobility, and environmental sustainability. This is done by integrating
communication and information technology applications into the management and oper-
ation of the transport system, in all its aspects. The objective of the ITS is to connect the
various vehicles, the road infrastructure, the mobile devices of the passengers or specific
instruments installed along the roads in order to warn drivers in real time about potential
dangers or road conditions, guiding them towards different choices for the best route.

The usefulness of ITS has been reported in various sectors, but the best results are
obtained in crash prevention, safety for connected vehicles, and driver assistance in auto-
mated vehicles [27]. Left turn assist, traffic control violation warning, and stop sign gap
assist are among the in-road sensors that have helped reducing collisions with pedestri-
ans [28]. The intra-vehicular sensing platforms—including vehicle-to-infrastructure (V2I),
vehicle-to-vehicle (V2V), and vehicle-to-pedestrian (V2P) applications—have demonstrated
success in detecting potential conflicts, warning drivers of crash potential and then re-
ducing the risk of fatal crashes [29–31]. Data collected by sensors during V2V and V2I is
then provided to transportation management systems for further processing and analysis
and this process should be ensured by the highest quality sensor as the success of the ITS
itself depends on how much the platform used to access, collect, and process accurate
data from the environment is fast and easy to access [32,33]. The technology allowing
vehicles to link to a wireless router to enable inter-vehicular communication firstly was the
vehicular ad hoc network (VANET), which was later extended to the internet of vehicles
(IoV) for interacting with ITS [34]. In fact, IoV is an intelligent communication link via
mobile internet between vehicles and public networks that includes vehicular networking
and vehicular intelligence for V2V and V2I communications [35].

For the purpose of the present work, the most important aspect is traffic monitoring
and vehicle detection in ITS. Inductive loop detectors, radar detectors, and laser detectors
are the most common sensors used to detect vehicles [36], but their main drawbacks can be
found in maintenance cost and environmental issues [37]. Video cameras are cheaper and
more flexible than these traditional sensors and the increasing numbers of closed-circuit
television (CCTV cameras) have boosted image-based vehicle detection as a technique for
large-scale traffic information data collection.
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Many years have passed since video-based vehicle detection was applied to ITS [38] to
provide information assisting vehicle counting, vehicle speed measurement, identification
of traffic accidents, and traffic flow prediction. In summary, the ITS dedicated to traffic
management uses sensors for the acquisition of traffic data that act as inputs to traffic
models updated in real time, with subsequent warnings to drivers through various systems
to avoid certain events or to be guided towards more effective routes. Seen from this
perspective, ITS systems and acoustic mapping present similar inputs, although they are
different and have different functionalities. It would be interesting for the two activities to
be integrated; for example, by ensuring that the ITS cameras could collect traffic data also
according to the action plan and the acoustic maps, thus acquiring traffic data according to
the specifications provided by the END [10].

Video analysis methods for vehicle detection and traffic monitoring should overcome
various challenges which are faced with many different methods [37,38]. The main dif-
ficulties arise from the dynamic observation conditions related to illumination changes
during daytime and nighttime, different weather conditions, shadows produced by ve-
hicles or objects, and vehicle occlusions. Classical machine learning appearance-based
methods are based on the recognition of specific local features using descriptors such as the
histogram of gradient (HOG) [39,40], Haar-like features [41], Gabor features [42], speed-
up robust features (SURF) [43], and scale-invariant features transform (SIFT) [44]. The
feature recognition is usually combined with the use of classifiers such as support vector
machines (SVM), decision trees classifier, artificial neural networks based on multilayer
perceptron architecture, and ensemble methods such as Adaboost or Random Forest [40,45].
Other classical motion-based methods include background modeling methods, using for
example Gaussian mixture models, background subtraction, or optical flow [46,47]. The
main drawback of these methods is that they are feature dependent: rapidly changing
observation conditions could decrease detection performances and should be studied thor-
oughly for each case. These algorithms often require hand-crafted parameter adjusting and
optimization by human expertise to best represent features of the target objects [37].

Nowadays, thanks to the development of deep neural networks (DNN) and the
continuous improvement of GPU computation performances, it is possible to approach
the problem of vehicle detection differently. Deep learning methods are able to extract
features directly from original images or video, without the need for detailed analysis of
different conditions and circumstances. The downside of these methods is the requirement
of large amount of labeled data to proceed to the model training in a supervised manner.
The data should be collected and prepared for the various environmental conditions in
order to achieve good detection and classification performances. Anyhow, the availability
of labeled datasets for vehicle detection is increasing thanks to the growth of the research
on autonomous driving vehicles and machine learning methods [48–51].

Among several deep learning methods, the YOLO (you only look once) object detection
model family [52–56] introduced a new architectural approach that leads to a significant
improvement—especially in computation speed—and an easier implementation of real-
time analysis systems [57–59].

In this work, a video measurement system (VMS) for vehicle detection and classifica-
tion based on a tracking-by-detection approach and the YOLOv2 [53] model is presented.
The VMS consists of a low-cost video recording system (VRS) and a video analysis system
(VAS). The VMS is used to perform roadside measurements, mainly related to environmen-
tal acoustics, with applications to noise mappings and statistical pass-by (SPB) or controlled
pass-by (CPB) measurements [60,61]. In particular, the system is designed to detect and clas-
sify vehicles according to the categories defined in the CNOSSOS-EU model [15], required
by the END [10] for road infrastructures.

The developed video measurement system has been tested and used, together with
other standard sensors, to perform traffic measurements in Piombino (Italy) as a follow-up
of its acoustic mapping performed inside the INTERREG Maritime Programme Italy–France
2014–2020 [62] L.I.S.T. PORT [63].
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The input data for the noise model were acquired with specific short- and long-
term noise and traffic measurements performed with sound level meters and the specific
designed VMS. The measurements and maps have been carried out in two different periods:
the summer 2019 peak period and the summer 2021 peak period. During this 2-year period,
the project installed an info-mobility ITS that automatically provided the most appropriate
directions to drivers arriving and leaving the port area.

The traffic flows before and after the installation of the system are compared and then,
by means of noise maps, the consequent changes in the acoustic footprints in the area are
estimated. The overall effectiveness of the mitigation action is also evaluated in terms of
citizens’ noise exposure by means of the Gden and Gnight indicators [64,65], and with the
total number of citizens that are highly annoyed and sleep-disturbed.

2. Video Measurement System

The acoustic mapping of road infrastructure requires the measurement or estimation
of traffic flow and speed, for each vehicle category defined in the CNOSSOS-EU model [15]
(i.e., cars, medium–heavy trucks, heavy trucks, motorcycles, and mopeds). Several sen-
sors are available to measure traffic flow and speed, such as magnetic sensors, infrared
sensors, photoelectric sensors, Doppler and radar sensors, inductive loops, and video
camera systems.

The measurement system for a single vehicle passing by should perform two different
tasks: vehicle classification and vehicle speed measurement. While speed measurement
could be performed with the various sensors with similar results, vehicle classification is
more cumbersome. Standard measurement systems usually achieve the task of classification
by measuring the length of the vehicle: for example, a radar sensor uses the Doppler effect
by measuring the change of frequency of low energy microwave radiation reflected by
vehicles, estimating both vehicle speed and length. The distribution of vehicle length
measured with a radar Doppler sensor for a single measurement performed in Piombino is
shown in Figure 1. The two peaks correspond to the average length for motorcycles and
cars. The vertical lines show an example of vehicle classification performed by splitting the
continuous length distribution in categories with typical vehicle dimensions.
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Figure 1. Vehicle length distribution measured using a radar Doppler sensor used in Piombino.

However, classification of vehicles based on their length could easily lead to misclas-
sification of vehicles with similar length and misclassification errors due to the choice of
the length range for each category. While misclassification errors do not affect greatly
traffic circulation monitoring, from the point of view of noise emission an improvement in
classification performance could be useful to distinguish, e.g., mopeds from motorcycles or



Sensors 2022, 22, 1929 5 of 26

medium trucks from long cars. The problem of vehicle classification and counting could be
faced by using video analysis systems and modern machine learning methods.

Hashemi et al. [66] presented a literature survey of vehicle detection and classification
(VDC) methods based on artificial neural networks reported from 2012 to 2021. The paper
also introduces a framework to compare different approaches, based on the definition of
nine characteristics of VDC systems. The video measurement system (VMS) presented in
this paper consists of a video recording system (VRS) and a video analysis system (VAS).
In the following, the designed VMS is described using the dimensions of the comparison
framework in [66].

2.1. Application

The VMS is designed for traffic monitoring related the environmental noise field,
with applications to noise mappings, roadside SPB, and CPB measurements [56,57], in
addition to traffic monitoring. The system has been designed to adhere to the following
requirements:

- The VRS should be easily installable at roadside, using a movable experimental
apparatus also including the noise measurement equipment.

- The VAS should permit the vehicles classification using the category defined for the
CNOSSOS-EU model [15].

- The measurement system should be based on low-cost hardware to easily produce
multiple monitoring stations. The hardware cost should be much less than the system
development cost.

- The system should perform measurements of the vehicle speed.
- The video analysis system could process the video recordings offline in order to

maintain a simple measurement system, with a power autonomy of at least one week.
Real-time processing performances should be possible, in case of installation in fixed
monitoring stations.

2.2. Input Source

The VMS is based on low-resolution video recordings (640 × 480 p). Low resolution
and the chosen framing are sufficient to perform vehicle detection and classification and at
the same time allow the device to comply with the ‘privacy by design’ principle, since the
system is not able to perform license plate or facial recognition. The storage resources are
therefore limited, and the data management consequently is easier.

2.3. Vehicle Type

The system permits the classification of the vehicles categories defined for the CNOSSOS-
EU model [15]: light motor vehicles, medium heavy vehicles, heavy vehicles, and powered
two wheelers (mopeds and motorcycles).

The categories recognized by the VAS are more specifics in order to better differentiate
between the visual features, and include car, SUV, open van, motorcycle, moped, truck,
bus, van, and box van.

2.4. Scope/Domain

The data are acquired by movable roadside monitoring stations, used for traffic
monitoring in the context of environmental acoustics applications.

2.5. Dynamicity

In terms of the appearance characteristics, the system could be considered static,
because it is based on the tracking-by-detection approach, where vehicle detection and
classification are performed on single images and static features.
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2.6. Evaluation Method

The system has been evaluated using a test set extracted from an overall dataset
consisting of a total of 14,400 labeled images—divided into 8000 images gathered in daylight
conditions and 6400 at night—labeled by human operators for the object detection task.
The metrics used for evaluation are the mean average precision and the log average
missing rate.

2.7. Scale

The scale of the system in terms of operation domain, time complexity, and adaptability
could be considered medium. The system is adaptable to different applications, respecting
the design requirements. The system works well and has been tested for roads with at most
two to three lanes, using a roadside lateral view.

2.8. Vehicle Detection Method and Vehicle Classification Method

The tasks of vehicle detection and classification are solved jointly by using a YOLOv2
object detection model [53], and a pretrained convolutional neural network.

2.8.1. Video Recording System

The video recording system (VRS) is based on a Raspberry Pi single-board computer,
equipped with a wide-angle camera lens. The camera casing shown in Figure 2 has been
designed on a CAD model and was manufactured using a 3D printer. The camera is
controlled via Wi-Fi and a pan–tilt system is used to compose the framing.

The camera is mounted together with a sound level meter, at a height of about 3–3.5 m
above the ground. The system is powered by batteries that allow the system to measure
continuously for at least one week. For night measurements, the camera exposure parame-
ters are set to increase its sensitivity. Furthermore, the camera is sensitive to infrared light,
so that in cases of absence of artificial illumination IR illuminators could be used. The
frame rate of the recordings is equal to 30 fps for daytime and 20 fps for nighttime. In order
to easily install the measurement system in different urban areas, the camera system is
mounted on the side of the roads as shown in Figure 2, the video traffic monitoring uses a
lateral view, differently from more usual permanently installed video systems.
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2.8.2. Video Analysis System

The problem of vehicle detection and tracking using video analysis is a specific case
of the general task of multiple object tracking (MOT), which plays an important role in
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computer vision and has applications in various fields [67,68]. The MOT task could be
approached by adopting the so-called tracking-by-detection strategy. In this methodology,
the objects are first detected in a single video frame and then are linked by using another
tracking algorithm. The video analysis system (VAS) presented in this paper uses this
approach, which could be divided in the following sub-tasks:

1. Detection—The vehicles in each video frame should be located. A single detection
result could be a bounding box containing the object or an irregular shape obtained
by the image segmentation;

2. Classification—Each vehicle detected in a single frame should be classified in well-
defined categories;

3. Tracking—The unique identity of a single vehicle should be maintained frame by
frame, in order to track it. For this task, the problem of vehicle superposition or hiding
should be faced;

4. Distance measurement—The camera system should be calibrated in order to trans-
form distances measured in pixel units to real-world units, allowing vehicle speed
measurement.

The VAS, schematized in Figure 3, solves the detection and classification tasks jointly
using the YOLOv2 object detection model [53]. For each frame t, YOLOv2 predicts the
bounding boxes containing the j detected vehicles, yielding their pixel positions Xj(t)
and the vehicles categories cj(t). The YOLO model (you only look once) presented by
Redmon et al. in [52] was the first object detection model based on deep neural networks
which reformulated the detection and classification task as a single regression problem.
The network architecture consists of a single convolutional network which, from image
pixels, directly predicts multiple bounding boxes and class probabilities at the same time.
The new approach largely improved speed performances of previous detectors, allowing
real time detections on fast GPUs. The model was updated to version YOLOv2 with
the introduction of anchor boxes, pre-defined bounding boxes which allow better object
location performances [53]. YOLOv3 introduced further modification, such as a feature
pyramid network and a binary cross-entropy loss function, to improve the detection
accuracy and the ability of detecting smaller objects [54]. Joseph Redmon—main author
of YOLOv1, YOLOv2, YOLOv3—quit his research on YOLO detectors because of broader
impact concerns, such as privacy and possible military applications, as anticipated in the
conclusions of Redmon and Farhadi in 2018 [54]. Further development of the architecture
has been presented in models YOLOv4 and YOLOv5 [55,56]. The use of the YOLOv2 model
achieved good performance for the VAS, in the future also newer YOLO models will be
tested and evaluated.

Sensors 2022, 22, x FOR PEER REVIEW 9 of 29 
 

 

 
Figure 3. Video analysis system schematic drawing. 

YOLO models, as with most machine learning methods based on artificial neural 
networks, learn to tackle its task in a supervised manner—i.e., by using as input labeled 
data. Achieving good performances using deep learning methods usually requires a large 
amount of labeled data and images for the task at hand. The principle of transfer learning 
is quite useful to reduce the amount of new labeled data needed to train the model. For 
the VAS, a pre-trained ResNet-50 convolutional neural network has been used to build 
the YOLOv2 architecture [69]. The pre-trained network is trained on more than a million 
images from the ImageNet database, and it could classify images into 1000 categories [48]. 

In order to specialize the detection and classification abilities of the VAS to vehicle 
recognition the model has been retrained using a dataset of images extracted from videos 
recorded in 20 different positions during several traffic measurement campaigns. The 
overall dataset consists of a total of 14,400 labeled images—divided into 8000 images 
gathered in daylight conditions and 6400 at night—labeled by human operators for the 
object detection task. The composition of the dataset by vehicle category is represented in 
Figure 4. The YOLOv2 model is retrained depending on the measurement conditions to 
analyze, by extracting a dataset from the main images collection, which is usually 
balanced for vehicle categories, using oversampling of minority classes. 

Figure 3. Video analysis system schematic drawing.



Sensors 2022, 22, 1929 8 of 26

YOLO models, as with most machine learning methods based on artificial neural
networks, learn to tackle its task in a supervised manner—i.e., by using as input labeled
data. Achieving good performances using deep learning methods usually requires a large
amount of labeled data and images for the task at hand. The principle of transfer learning
is quite useful to reduce the amount of new labeled data needed to train the model. For
the VAS, a pre-trained ResNet-50 convolutional neural network has been used to build
the YOLOv2 architecture [69]. The pre-trained network is trained on more than a million
images from the ImageNet database, and it could classify images into 1000 categories [48].

In order to specialize the detection and classification abilities of the VAS to vehicle
recognition the model has been retrained using a dataset of images extracted from videos
recorded in 20 different positions during several traffic measurement campaigns. The
overall dataset consists of a total of 14,400 labeled images—divided into 8000 images
gathered in daylight conditions and 6400 at night—labeled by human operators for the
object detection task. The composition of the dataset by vehicle category is represented in
Figure 4. The YOLOv2 model is retrained depending on the measurement conditions to
analyze, by extracting a dataset from the main images collection, which is usually balanced
for vehicle categories, using oversampling of minority classes.
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Figure 4. Dataset composition by vehicle categories. The dataset contains about 14,400 labeled
images—8000 gathered in daylight conditions and 6400 at night—labeled by human operators for the
object detection task.

In order to count the vehicles, it is necessary to maintain the identity of each detected
vehicle from frame to frame. The VAS uses as tracking algorithm a Kalman filter combined
with the so-called Hungarian algorithm [70]. The Kalman filter is used to predict the
position of a vehicle in the next frames, using a simple constant speed motion model and
the bounding boxes positions in previous frames, computed by the YOLOv2 detector.

The Hungarian algorithm associates the IDs of the vehicles detected in the previous
frame to the new YOLOv2 detections in the current frame, by minimizing the pixel dis-
tances djk between the Kalman predicted positions and the new bounding boxes centroids,
as shown in Figure 3. The linear programming assignment problem, solved via the Hun-
garian algorithm, can perform the vehicle tracking by establishing the association between
detections in different frames and creating a unique track for each vehicle. The number
of detections in subsequent frames could be different because of the appearance of new
vehicles or their movement outside the video framing. Depending on the solutions of the
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assignment problem, the VAS could create a new track, update the existing tracks with new
positions and classes, or delete some of the current tracks. For each vehicle, the category is
assigned by considering the majority of the YOLOv2 predicted classes for a single track.
The tracking algorithm is quite simple but is sufficient to handle basic occlusions of vehicles
moving in opposite directions in most cases. The algorithm is also optimized by some
ad-hoc strategies to reduce ids swapping errors. In Figure 5, an example of video processing
is shown.
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The speed measurement is performed by transforming the vehicles’ position coor-
dinates expressed in pixel units to real-world units. The transformation is based on the
pinhole camera model and on the estimation of a camera projection matrix by using a direct
linear transformation (DLT) algorithm. In order to estimate the matrix for a single video, a
grid of reference points is built on the frames. The real-world coordinates of the grid on the
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road plane are set by taking marks on the road, or by using vehicle dimensions as reference
for the calibration. Furthermore, the distortion of the wide camera lens is corrected by a
proper calibration, allowing a linear coordinates transformation.

In Figure 6, the detection average precision on a test set is reported for each vehicle
category. The test set consists of 1500 labeled images extracted from the main collection.
The precision is computed using an intersection over union threshold equal to 0.5. The
mean average precision results equal to mAP = 92%.

The VAS tracking algorithm introduces some errors due to ids swapping, decreasing
the detection precision depending on the measurement specific conditions, but on aver-
age the VAS precision is higher than 90%. In the future, a more extensive validation of
the VAS measurement method will be presented, together with a comparison to other
measurement techniques.
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3. Real Case Test
3.1. Area under Study

The study took place in Piombino, an Italian municipality of about 35,000 inhabitants
in the province of Livorno (Tuscany), in front of the Island of Elba and at the northern side of
the Tuscan Maremma. The city has always been an important port since the Etruscans, who
left an ancient historical center, and, in modern times, the second-largest steel plant in Italy
was also built within the city boundaries, with an area that covers almost 12,000,000 m2 and
9 km of coastline. Given its strategic position, its port is still heavily used, both for industry
and for tourism, with ferries from and to the Island of Elba, Olbia (Region of Sardinia),
Bastia (Corsica, France), and other islands of the Tuscan Archipelago. Therefore, a large
flow of seasonal tourist traffic crosses the city along its main route, Viale Unità d’Italia
(SS398), in order to reach the boarding points at the port. Figure 7 reports the acoustic
territorial zoning of Piombino, according to the Decree by the Prime Minister of Italy in
14 November 1997 [71], and the critical points for the study.
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3.2. Collection of Preliminary Data

Gathering the geo-referenced cartographic documentation made available by the
Municipality of Piombino and implementing them onto a GIS platform is the starting point
for noise maps work. Among the most important features required are:

- Boundaries of the study area.
- Road network, retrieved from the website of the Municipality of Piombino [72], double

checked with the dataset of the regional roads [73] in order to verify the geometries or
to correct missing road sections. Each road section was then filled with the traffic flow
information gathered with the methodology described in Section 3.

- Updated building planimetry of the area, with particular attention to their height,
taken from both [72] and [73].
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- Elevation points, in shapefile format of the area of interest, acquired from the online
databases to build the digital 3D terrain model (DTM) for the sound propagation model.

- Ground absorption, retrieved by the land use (Corine Land Cover), obtained from [74].
- Census sections of the Municipality of Piombino and population data, available online

at the Statistical National Institute [75]. Each inhabited building was then assigned a
number of inhabitants proportional to its volume. The total number of citizens living
in the studied area is 32,066.

3.3. Noise and Traffic Measaurements

The measurement campaign took place for 2 weeks over two sessions: ante-operam
peak period (Summer 2019) and post-operam peak period (Summer 2021). In each session,
four long-term and eight simultaneous short-term measurements were performed in the
sites reported in Figure 8 which were used to validate the noise maps.
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Figure 8. Aerial picture of Piombino with the positioning of long term (yellow) and short term (green)
measurements. “Spot” measurements are the short-terms one, while the “N”s are the long-term.

In each position, sound pressure level was acquired every 100 ms with class 1 sound
level meter according to IEC 61672-1 [76], placed at 4 m above the ground level. The
instrumentation was placed at the roadside using a source-oriented approach, since the aim
of the work was characterizing the road noise source. A weather station was also installed
for the entire duration of the surveys, in order to acquire rain, humidity, wind direction
and speed, and air temperature. In the post-processing analysis, periods with rain or wind
speed higher than 5 m/s were excluded. Moreover, unwanted events—such as animal or
anthropic sounds—were manually removed by an operator analyzing the time history of
sound pressure levels recorded.

Long-term measurements lasted for 7 days, while the short-term measurements lasted
for at least one hour. The short-term measurement reports included the overall LAeq; the
statistical levels L90, L50, and L10; and the time history. The long-term ones included the
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same overall values per hour and the day, evening, and night level averaged over the entire
measurement period, together with the plot of the hourly trend of the LAeq.

Traffic data were acquired with the VRS—as described in Section 2—simultaneously
with noise measurements.

3.4. Noise Mapping

The data acquired thanks to the methodology described in Section 2 represent the
input data for the noise prediction model, implemented into a commercial noise simulation
software. The noise model selected for this work is the CNOSSOS-EU: 2015 [15], compliant
with Directive 996/2015/EU [77]. For road traffic noise prediction, the model requires
traffic information for five different categories of vehicles (cars, medium–heavy trucks,
heavy trucks, motorcycles, and mopeds).

The sound source considered in the present work is represented by the road network
that affects the port waterfront and the roads nearby. The acoustic characterization of the
latter was obtained by implementing average speeds and traffic flows acquired during the
monitoring and by carrying out a calibration of the sources with the measured sound levels.
The roads close to the waterfront were not monitored and were acoustically characterized
following the guideline “Good Practice Guide Vol.2” of the European Commission WG-
AEN Working Group [78]. These guidelines provide criteria for the assignment of traffic
flows based on a categorization of roads. The validation process based on the results
obtained showed that the model describes the acoustic climate of the investigated area with
sufficient accuracy, as the differences found by comparing the simulated sound levels and
the results of the measurements are contained, confirming the adherence of the calculation
hypotheses to the investigated situation.

The simulations were performed considering 1 order of reflection, 500 m as the maxi-
mum search radius, 100 m as the largest distance of reflections from receiver, 50 m as the
largest distance of reflections from source, a grid spacing equal to 10 m, and a height of 4 m.

The noise maps were reported for each of the END [10] indicators:

- Ld—(6:00–20:00);
- Le—(20:00–22:00);
- Ln—(22:00–06:00);
- Lden—overall daily weighted.

3.5. ITS

The L.I.S.T. PORT has prescribed, for Piombino, the traffic monitoring in the main
access and exit roads from the port, with the aim of defining a virtual model that can
simulate new scenarios of the road network. This would imply reducing the vehicular load
and therefore potentially reducing the noise impact of traffic.

The mitigation action implemented, and sketched in Figure 9, consists of a modular
ITS system capable of monitoring and management of the different types of devices. The
ITS system is composed by the following components:

- video camera systems for monitoring the characteristic parameters and the classifica-
tion of traffic flow, consisting of four relevant positions on the road sections;

- variable-message signs and remote management system capable of providing infor-
mation based on the traffic conditions detected by the supplied video camera system;

- processing unit for connection with cameras and variable-message signs;
- communication system with equipment for connectivity to the central system;
- signs and labels indicating a monitored/video surveillance area.

A system for acquiring information detected by road traffic monitoring stations sends
messages to the citizen on variable-message signs to limit traffic and recommend alter-
native routes in case of traffic jams. Through a software platform for traffic and mobility
management in the port city of Piombino, a list of tasks is possible: the representation of
the road axis affected by heavy traffic, the collection of information from all systems, data
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processing with traffic status, detection of critical issues, and development ofscenarios to
be implemented in certain conditions.
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The server software performs two macro functions:

- The interface between server and field units (traffic monitoring stations, traffic light
controllers, variable-message signs, underpasses, etc.);

- The interface between server and user workstations (client).

The messages displayed on the two variable-message signs are automatically loaded
through different modes dependent on different parameters, such as the ferry schedule, the
traffic situation identified within the specific scenario detected by the monitoring stations,
the number of free parking slots, and estimated travel time. The messages can also be chosen
among a series of default messages or can be additionally created by an operator. On the
platform, simultaneous viewings of the variable-message signs are possible. Among other
features, the platform allows the operator to visualize traffic data, real-time monitoring, and
historical data and, moreover, provides analysis and processing related to mobility, with
the aim of improving the knowledge about the characteristics of road traffic in Piombino
and studying better solutions for mobility in port and urban area.

4. Results

Figure 10 reports an example of traffic divided into the different CNOSSOS-EU [15]
categories, obtained with the methodology describe in Section 3. Figure 11 shows the
traffic flows measured at the points corresponding to the continuous noise measurements
(N1–N4).

As it can be inferred from Figure 9, the number of vehicles circulating around Piombino
in 2019 is far lower than in 2021. This could probably be due to a change in the holiday
destinations considered by Italians, favoring national tourism after the COVID-19 pandemic
and it is obviously not caused by the ITS, which can only redistribute the traffic among the
different routes.
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In order to evaluate the effectiveness of the ITS installation, the authors opted for a
normalization of traffic flows to the same situation: in this way, all subsequent analyses
results were comparable. The year 2019 was chosen as the reference period to normalize to,
because it is just before the pandemic.

The normalization was therefore carried out by calculating, for the year 2021, the
per-centage of vehicle flow for each vehicle category and period. This was possible thanks
to the particular geography of Piombino, where only a single road access to the city is
pre-sent. The traffic during 2021, normalized to 2019, was therefore obtained using data
from 2019 to estimate the traffic entering the city, broken down in the road graph according
to the percentages of 2021.

From now on, for the sake of clarity, the present article refers to the normalized 2021
scenario when it mentions the year 2021.

Figure 12 reports the road graph with highlighted the differences between the traffic
flows of 2021 and 2019. Day period and category 1 is chosen as an example.
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Figure 12. Road graph highlighting the differences in flows between 2021 and 2019 for vehicles
category 1 in day period.

The acoustic maps of the area were then calculated following the method described
in Section 3.4. Figure 13 shows the acoustic mapping according to the Lden indicator and
Figure 14 shows the one according to the Lden indicator for the year 2019. In order to not
burden the discussion, the acoustic maps of 2019 carried out with the other indicators (Ld,
Le, Lt) and all that of 2021 are reported in the Supplementary Materials, Figures S1–S8.

Maps of the noise differences between the year 2019 and the year 2021 were also
calculated to show the difference in noise emitted in the area. Differences of Lden and Ln
indicators are shown respectively in Figures 15 and 16 by way of example.

It can be easily inferred which areas show improvements in the acoustic climate and
which, on the other hand, have worsened after the activation of the ITS.

However, the efficacy of an intervention should not only be evaluated from an ener-
getic point of view—i.e., the noise emitted into the environment—as it is more important to
relate it to the changes in the citizens’ exposure to noise.

The calculation of the noise levels of the buildings was then carried out, associat-
ing each inhabitant with the maximum level on the façade of its building following the
methodology described in the END [10]. The resulting histograms of citizens exposed to
the different noise classes is shown in Figure 17 for Lden, and in Figure 18 for Ln.
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5. Discussion

From the results of Figures 17 and 18, the number of people exposed to the highest
levels (70–75 dB (A) for Lden and 60–65 dB (A) for Ln) is increased, while those exposed to
medium levels (55–65 dB (A) for Lden and 50–60 dB (A) for Ln) has decreased in favor of an
increase in those exposed to lower levels (<55 dB (A) for Lden and <50 dB (A) for Ln).

However, the number of people within each class of exposure is very uneven, and sim-
ply comparing the population histograms would lead to neglecting the overall tolerability
that the population has of noise. Therefore, to correctly interpret the results, the authors
decided to use the group noise indicators first introduced in 2010 by Jabben et al. [64]: the
Gden and the Gnight. They evaluate the average energy to which the population is exposed,
respectively according to Lden and Ln. Their original use was to compare zones of the
same city, while in 2013 Licitra and Ascari [65] proposed a revised version more focused on
comparing results between European cities. The revised version of the indicators reported
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in Equation (1) multiply the number of inhabitants by noise energy, with the introduction of
a weighting factor on the total inhabitants (Ntot). This correction helped in identifying the
worst-polluted cities and not larger ones as the original indicators did. ni is the population
exposed to the i-th class of exposure and Lden_i is the representative value of i-th class of
exposure. The results are shown in Table 1.

Gden = 10· log10

(
1

Ntot
∑i ni·100.1·Lden,i

)
, Gnight = 10· log10

(
1

Ntot
∑i ni·100.1·Lnight,i

)
(1)

Table 1. Gden and Gnight for Piombino in 2019 and 2021.

Year Gden (dB (A)) Gnight (dB (A))

2019 59.88 51.20

2021 60.09 51.30

The levels of Gden and Gnight in Piombino are well below the national average both in
Italy (63.0 dB (A)) and in Europe (63.3 dB (A)) calculated by Licitra and Ascari [65] over
all the European cities with more than 100,000 residents, as required by the END [10]. In
this study, the noise is only given by the roads and does not include the other main sources
of noise (railways, airports, industries) which have instead been included in [52] for the
other cities. However, Piombino has no airport, while railways and industries should not
represent a significant addition to the overall noise. The reason why the Gden in Piombino
is lower is probably to be found in the different type of city, smaller than that for which
acoustic mapping is mandatory. Therefore, the values provided in [61] can only be used as
a reference.

Both Gden and Gnight in Piombino slightly increased between 2019 and 2021, after the
inclusion of the ITS. This is a sign that the average energy to which citizens are exposed
has also increased.

A final test to verify the efficacy of the ITS as sound mitigation was to verify the health
effects due to exposure to noise before and after installation, evaluated through the annoy-
ance and sleep disturbance. As proven by the World Health Organization in “Environmen-
tal noise guidelines for the European Region” [79] and from a vast amount of research, these
two effects are the most common ones and have a well-defined dose–effect relationship.

The total number of highly annoyed citizens was calculated by applying the curve
of Guski et al. [80] shown in Equation (2), for the association between exposure to road
traffic noise (Lden) and the percentage of highly annoyed people (%HA) subjected to Lden
exposure data.

Road %HA = 78.9270 − 3.1162·Lden + 0.0342·Lden
2 (2)

Similarly, the total number of citizens affected by sleep disturbance was calculated
using the combined relation of Basner and McGuire [2] on the probability of being highly
sleep-disturbed (%HSD) by road traffic noise (Equation (3)) applied to Ln exposure data.
The results are reported in Table 2.

Road %HSD = 19.4312 − 0.9336·Ln + 0.0126·Ln
2 (3)

The results in Table 2 show how the application of ITS has led to a slight improvement
in the health of the population, intended as a reduction in the number of highly annoyed
or sleep-disturbed citizens, although the average energy associated with the population
has increased due to the increase in traffic flow. The reduction in the number of highly
annoyed and sleep-disturbed citizens between 2019 and 2021 is equal to 1.8% and 4.3%.
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Table 2. Total citizens of Piombino highly annoyed and sleep-disturbed in 2019 and 2021.

Year Highly Annoyed Citizens Sleep-Disturbed Citizens

2019 3610 979

2021 3545 938

In summary, the installation of ITS has led to the modification of traffic flows by
increasing that in the main access road to the port. Not being specifically designed for
noise abatement, this intervention led to an increase in noise exposure of citizens who were
already exposed to significant levels of road noise (70–75 dB (A) for Lden and 60–65 dB (A)
for Ln). On the other hand, traffic has decreased on the minor roads, which are the ones that
run through the most-populated areas and for which the acoustic quality has improved.
Therefore, although the average energy associated with citizens (Gden) has increased, the
possible effects on health have slightly decreased. This small result does not justify the use
of an ITS as a stand-alone noise mitigation.

The conveyance of traffic along a few major roads has increased the exposure of
citizens who already lived in those highly exposed areas, but it can represent an excellent
opportunity for further targeted mitigation action. The advantages of installing the ITS
could manifest with an eventual new laying of the road surface with low-emission asphalts.
In this case, the effect of the redistribution of traffic would reduce the need for pavement
replacement while making the acoustic improvement of the entire area much more effective.

The effect of a combined mitigation action between ITS and careful management of
new laying of pavements is therefore being evaluated by repeating the previous analyses
with the hypothesis of a Zeer Open Asfalt Beton (ZOAB) double-layer pavement on only
three roads (Viale della Repubblica, Viale della Resistenza, and Viale Matteotti) for a total
length of 1750 m. These roads are those with the highest population among those that
suffered from an increase in traffic after the installation of the ITS. A new acoustic modeling
was therefore carried out to assign the exposure level to the inhabitants, both in the 2019 and
2021 conditions. Table 3 shows the results of the analyses performed with the low-emission
asphalts in both the scenarios with the simultaneous use of ITS (2021) and those without
ITS (2019).

Table 3. Gden and Gnigh, total citizens of Piombino highly annoyed and sleep-disturbed in 2019 and
2021 with double-layer ZOAB pavements on three roads.

Year Gden
(dB (A))

Gnight
(dB (A))

Highly Annoyed
Citizens

Sleep-Disturbed
Citizens

2019 59.78 51.09 3597 975

2021 59.11 50.38 3494 929

The efficacy of each noise mitigation—i.e., asphalts alone, ITS alone, and the combina-
tion of both—is reported in Table 4, where the differences of Gden and Gnight and percentage
differences of highly annoyed and sleep-disturbed citizens are reported. The percentages
obtained by comparing the results of Tables 1–3. For “Asphalts alone” the comparison is
meant for both scenarios of 2019 with and without the low-noise pavements over the three
roads. For “ITS alone” the comparison is meant for scenario 2019 and scenario 2021 both
without asphalts. For “Asphalts + ITS” the comparison is meant for scenario 2019 without
asphalts with scenario 2021 with asphalts.
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Table 4. Efficacy of the laying of three low-noise pavements, or installation of the ITS or their
combination evaluated trough the difference in Gden and Gnigh, or the percentage differences of total
citizens of Piombino highly annoyed and sleep-disturbed.

Noise
Mitigation

Gden
(dB (A))

Gnight
(dB (A))

Highly Annoyed
Citizens

Sleep-Disturbed
Citizens

Asphalts alone −0.67 −0.70 −2.8% −4.7%

ITS alone +0.19 +0.08 −1.8% −4.3%

Asphalts + ITS −0.85 −0.98 −4.3% −7.9%

6. Conclusions

A road traffic monitoring video measurement system (VMS) has been developed
and applied for acoustic monitoring. Although its main task is traffic flow and speed
measurement to be used as input to noise mappings, the system can be used also for
statistical pass-by (SPB) or controlled pass-by (CPB) measurements. The low-cost video
recording system (VRS) is based on a single-board computer equipped with an infrared
camera sensor and can be used outdoor for long-term acquisition because it is not affected
by atmospheric agents. The video analysis system (VAS) includes a trained deep learning
YOLOv2 object detection model to detect and classify vehicles in agreement with the
categories defined in the CNOSSOS-EU noise assessment model [15].

The VMS has been evaluated over a dataset gathered in several measurement cam-
paigns. It has proven to be reliable by showing good performances with a mean average
precision (mAP) equal to 92%. A more specific validation, based on comparisons with other
measurement methods present in the literature, will be the subject of future investigations
by the authors.

Given its small size, the VRS can be mounted together with sound level meters on a
traditional monitoring station placed at roadside position. For collecting the input data
necessary for an acoustic map, the quality of data acquired and the number of acquisition
points on the territory is important for the overall quality of the outputs of the acoustic
model. In this sense, then, the low-cost sensor approach makes the installation of more
monitoring stations in urban areas feasible, if compared to other traditional and more
expensive acquisition methodologies.

The VAS could be easily updated to be integrated in existing Intelligent Transportation
Systems (ITS) for traffic control in a wider context of a traffic-integrated management
system which in the future could achieve near real-time updated road noise maps, which
would improve the action plans phase. Moreover, noise maps are not only the tool on
which action plans are based, but they also represent the best communication tool with
citizens. A dynamic and updated map, similar to what recently performed in Dynamap Life
Project [81], will better guide the reduction in citizens’ exposure to noise and would allow
people to access and monitor the current situation online. This would increase awareness
and attention to the issue of noise.

The VMS has been used to acquire traffic data in the city of Piombino, where for the
INTERREG Maritime L.I.S.T. PORT Project, an ITS for the management of traffic flows was
installed. With the traffic flow and speed data acquired with the developed VMS, acoustic
maps of the area were carried out before and after the installation of the ITS. The maps
have been validated through short- and long-term noise measurements.

The case study was used to evaluate the effectiveness of the ITS system as a method
of acoustic mitigation. In order to do so, the traffic measured in 2019 and 2021 has been
normalized to the year 2019, due to the significant difference in flows between the two
years entering the city and probably due to the pandemic that encouraged local tourism.
The evaluation of the effectiveness was performed by comparing the exposure of citizens
to noise, calculating the Gden and Gnight indicators and the number of highly disturbed
citizens or with sleep disturbance in ante- and post-operam conditions. The two health
effects were estimated using the well-known dose–effect curves in literature.
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It has been observed that the inclusion of ITS acted as a focus of traffic in certain roads,
corresponding to those already with greater traffic. This resulted in an increase in exposure
to citizens who were already exposed to significant levels of road noise (70–75 dB (A)
for Lden and 60–65 dB (A) for Ln), but at the same time reduced exposure of those who
were exposed to medium noise levels (55–65 dB (A) for Lden and 50–60 dB (A) for Ln)
shifting them to lower exposure classes (<55 dB (A) for Lden and <50 dB (A) for Ln). The
average energy associated with citizens (Gden) was increased, but the possible health effects
slightly decreased.

Those obtained are modest mitigation results that do not suggest ITS as noise mitiga-
tion solution, confirming that it was not designed for this function. However, the effect of
conveying traffic to only some roads led the authors to think of simulating the combined
effect of ITS with interventions specifically designed to mitigate noise, such as the intro-
duction of low-noise pavements. The combined action of ITS and the laying of asphalts
on only three roads, for a total of 1750 m of asphalt, resulted in a significant increase in
the mitigation effect that the laying of those asphalts alone would have had without the
reorganization of the traffic brought by the ITS. Although this part of the study was carried
out as a first test performed in a small city, the rate of improvement brought about by
the two actions combined is significant and would improve the quality of life of a greater
number of citizens if applied in more densely inhabited cities. Furthermore, the design of
the ITS could also be more oriented towards acoustics—i.e., moving traffic towards roads
with higher speed limits—where the effectiveness of low-noise pavements is greater.

In summary, the ITS could be tuned according to noise criteria and could represent a
dynamic solution for managing traffic in both mapping and action plan phases. This, in
addition to enhancing the mitigation effects that would occur with individual interventions,
would also represent an economic saving for the administrations in the gathering of input
data for noise mapping and for the optimization of the mitigation effects while minimizing
the length of intervention.
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