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Abstract: The negative impact of absenteeism on organizations’ productivity and profitability is
well established. To decrease absenteeism, it is imperative to understand its underlying causes and
to identify susceptible employee subgroups. Most research studies apply hypotheses testing and
regression models to identify features that are correlated with absenteeism—typically, these models
are limited to finding simple correlations. We illustrate the use of interpretable classification
algorithms for uncovering subgroups of employees with common characteristics and a similar level
of absenteeism. This process may assist human resource managers in understanding the underlying
reasons for absenteeism, which, in turn, could stimulate measures to decrease it. Our proposed
methodology makes use of an objective-based information gain measure in conjunction with an
ordinal CART model. Our results indicate that the ordinal CART model outperforms conventional
classifiers and, more importantly, identifies patterns in the data that have not been revealed by
other models. We demonstrate the importance of interpretability for human resource management
through three examples. The main contributions of this research are (1) the development of an
information-based ordinal classifier for a published absenteeism dataset and (2) the illustration
of an interpretable approach that could be of considerable value in supporting human resource
management decision-making.

Keywords: human resource management; absenteeism; ordinal classification; information gain;
decision tree; interpretable machine learning models

1. Introduction

Absenteeism, in contrast to planned time off, may cause significant disruptions to organizations
and may affect their productivity and profitability. Absenteeism and its effects may be controlled by
equipping human resource management with the ability to predict which groups of employees are most
prone to absenteeism. The current research focuses on providing such predictions via interpretable,
information-based, machine learning models. The suggested approach may serve human resource
management in conducting analyses, developing policies, and, eventually, in combatting absenteeism
and its effects.

Large-scale research on absenteeism can be traced back to the highly cited paper of Porter and
Steers in 1973 [1]. They group the factors that affect absenteeism into (1) organizational, (2) immediate
work-related, (3) job-related, and (4) personal. The numerous studies that followed have generally
explored this set of factors. For example, Soriano et al. [2], who analyzed data from 1346 indoor office
employees, confirmed that sets of factors that include “job satisfaction and health” and “job satisfaction
and affective well-being” are significantly correlated with absenteeism. Other studies observed
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correlations between absenteeism and workload [3], age [4—6], work performance [7], and body
characteristics [8,9]. Accordingly, in this research we use a dataset that includes factors that have been
previously reported as significantly associated with absenteeism.

As argued by Tewari et al. [10], machine learning approaches, which are becoming an increasingly
popular research tool, are highly suited to the analysis of absenteeism data. They are more appropriate
than conventional statistical approaches, such as hypotheses testing and ordinary least square regression,
due to the fact that the rate of absenteeism is a skewed, truncated measure, and thus it does not follow
a normal distribution [10]. Furthermore, the conventional statistical approaches focus on identifying
features that are correlated with absenteeism across the whole dataset in contrast to the suggested
entropy-based approach that discovers absenteeism patterns, as we demonstrate in this paper.

We now briefly review the main findings of machine learning models that have analyzed
absenteeism, and in so doing, we highlight the contributions of the present study. To enable traceability
and facilitate comparison with previous research, we use a dataset that was first introduced by [11]
and has been subject to fairly extensive research (see, e.g., in [12-15]). Wahid et al. [12], for example,
employed various models, such as Decision Tree, Tree Ensemble, Gradient Boosted Tree, and Random
Forest, to predict the absence time. For the purpose of classification analysis, they transferred the
absence time, which is recorded in hours, into four classes: “hours”, “days”, “weeks”, and “not absent”.
In terms of accuracy, their classification models achieved values of 79-82%. In [13], the rate of absence
was discretized into just two classes: less than or equal to 5 hours, or greater than 5 hours. Dogruyol and
Sekeroglu [14] and Araujo et al. [15], on the other hand, treated the target variable—absenteeism
in hours—as a continuous variable. They analyzed the same dataset using models such as the
Backpropagation (BP) Neural Network, the Radial-Basis Function Neural Network (RBFNN), and the
Long Short-Term Memory Network (LSTM). While the BP method did not perform well, RBFNN and
LSTM achieved R? values of 0.90 and 0.99, respectively. Note, however, that these analyses used the
“reason for absence” as a feature, which although highly correlated with absence (i.e., every instance
with an empty field for “reason for absence” obtains a value of 0 for the feature “absenteeism time
in Thours”), is not known before the absenteeism event. The main contributions of this research include
the introduction of a new information measure, known as objective-based entropy, which considers
the ordinal nature of the target (in this case, absenteeism). In addition, we highlight the value of
interpretable models as decision support tools for human resource management. The combination
of interpretable modeling and a metric that considers ordinal data makes our model valuable for
analyzing and predicting absenteeism patterns.

2. Materials and Methods

We begin by describing the environment and the dataset. We then present the theoretical features
of the proposed objective-based entropy measure and describe its implementation in interpretable
decision tree models for selecting the most useful attributes for explaining absenteeism at work.

2.1. The Dataset and Data Preparation

We use a workplace absenteeism dataset for the period between July 2007 and July 2010 from
a courier company in Brazil. This 740-sample dataset, which is available at the UCI Machine
Learning Repository [11], has been subject to previous investigations using various machine learning
models (see, e.g., in [12-15]). Table 1 lists the 21 features of the dataset that reflect work-related and
personal factors. As discussed in Section 1, we omit from our analysis the feature “reason for absence”,
which is highly correlated with absenteeism but only known in retrospect. In addition, we omit the
feature “id”, as it plays no significant role in the prediction of specific absenteeism events.

Following the International Labor Standards on Working Time by the International Labor
Organization (ILO), we apply the standard of working 8 hours in a day or 40 hours in a week to
categorize the target feature “absenteeism time in hours” into four categories: “not absent”, “hours””’,
“days”, and “weeks”; see Table 2 for the classes and their respective probabilities within the dataset.
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Table 1. Description of the dataset’s features.

Feature Name Feature Type Possible Values (for Nominal Variables)

D Numerical

21 categories according to the International Code of
Diseases (ICD)

1-January 2-February 3-March 4-April 5-May 6-June

Month of absence Categorical 7-July 8-August 9-September 10-October

11-November 12-December

2-Monday 3-Tuesday 4-Wednesday 5-Thursday

Reason for absence Categorical

Day of the week Categorical 6-Friday
Season Categorical 1-summer 2-autumn 3-winter 4-spring
Transportation expense Numerical
Distance from residence to work (km) Numerical
Service time Numerical
Age Numerical
Workload (average daily) Numerical
Hit target Numerical
Disciplinary failure Categorical 1-yes 2-no
Education Categorical 1-high schooi_iiza;;i;/lg’;eci;fostgraduate
# of children Numerical
Social drinker Categorical 1-yes 2-no
Social smoker Categorical 1-yes 2-no
# of pets Numerical
Weight Numerical
Height Numerical
Body mass index Numerical
Absenteeism (hours) Numerical

Table 2. Categorization of absenteeism classes.

Absenteeism Hours (y) Absenteeism Class c V(c) P(o)
0 not absent c1 1 6%

0<y<8 Hours cy 2 57%
8<y<40 Days c3 3 34%

y =40 Weeks C4 4 3%

For model evaluation, the data are split into a training dataset (80% of the data, which corresponds
to 592 samples) and a testing dataset (20%, which comprises the remaining 148 samples). In a
class-imbalanced dataset, a random split can result in different class distributions between the
training and testing datasets, even in a testing set that does not include instances of a minority class.
To minimize variation between the two datasets, the samples are selected such that the distribution of
class probabilities is similar in both datasets [16]. To prevent biased learning due to imbalanced class
distributions [17], we apply a Synthetic Minority Oversampling Technique (SMOTE) algorithm [18]
to the training dataset, which results in a dataset of 1360 instances with a 25% probability per class.
Note that, when applying an oversampling technique to a class-imbalanced dataset, the k-fold
cross-validation technique can be computationally expensive and difficult to implement; thus,
techniques such as the holdout method, which we implement in this study, are typically used
instead [19]. Table 3 presents the class distribution of the training dataset before and after SMOTE
implementation. A further preprocessing step, which is needed to prepare the data for our new
entropy measure (to be explained in the next section), consists of discretization of the continuous
dataset features. Finally, we can formulate the training dataset as D = {(xt, y;),t = 1,2,..., T},
where x; = [v41,012,...,0; k] denotes a sample, ¢, in the dataset, defined by a vector of values, v;,
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for each of its k = 1,...,K features (e.g., if the age feature k for sample t is 36, then v;; = 36).
Let us denote the number of distinct values for each feature k as N, with the values themselves
denoted by a;;, Vi =1,...,Ni; then, v € {ak,,« :i=1,..., Ny}, Yk. As shown in Table 2, the value of
absenteeism in hours,y, is classified into one of four possible classes denoted by the random variable
¢ € {c1,¢2,c3,c4}, where ¢ is the class that does not exhibit absenteeism and c, is the class with the
highest level of absenteeism (“weeks”). The respective probability of being in class c; is defined by
P(c;). We define the value of a class V(c;) as an increasing function with the value of absenteeism,
such that V(¢;) < V(c]) Vi< jand V(c;) = i.

Following data preparation and preprocessing, the training dataset includes T' = 1360 samples,
K = 18 features, and one target feature which belongs to one of the four absenteeism classes. We use
this dataset to compare ordinal and non-ordinal classifiers as presented in Section 3.

Table 3. Distribution of training dataset classes before and after Synthetic Minority Oversampling
Technique (SMOTE) implementation.

Not Absent Hours Days Weeks Total Instances
Training before SMOTE 6% 57% 34% 3% 592
Training after SMOTE 25% 25% 25% 25% 1360

2.2. Objective-Based Entropy

Let us formulate Shannon’s entropy [20] as follows,

= ‘Z P(ci) logy, P(ci),

where P(c;) is the probability of being in class c; and b = 2 in the present paper (i.e., bits). For readability,
we omit the subscript b from future equations.

Obviously, the entropy value, which is determined exclusively by the probability values,
is insensitive to the allocation of these probabilities to the classes. Consider, for example, two
different probability distribution functions, (0.6, 0.3, 0, 0.1) and (0.6, 0.1, 0, 0.3), for the respective
absenteeism classes (“not absent”, “hours”, “days”, and “weeks”)—the entropy value for these two
scenarios is the same, H(c) = 1.3. Nevertheless, a human resource manager would judge these as two
significantly different scenarios; in the former, 90% of the instances are either not absent or are absent
for less than a day, while in the latter scenario, 30% of the employees are absent for more than a week.
The current research develops an objective-based entropy measure that distinguishes between such
scenarios. It generalizes the concept of the weighted entropy measure in [21] and allocates a weight to
each category based on the difference in class value with respect to a selected class c®, where s represents
the statistic that defines the selected class. If, for example, we select the class with the maximum value,

then c™@ = argmaxV(c;), whereas if we select the most probable class, then c™°d¢ = argmaxP(c;).
Ci Ci
We define the objective-based entropy (OBE) measure over dataset D, and for selected class ¢®, as

OBE(¢*,D) = —Zw ci)P(ci)log P(ci), 0 < w(c;) <1, 1)
i=1

where

. , Vi, 2
Llvig)-vel
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Thus, Z w(c;) = 1and a > 0 is a normalization factor that biases the weights’ distribution over

the dlfferent 1classes For example, as « increases, the weights of the classes with Values that are
distant from the value of the selected class ¢ get larger. Note thatas a — 07, w(c;) — . L i therefore,
each class is assigned the same weight and the OBE is similar to Shannon’s entropy, up to a factor.
On the other hand, for large values of the normalization factor, say @ — oo, only the class with the
largest difference |V(c1-) - V(CS)| counts, as its weight w(c;) — 1, while the weights of the other classes
tend to zero. Thus, the normalization factor is a hyperparameter that can be tuned (e.g., via a grid
search) for a given predictive modeling problem; this is the approach that we use in Section 3.

In other words, the OBE measure distinguishes between probability distributions with similar
probability values but different assignments to classes. For example, assume that we wish to calculate
OBE with respect to c™®*. Then, for a given value of a (e.g., 2), distributions with higher probability
values for the class without absenteeism c¢; (e.g., P(c1) > P(c3)) would yield higher OBE values than
scenarios in which the class probabilities are interchanged (e.g., P(c3) < P(c1), P(c1) < P(c3)). Thus,
by selecting class c®, one can tune the OBE to identify a variety of probability distributions. By way of
illustration, Table 4 presents the values of the standard Shannon’s entropy and the objective-based

maX and ¢™°d¢, In contrast to Shannon’s entropy, the OBE

entropy with @ = 2 for selected classes ¢
distinguishes between the two probability distributions. Note that when the probability distribution
is skewed towards the selected class, the OBE value is lower. This intuitive explanation can guide
the selection of ¢°*. For example, if one prioritizes the accurate classification of classes with high
absenteeism values, then the class c™® is preferred to the class c™™.

The next section demonstrates how to use the OBE to identify the features with the highest

information gain for decision tree models.

max mode

Table 4. Entropy and objective-based entropy (OBE) measures with selected statistics c™** and ¢
for two different probability distributions of the absenteeism classes (“not absent”, “hours”, “days”,

and “weeks”).

(P(c1),P(c),P(c3),P(cy)) H(c) OBE(c™) OBE(c™ode)
(0.6,0.3,0,0.1) 1.30 0.43 0.25
(0.6,0.1,0,0.3) 1.30 0.38 0.36

2.3. Objective-Based Information Gain (OBIG) for Selecting the Features with the Greatest Explanatory Value
in a Decision Tree Model

In this section, we develop the objective-based information gain (hereafter, OBIG) measure for
selecting the branching attributes in any decision tree model. Let us formulate the OBIG from the
partitioning of dataset D over a feature k that has Nj unique values as

S ) s Dy |

OBIG(c*, D) = OBE(¢*, D) — rZ‘ oy OBE(,Dy), 3)
where OBE(¢®, D) is defined in Equation (1), and the second expression on the right-hand-side (RHS)
of Equation (2) is the OBE that follows from the partition over feature k. || D] represents the frequency of
the rth distinct value within the dataset for feature k and its respective OBE(c®, D,) value. Similarly to
the conventional information gain measure, the objective-based information gain is overly sensitive
to the number of values of attribute k,Ni. Thus, in the case where there are large variations in Nj
among the features, we normalize the information gain in Equation (2) by dividing its value by the

information generated from splitting the dataset into Ny partitions (for an illustration of this approach



Entropy 2020, 22, 821 6 of 14

in a C4.5 decision tree, see in [21]). This calculation results in the objective-based information gain
ratio (OBIGR):
OBIG(¢*, D)
Hi(D)
As our focus is on the CART model, which has shown good results in our preliminary experiments
and branches via binary splitting at each node, we do not use Equation (3) in the present study.

In other words, for the CART, Ny = 2 at each node and the feature with the highest OBIG is selected
via Equation (2).

OBIGRy(c*, D) = 4

2.4. Interpretable Classification Models in the Context of Absenteeism

Our focus on interpretable models is motivated by the superior trust that human beings have in
such models, meaning that they tend to be preferred over non-interpretable models [22-24]. In fact,
it has been argued that interpretable models should be favored over non-interpretable models with
comparable or even slightly better performance [25,26]. In the context of this paper, where the goal
is to devise an effective intervention program for reducing absenteeism at work, these strategies
must be based on an understanding of absenteeism patterns and their respective employee profiles.
Most previous studies about absenteeism at work employed non-interpretable models, such as Neural
Networks, Random Forest, and Support Vector Machines. An exception is the study of Wahid et al. [12],
which implemented two types of interpretable decision trees. We note, in passing, that our study
also departs from previous research by omitting the feature “reason for absence”, as this feature is
not known in advance of the absenteeism event and thus cannot be used to predict it. Moreover,
most organizations do not record the medical reason for absenteeism, due to privacy and ethical
considerations. The OBIG decision trees that we develop give rise to a set of rules that may shed light
on the conditions and possible reasons for absenteeism, without requiring knowledge of machine
learning models on the part of the user (i.e., human resource personnel).

3. Results

3.1. A Comparison Between Interpretable Ordinal and Non-Ordinal Classifiers

This subsection compares the performance of the proposed OBIG-based ordinal CART model with
popular non-ordinal alternatives, some of which have been previously applied to the absenteeism at
work dataset (see, for example, in [12]). The ordinal algorithms were developed using the programming
language Python, and the non-ordinal algorithms were implemented with the Scikit-learn library
in Python. In light of our goal to identify absenteeism patterns, i.e., conditions and possible reasons

max mode rather

for absenteeism, we apply the OBE-based CART models with selected classes c™®* and ¢
min as the latter represents the “not absent” class and thus leads to inferior classification results.

For benchmarking purposes, we calculate five measures of performance of the classification
models: F-score, Precision, Recall, Accuracy, and Area Under the Curve (AUC) [27]. We also compute
the Mean Square Error (MSE) and Kendall’s Correlation Coefficient, t;,, which are common performance
measures for ordinal classification models [16,28]. These performance measures are presented in Table 5
for eight models (two ordinal and six non-ordinal), with the best performance values highlighted
in bold. It can be seen that the ordinal CART model that is based on OBE(c™#) yields the best
performance of all the models for six out of seven indices. Additionally, the two ordinal CART models
yield better performance than their non-ordinal counterpart, namely, the conventional CART.

Figure 1 illustrates the AUC values obtained for each absenteeism class for each model. Let us
focus on the highest absenteeism class (“weeks”), as it is important to identify the characteristics of
those who are most susceptible. It can be seen that the ordinal CART OBE(¢™?*) yields significantly

better results for this class than the other models, with an AUC value that is larger than that of its

than ¢

closest competitor—the Naive Bayes model—by 20% (AUC = 0.65 and 0.54, respectively). The ordinal
CART OBE(c™*) model also achieves the highest AUC values for the “hours” and “days” classes.
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Table 5. Average performance measures of different learning models for the absenteeism at work dataset.

Performance Measures

F-score Precision  Recall  Accuracy AUC MSE Tp
Non-ordinal classifiers
Extreme Gradient
Boosting (XGBoost) 0.69 0.72 0.68 0.68 0.73 0.32 0.52
Multi-Layer
Perceptron (MLP) 0.42 0.33 0.57 0.57 0.50 0.49 0.40
K-Nearest Neighbor 0.56 0.56 0.56 0.56 0.60 0.58 0.35
Naive Bayes 0.41 0.54 0.34 0.34 0.56 1.46 0.02
Random Forest (RF) 0.67 0.68 0.67 0.67 0.70 0.35 0.51
CART 0.66 0.66 0.66 0.66 0.69 0.36 041
Ordinal classifiers
Ordinal CART
OBE(CmOde) 0.69 0.70 0.69 0.69 0.72 0.31 0.53
Ordinal CART
OBE(c™ax) 0.73 0.74 0.72 0.72 0.76 0.34 0.58
. L1t AUC results
1.0 I
0.9
0.8 , , 7 :
0.7 s 0 0.60 0 osi i 0.66 0«540'68D .
0.6 - D'590.53 4,3
05 0.5 E 05 05 049 05 4 a0
0.4
0.3
0.2
0.1
0.0
not absent hours days weeks
OXGBoost OMLP OK-Nearest Neighbor O Naive Bayes
B Random Forest B CART B Ordinal CART — OBE(c™*) B Ordinal CART —OBE(c™)

Figure 1. A comparative graph of Area Under the Curve (AUC) values (y-axis) for different learning
models as a function of absenteeism classes (x-axis).

To recapitulate, the overall performance of the proposed objective-based ordinal CART, based on
the maximum desired output, outperforms the other models. It yields a decision tree with 123 leaves,
245 nodes, and a depth of 17. In the next section, we highlight the interpretability of the ordinal
CART model, which is perhaps its most significant advantage, as it would enable human resource
managers to extract patterns and insights that can be transformed into actionable policies.

3.2. The Practical Value of the Interpretable Ordinal CART—Examples of Identified Patterns

We illustrate the importance of interpretability by presenting three specific examples of patterns
out of the many that have been revealed in the dataset. These patterns have been discovered by the
ordinal CART algorithm, but not by its conventional counterpart that uses the classical entropy measure.
These so-called patterns can be thought of as subgroups of employees that share common characteristics
(in terms of the features in Table 1) and that result in the same class of absenteeism. In contrast to
black-box models, the human resource manager can examine these patterns, which will allow them to
discover both intuitive and counterintuitive phenomena and make data-informed decisions. From a
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practical perspective, the identified patterns can be used to devise intervention programs for reducing
absenteeism at work, based on those common, subgroup characteristics. It is also worth noting that the
ordinal CART model would enable a similar interpretation process to be applied to other challenges in
both human resources and other domains.

Example 1. The relationship between age and the level of absenteeism.

This example was chosen as absenteeism has been reported to decrease with age (see, e.g., in [4]).
However, as seen from the left-hand side (LHS) of Figure 2, a “simple” partition by age does not reveal
any clear pattern of absenteeism. The right-hand side (RHS), on the other hand, which is produced
by our model, presents a more refined picture. We observe that when the period of absence is at the
beginning of the year, employees without a disciplinary failure indication, and with a relatively poor
performance record, are distributed among the absenteeism classes according to (80%, 20%, 0%, 0%),
if they are above 35 years old. This interesting pattern, which corresponds to a subgroup of 45 dataset
instances, is significantly different (with p-value <0.001) from the distribution obtained for the full set
of instances in which the employees are above the age of 35 years (29%, 25%, 20%, 26%).

(25%.25%,25%.25%)

(25%,25%,25%,25%)

| S—

Without
Age=35

disciplinary failure

—
(29%,25%.20%,26%) (7%,31%,31%,31%)
—

Month of absence <3

(24%5,49%,27%,0%)

—_
Hit target equal to

or below 95
—

(66%,29%,5%,0%)
| S —

Age=35

.,
(80%,20%,0%,0%)

Figure 2. Relationship between age and absenteeism at work for different subgroups of employees.
The LHS and RHS respectively show (i) a “simple” partition by age and (ii) a series of patterns revealed
by our ordinal CART model.

We emphasize that the interpretation of the results of our model should be carried out on a
case-by-case basis, using the organization’s human resource management experts. Nevertheless,
we offer a possible explanation for this general finding: It could be the case that employees above
the age of 35 with performance target rates less than or equal to 95 (note that 58% of the instances
in the training dataset had a target rate less than or equal to 95) worry more about their jobs during
the initial months of the year than the average employee in this age group; therefore, they exhibit
less absenteeism. This pattern, which was easily uncovered by our model, may be also deduced by
integrating the following results from previous studies, although this process would be considerably
more demanding and time-consuming for human resource managers. (1) A negative correlation
between age and absence frequency [4-6]; (2) employees who have larger families and greater financial
responsibilities are less likely to stay at home as a result of a minor illness [29,30]; and (3) following the
logic in [7], employees with lower performance target rates may feel insecure and are thus less likely to
be absent from work. When examining a pattern that is the same as that shown on the right-hand
side except for a difference at the final level (i.e., the subgroup only includes employees who are
younger than 35), the revealed class distribution is (9%, 64%, 27%, 0%), which is significantly different
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from the (80%, 20%, 0%, 0%) distribution obtained for employees above the age of 35 years. Thus,
a possible intervention program would begin by administering a survey to the employees about their
commitment to the organization and their attitudes towards improving their performance. The aims of
the survey would be to understand the reasons that cause both subgroups to differ in terms of their
propensity for absenteeism, and ultimately, to develop a prevention strategy for the younger subgroup.

Example 2. The relationship between body characteristics and the level of absenteeism.

This example was chosen following previous research studies demonstrating a link between body
characteristics (e.g., weight and height) and absenteeism. Figure 3 illustrates a correlation between body
characteristics and absenteeism and demonstrates the ability of the ordinal CART to discover refined,
multi-feature patterns (RHS), as opposed to partitions based only on body characteristics (LHS).
Specifically, it can be seen that for the subgroup of employees who are shorter than or equal to 167cm,
with a Body Mass Index (BMI) that is equal to or higher than 24, who do not have a disciplinary
failure, and who exhibit relatively high performance, the distribution among the absenteeism classes
for absences at the beginning of the year is (0%, 0%, 100%, 0%). In other words, all the instances within
this subgroup belonged to the class “days”.

~
(25%,25%,25%,25%) (25%,25%,25%,25%)
\ o y.
Height equalto or Without disciplinary
below 167 - ~ failure N
(56%,18%,26%,0%) [ (7%,31%,31%,31%)
L. .
Body mass index equal d
. . Month of absence <3
to or higher than 24
—— \
(39%,16%,25%,0%) [ (24%,49%,27%,0%)
L " "

Hit target equal to

or higher than 96

(0%.60%,40%.0%)

Height equal to or
below 167

(0%,8%,92%.0%)

Body mass index equal to

or higher than 24 L
‘ (0%,0%.100%,0%)
4

Figure 3. Relationship between body characteristics and absenteeism at work for different subgroups

of employees. The LHS and RHS respectively show (i) simple partitions by height and BMI and (ii) a
more refined series of patterns revealed by the ordinal CART model.

We note that in both the simple partitioning scheme and the ordinal CART model (LHS and RHS
of Figure 3, respectively) the distribution of the level of absenteeism based on height is similar whether
or not the information about BMI is included. This is unsurprising given that height is part of the BMI
calculation, but it underscores the ability of our model to uncover refined patterns in which multiple
features come into play. Specifically, the pattern on the RHS, which corresponds to a subgroup of nine
dataset instances, is significantly different (with p-value < 0.001) from the pattern obtained for the
full set of instances with the same body characteristics (59%, 16%, 25%, 0%). Thus, the ordinal CART
enables the identification of a subgroup with significantly higher absenteeism rates. These relatively
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complex patterns, and their associated interpretations, can be easily lost when the analysis is carried
out via noninterpretable models.

With regard to a possible explanation for this finding, we note that BMI values of 25 to 29.9
are considered overweight, and individuals with values above 29.9 are considered obese [8,31].
Furthermore, high BMI values are associated with an increased sickness absence, as shown by previous
research [8,9]. It seems that when these employees have a high rate of performance, they are confident
and thus more prone to be absent than employees with the same BMI values but a lower rate of
performance. A possible intervention policy would consist of an educational program for this subgroup
about the negative effects of an elevated BMI and about the importance of healthy food and an active
lifestyle. This information could be delivered in a workshop or through individual training sessions.

Example 3. The relationship between workload and the level of absenteeism.

As in previous examples, we focus here on a factor (workload) that has been reported to be
associated with absenteeism (see, e.g., in [3]). As can be seen on the RHS of Figure 4, when the period
of absence is at the beginning of the year, employees without a disciplinary failure, whose height is
equal to or higher than 167cm, with high performance, transportation expenses that are equal to or
higher than 238 (the expenses of 58% of instances are lower than this value), and a daily workload
that is equal to or higher than 277,202 (the workload of 67% of instances is lower than this value),
the distribution among the absenteeism classes is (0%, 12%, 88%, 0%). Thus, 12% of such instances
are absent for “hours”, while 88% are absent for “days”. The absenteeism class distribution for this
group of 16 dataset instances is significantly different (with p-value <0.001) from a classification that is
based solely on workload (24%, 24%, 30%, 22%); the latter classification is not very informative for
decision makers.

2504 2504 D50 0L e mens meos mens
(25%.25%.25%.25%) (25%.25%.25%.25%)

Workload average/day eq . o —
. Without disdiplinary
to or greater than 277202 :
failure —
(24%.24%.30%.22%) | (7%,31%.31%.31%)
—_—
Month of absence <3

(24%.49%.27%.0%)

—_——
Hit target equal to or

higher than 96
(0%,60%.40%,0%)
-
—_—
(0%.67%.33%.0%) I
R

Transportation expenses

equal to or greater than

238 (0%,33%,67%,0%) I
| —

Workload average/day equal
to or greater than 277202

Height equal to or
greater than 168

(0%,12%_ 88%,0%)

Figure 4. Relationship between workload and absenteeism at work for different subgroups of employees.
The LHS and RHS, respectively, show (i) a simple partition by workload and (ii) a more refined series
of patterns revealed by the ordinal CART model.

A possible explanation for the discovered pattern may be that overloaded employees who live
further from work (as can be deduced from their higher transportation expenses) may gradually



Entropy 2020, 22, 821 11 of 14

burn out and accrue health issues that may lead to absenteeism. The discovered pattern provides
additional refinements to previous studies (see, e.g., in [3]) that show that increased workload may be
associated with adverse health effects, which, in turn, may lead to increased levels of sickness absence.
When examining a pattern that is that same as that on the RHS of Figure 3 but with a difference at the
final level (employees with a daily workload that is lower than 277,202), the resulting class distribution
of (0%, 67%, 33%, 0%) is significantly different from the (0%, 12%, 88%, 0%) distribution obtained for
those with a higher workload. These findings may trigger a discussion about intervention programs
that balance workloads or offer flexible work opportunities, such as working from home, which may
decrease transportation expenses, save travel time, and potentially increase productivity.

More generally, it is worth noting which features were most influential in the classification of
the level of absenteeism. The feature “disciplinary failure” appears as the first feature in all three
patterns in the above examples (and in all patterns produced by the ordinal CART), and thus makes
the most significant contribution to the classification of absenteeism. The features “month of absence”,
“hit target”, and “workload” are the next most influential features, as they appear at depths 2 and 3 of
the decision tree (out of 17 depths in total). The third set of features that can be considered influential
consists of “height”, “age”, and “BMI”, which appear at depth 4 of the tree.

We suggest a general mechanism, based on our classification models, for guiding (a) the selection
of employee subgroups that are prone to absenteeism and (b) the development of intervention programs
to mitigate this behavior (see Figure 5). The first step is to select the best interpretable model, which was
found to be the OBE-based CART model with selected class c™®*. In Step 2, an automatic mechanism
identifies an employee subgroup with a high likelihood of absenteeism. Next, in Step 3, the mechanism
identifies the complementary subgroup with a lower level of absenteeism. This subgroup has the same
pattern as the subgroup that was identified in Step 2, but with a different value for the last feature in
the pattern. This complementary subgroup, in conjunction with other human resource management
best practices, will be used as an inspiration for assembling the intervention program in Step 4. This is
because it is assumed that following the intervention, employees within the high absenteeism subgroup
will behave more like those in the complementary subgroup, and thus will be less prone to absenteeism.
The examples above (which refer to 3 out of 123 patterns yielded by the model) illustrate how human
resource managers can use the suggested approach for reducing absenteeism.

Step 2: Scan the model and Step 3: Identify complementary Step 4: Devise an
Step 1: Choose the best
identify a subgroup with high subgroup with lower effective intervention
interpretable model
absenteeism level absenteeism level program

Figure 5. A mechanism for guiding the selection and development of intervention programs for
employee subgroups.

4. Conclusions and Discussion

This study develops an objective-based entropy approach for decision tree models. We demonstrate
how the approach may be implemented to select the most useful features and identify complex
absenteeism patterns. A comparison of the ordinal CART model with other alternatives demonstrates
that the proposed model is superior based on a variety of common performance indices. We contend
that this superior level of performance, combined with the interpretability capabilities, make this
model a very attractive alternative for performing analyses and making predictions in human resource
domains that include ordinal data. Specifically, for the present application, the ordinal CART model
can be used as a tool to identify subgroups of employees with particular absenteeism patterns.
Such discoveries may facilitate understanding of absenteeism phenomena, which, in turn, may lead to
selective actions and policies aimed at decreasing absenteeism.
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The main contributions of our research are as follows.

(1) Methodology. We introduce a new information measure, known as the objective-based entropy,
which extends the weighted entropy proposed in Singer et al. [16] and considers the ordinal
nature of the target (in this case, absenteeism). In contrast to standard entropy measures,
the objective-based entropy can differentiate between two situations in which the set of absenteeism
classes (“non-absent”, “hours”, “days”, “weeks”) has respective probability distributions of
(p1,p2,p3,pa) and (p1,p2, p3, pa), for example. We demonstrate the use of the new measure and,
in particular, highlight its suitability when the objective is to identify a specific class-level (in the
present case, those who may be particularly susceptible to absenteeism). Thus, the objective-based
entropy measure makes it possible to focus on a specific class, unlike previous approaches that
tend to focus on model-level indices (e.g., accuracy).

(2) Modeling. This research highlights the value of interpretable models as decision support tools in
applications such as human resource management. Indeed, human users (in our case, human
resource managers) prefer interpretable models that enable their reasoning [17,18]. In the current
study, understanding the logic of the models may enable human resource managers to take action
and devise data-driven policies for decreasing and preventing absenteeism. We provide numerical
examples to demonstrate the ability of interpretable models to uncover subgroups of individuals
with common characteristics who fall into the same class of the target variable. This approach
produces insights that are not discovered through conventional methods, such as hypotheses
testing and regression models, as the latter typically focus on high-level correlation between
individual features and the target variable (e.g., “absenteeism increases with workload”). Based on
this argument, we contend that interpretable models may be superior to their noninterpretable
counterparts in terms of organizational benefit, even if their performance is slightly lower.
Fortunately, in this research, our interpretable models also achieve higher performance than their
noninterpretable counterparts.

(3) Practice. Last, the current study contributes to research on absenteeism by departing from
previous research in which the “reason for absence” was used as an explanatory feature.
In practice, the reason for absence is not known ahead of the absenteeism event and, moreover,
most organizations do not record in their information systems the specific medical situations of
their employees. Combined with the use of interpretable models that enable human resource
managers to decide on actionable policies, we would argue that our model has greater practical
value for analyzing and predicting absenteeism patterns than previous models that did include
“reason for absence” as a feature and that were based on non-interpretable models.

As mentioned above, to demonstrate the capabilities of our ordinal interpretable model, we present
three example patterns that involve features which are known to be correlated with absenteeism: age,
body characteristics, and workload. Using these examples, we show that our model uncovers refined,
multi-feature patterns through which human resource managers can pinpoint employee subgroups
with distinct absenteeism behavior. These descriptive interpretations may enable human resource
managers to take informed actions targeted at specific subgroups rather than general actions aimed at
coarse subgroups (e.g., partitioned by age or workload). Specifically, human resource managers can
devise a set of intervention programs that is tailored to selected employee subgroups, with the goal of
reducing absenteeism.

Two attractive features of the proposed model are (1) the possibility of generalizing it to many other
domains—beyond absenteeism and the field of human resources—and (2) the possibility of further
tuning the model so as to improve its accuracy as new data are established. Future research directions
may include theoretical analyses of the effect of different statistics on the OBE measure (to identify a
variety of probability distributions) or adaptations of the OBE to continuous models. Another research
direction could be to use the weighting terms proposed in the OBE in conjunction with other measures
such as the Fisher score or the Gini impurity measure for ordinal classification purposes. From a
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practical point of view, it would be interesting to develop additional interpretable objective-based
entropy models and evaluate their performance on various human resource-oriented datasets in
conjunction with human resource managers.
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