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Abstract: Soybean (Glycine max) is a legume species of significant economic and nutritional value.
The yield of soybean continues to increase with the breeding of improved varieties, and this is
likely to continue with the application of advanced genetic and genomic approaches for breeding.
Genome technologies continue to advance rapidly, with an increasing number of high-quality genome
assemblies becoming available. With accumulating data from marker arrays and whole-genome
resequencing, studying variations between individuals and populations is becoming increasingly
accessible. Furthermore, the recent development of soybean pangenomes has highlighted the signifi-
cant structural variation between individuals, together with knowledge of what has been selected
for or lost during domestication and breeding, information that can be applied for the breeding of
improved cultivars. Because of this, resources such as genome assemblies, SNP datasets, pangenomes
and associated databases are becoming increasingly important for research underlying soybean crop
improvement.

Keywords: soybean; germplasm; genomics; assemblies; pangenome; genetics; breeding; genetic
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1. Introduction

Cultivated soybean (Glycine max) is a major protein and oil crop and reached a world-
wide production of 349 million tons in 2018, equivalent to a total export value of USD
59 billion (http://www.fao.org/faostat, accessed on 15 October 2021).

G. max is a palaeopolyploid (2n = 20) that has undergone multiple genome duplica-
tion und subsequent re-diploidisation events with simultaneous rearrangements among
chromosomes [1–3], which resulted in up to 12 occurrences of a given genome region in G.
max [3,4].

The global importance of soybean as a crop enabled the growing amount of soybean
breeding research on varieties ranging from wild and semi-wild relatives to domesticated
landraces and modern elites, including genome and transcriptome sequencing, functional
assays, phenotype and trait discovery. The wide range of assemblies, pangenome and
variant resources as well as databases support researchers in studying soybean.

The progress of soybean research resources in the last decade has been recently re-
viewed with a focus on gene discovery [5]. We expand this by summarizing resources that
support researchers in the field of soybean breeding research.

In this review, we elucidate milestones in soybean genetics and genomics research
(Figure 1) and provide details on the currently available soybean genetic and genomic
databases. We detail available marker technologies for soybean and summarize soybean
whole-genome resequencing studies as gold standard for variation studies across popu-
lations. We provide the step-by-step development of the current high quality reference
genomes and pangenomes and highlight the challenges of data interoperability, metadata
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annotation and scarcity of associated data, including data for proteomics, metabolomics
and phenomics, which limit the application of these data for crop improvement. Finally,
we propose approaches that may support more integrated data management and analysis;
so, as databases continue to improve and expand, they can be applied for the improvement
of this important crop.
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2. Main
2.1. SNP Marker Arrays

SNP marker arrays are a cost-effective option for capturing genetic variation across
a population. These marker arrays report the allelic state of specific loci for individuals
across the genome, designed to provide an overview of the genome, or target regions of
interest, with applications both in breeding and research [6]. The first major genotyping
array spanning the soybean genome, the Soy50KSNP array [7], allowed researchers to
characterize 52,041 variant sites. This was applied to genotype the 18,480 domesticated
and 1168 wild accessions in the USDA Soybean Germplasm Collection [8]. Genotyping
using this array can be carried out in conjunction with trait association analysis, such
as GWAS, to identify regions underlying agronomically important traits related to seed
composition [9–11], flooding tolerance [12–14] and sudden death syndrome [15,16]. Denser
marker genotyping arrays were subsequently developed, including the 180K AXIOM®

SoyaSNP array [17] and NJAU 355K SoySNP array [18], allowing for more in depth inquiry
into the landscape of genomic diversity in soybean and providing insights into the history
of soybean domestication [19–21].

Although dense SNP arrays are preferred when studying soybean evolution, studies
suggest that, to obtain maximum efficiency in genomic prediction breeding models, only
1000–2000 markers are required [22,23]. As a result, there have been advancements towards
targeting smaller, non-redundant sets of informative markers. The BARCSoySNP6K was
developed for cost-effective recombination tracing in biparental populations [24,25], though
it has also found utility in global population research [26,27].
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Recent progress in bioinformatics has maximized the lower density genotype infor-
mation gained from SNP marker arrays and genotyping-by-sequencing (GBS) through
imputation using haplotypes identified in more detailed whole-genome resequencing
(WGRS) data [28,29]. The GmHapMap was constructed using 1007 whole-genome rese-
quenced individuals and enables the inference of allelic states with 96% accuracy at all
SNP positions across the genome from only the 42,508 SNPs genotyped by the Soy50KSNP
array [30].

2.2. Whole-Genome Resequencing

Currently, the gold standard method used to map genetic diversity in detail for
breeding and genomic research is Whole-Genome Resequencing (WGRS) [31]. WGRS
involves low-coverage sequencing individuals with short reads before being aligned to a
genomic reference to identify nucleotides or regions that vary from the reference. Compared
to SNP marker arrays, WGRS is often more expensive per individual, though it can provide
high-density genome-wide allelic information for all loci in a reference [32]. Beyond
small variants, such as SNPs, resequencing individuals can allow for the identification of
structural diversity, such as copy number variation underlying soybean cyst nematode
resistance [33].

The first major population-level WGRS project for soybean was published in 2010
for 17 wild and 14 domesticated soybean individuals, sequenced to an average depth of
5X [34]. This dataset was used in one of the first whole-genome investigations of structural
variation, which revealed low levels of linkage disequilibrium decay compared to other
plant species [34]. The same dataset was later used to identify a gene underpinning salt
tolerance in wild soybean [35].

In 2015, WGRS increased substantially with the release of data for 302 wild and do-
mesticated individuals for GWAS, characterizing selective signals related to domestication
and improvement [36], as well as maternal lineages in the chloroplast genome [37]. Since
2015, the global soybean community steadily accumulated WGRS data through a series
of projects, with an increasing focus on characterizing regional germplasm collections
in Brazil [38], China [39,40], Canada [41], the USA [42], Japan [43] and Korea [29]. The
largest soybean WGRS dataset to date contains 2898 wild and domesticated accessions,
the majority originating from China, which was aligned to a Zhonghuang 13-based graph
pangenome [44].

The growing availability of larger, more diverse WGRS datasets, including previously
unstudied exotic individuals, holds tremendous promise for integrated research studying
the underlying genomic basis of trait variability in soybean lineages.

High-quality genome assemblies for domesticated and wild soybean support re-
searchers and breeders improving and adapting soybean for changing climate conditions,
associated biotic and abiotic stresses, or market changes in soybean demand. Current,
assemblies for domesticated soybean accessions capture the genetic diversity from the USA
and China, but there is no high-quality assembly for the Brazilian germplasm. Genome
assemblies for G. max are complemented by wild and perennial Glycine assemblies that
allow researchers to identify changes in modern soybean due to domestication, as well as
potentially beneficial genetic diversity that may have been lost.

2.3. Genome Assemblies

The first assembly for cultivated soybean, Glycine max var. Williams 82 (Wm82.a1),
was published in 2010 [3] (Figure 2), with a size of 950 Mb and 46,430 gene models [3,45],
which is more than eight times the size of the Arabidopsis thaliana genome and twice the size
of many other legumes [46]. The assembly identified multiple rounds of Glycine-specific
genome duplication that has led to 75% of genes becoming non-unique, and partially
explains the large, repetitive G. max genome [3]. This assembly provided a foundation for
functional genomics in soybean to accelerate crop trait dissection and support breeding
programs. The Wm82.a1 assembly was ordered based on linkage maps using a limited
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number of markers and recombinant inbred lines, resulting in limited assembly quality
in regions with low marker density [47]. In 2016, a new version of the G. max Wm82
assembly, Wm82.a2, which was published using two high-density linkage maps with a
total assembly size of 978.5 Mb [47] (Figure 2). In 2019, the Wm82 assembly was further
improved (Wm82.a4), closing 3600 gaps and adding another 5 Mb to the assembly size [48]
(Figure 2). The same study also released an assembly for the southern US accession Lee,
with an assembly size of 985 Mb and a high structural similarity when compared with
Wm82.a4 (Figure 2). Both the Wm82.a4 and Lee assemblies represent much of the genetic
diversity present in USA soybean cultivars, building a strong foundation for US soybean
genetic research.
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2). The G. soja accession W05 was assembled with a size of 1013 Mb and 55,539 genes [52], 
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and 13, and highlighted copy number variations for several gene clusters [52] (Figure 2). 
A second G. soja accession PI 483463 was also sequenced, with a 962 Mb assembly, demon-
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Figure 2. Milestones progressing soybean genomics and pangenomics. Red boxes indicate genome
assemblies of modern cultivars (Wm82.a1/a2/a3—G. max Williams82, first, second and fourth
revision, Lee—G. max Lee, Zh13, Zh13 imp—G. max Zhonhuang 13 and Zhonghuang 13 improved),
green boxes indicate wild genome assemblies (W05—G. soja accession W05, PI 483463—G. soja
accession, PI 559298—G. latifolia accession), blue boxes indicate pangenomes, including the used
accessions for their construction, and the red-blue-green box depicts the Glycine super-pangenome,
including G. max, G. soja and 7 perennial Glycines. Arrows indicate the use of a constructed genome
assembly in a later study.

Outside the USA, a reference genome for the Chinese soybean cultivar Zhonghuang
13 was released in 2018. The assembly size was 1025 Mb with 52,021 gene models and
250,000 structural variations compared to Wm82.a2 [49] (Figure 2). This assembly was
later improved using PacBio reads, optical mapping and Hi-C sequencing, and the total
number of protein coding genes increased to 55,443 by integrating RNAseq data into the
annotation [50] (Figure 2).

Following the draft assemblies of seven wild soybean accessions in 2014 [51], the first
reference-grade assemblies of two wild soybean accession were published in 2019 (Figure 2).
The G. soja accession W05 was assembled with a size of 1013 Mb and 55,539 genes [52],
identified an inversion in the seed color locus, a translocation between chromosome 11
and 13, and highlighted copy number variations for several gene clusters [52] (Figure 2). A
second G. soja accession PI 483463 was also sequenced, with a 962 Mb assembly, demon-
strating significant sequence diversity [48]. An assembly for Glycine latifolia accession PI
559298, a perennial relative, was released in 2018 [53] presenting high levels of genetic
diversity and agronomically favorable traits, including sclerotinia stem rot and soybean
rust resistance that are absent in G. max [54–57]. The assembly of 939 Mb and 54,475 genes



Plants 2022, 11, 1181 5 of 15

included hundreds of candidate disease-resistance genes, including 367 LRR genes, less
than the 467 LRR genes found in G. max [36,53].

Recently, a genome assembly of the popular Korean soybean cultivar Hwangkeum,
known for its resistance to all the USA soybean mosaic virus strains, was released with
an assembly size of 933.12 Mb and 58,550 genes [58] (Figure 2). While SNPs, indels
and structural variants were identified when comparing Hwangkeum with Wm82.a4, no
large genomic rearrangements were identified, which is in contrast to four large scale
chromosomal rearrangements identified between Wm82.a4 and Zhonghuang 13 [49,50].

The global importance of soybean as a crop is reflected in the regularity of improve-
ments to soybean genome assemblies. The reference assembly for Wm82 has been improved
twice since its initial release in 2010, and together with the reference assemblies for Lee,
Zhonghuang 13 and Wm82, the latter of which has been improved twice since its initial
release in 2010, provide the foundation of modern soybean research.

2.4. Pangenomes

Comparative genomic studies have demonstrated that single reference genome assem-
blies do not represent the full genomic diversity of a species. To address this, pangenomes
have been assembled that represent the gene content of a species rather than of a single
individual [59–61]. Pangenomes have been assembled for several plant species, such as
banana [62], sorghum [63], bread wheat [64], Brassica oleracea [60], Brassica napus [65], the
Brassica genus [66], chickpea [67], tomato [68], sunflower [69], pigeon pea [70], cotton [71]
and rice [72]. These studies have revealed extensive gene presence/absence variation
and that some genes that are not present in all accessions may have important biological
functions, such as biotic and abiotic stress tolerance.

The first soybean pangenome was published in 2014 and was one the first pangenomes
developed in plants [51] (Figure 2). The study mapped whole-genome resequencing data
for seven representative G. soja accessions to the Wm82.a1 reference and identified 3.63 to
4.72 million SNPs, 0.5 to 0.77 million indels and a total of 338 genes that were absent in
the G. max reference. Variable genes were enriched for defense response, cell growth and
photosynthesis [51].

Soybean pangenomics expanded in 2020 with the analysis of 2898 accessions, includ-
ing the de novo assembly of 26 individuals representing distinct diversity clusters [44]
(Figure 2). These 26 accessions were combined into a graph-based pangenome using vg [73]
with Zhonghuang 13 as the primary reference genome. Finally, data from the full set of
2898 accessions were mapped to the pangenome graph and structural variants identified.
This process identified a total of 57,492 gene families, of which only 35.9% were present
in all 27 accessions [44]. Variable gene families were more diverse and had a higher rate
of positive selection compared to core genes, and they were also enriched for abiotic and
biotic stress response annotation. The study identified 14.6 million SNPs and 12.7 million
indels when comparing the pangenome with the Zhonghuang 13 reference [44]. The wealth
of small and variant information collated in this dataset has been used to characterize struc-
tural variants associated with iron use efficiency and flowering time as well as inversions
and gene fusion events associated with soybean domestication [44].

Two further pangenome studies were published in 2021 [74,75] (Figure 2). PanSoy was
constructed using the GmHapMap dataset [30], processed with the EUPAN pipeline [76]
based on the Wm82 reference, and resulted in a total pangenome size of 1086 Mb with
54,531 genes, including 1659 novel genes. Of these genes, 7% were variable and enriched
for annotations associated with the regulation of immune and defense responses, signaling
and plant development [74]. The other pangenome was constructed using a previously
published iterative method [60] and based on the Lee soybean assembly. It represents the
USDA soybean collection, including wild lines, landraces and modern cultivars. The result-
ing pangenome had an assembly size of 1213 Mb with 51,414 genes [75]. Of these, 13.2%
were variable and enriched in annotations associated with response to biotic and abiotic
stress, including defense response, response to abscisic acid and response to salt stress. In
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addition, the USDA soybean pangenome identified genes that changed in frequency when
comparing individuals with different breeding histories [75]. These three pangenomes
capture the majority of the genomic diversity present in G. max and G. soja. However, the
overall genetic diversity in this gene pool still remains low and limits the crops’ potential
in yield and resilience [77].

The expansion of the known gene pool in soybean is the focus of the most recent
study by Zhuang, et al. [78] (Figure 2), which de novo assembled five diploid perennial
Australian Glycine species (2n = 40), G. falcata, G. stenophita, G. cyrtoloba, G. syndetika and
G. tomentella D3 and the perennial Australian allopolyploid G. dolichocarpa (2n = 80) at
the chromosome level. The assembly sizes of the 5 diploids range from 941 to 1374 Mb
with 55,376 to 58,312 protein coding genes and the allopolyploid G. dolichocarpa had an
assembly size of 1948 Mb and 113,697 genes. The assembled diploid perennial genomes
and 26 selected annual soybean genomes were then used to construct a super-pangenome
framework that annotated 109,827 genes in the pool of perennials with 29% perennial core
genes and 129,006 genes in the annuals with 24.5% annual core genes. Of the perennial core
genes, 56.2% overlapped with annual core genes, 27.2% with variable annual genes and
16.6% were perennial specific. A total of 82.3% of variable perennial genes were not found
in the annual gene pool. The identification of perennial specific genes is the first step to
expand soybean pangenomics across species boundaries and links genetic variation with
phenotypes of agronomic importance.

2.5. Databases and Tools for Explorative Data Analysis

With the growing quantity and diversity of genetic and genomic information for
soybean, there is a requirement for the integration of data to improve gene annotation and
to discover associations between allelic variants and agronomic traits. There are currently
several relevant soybean datasets. For example, SoyKB [79] and SoyBase [80] offer curated
genomic and genetic datasets, including epigenetic maps, gene expression data, regulatory
RNA data, genomic sequence variants and pangenome gene visualization. These databases
are continuously updated to host soybean genome analysis results [74] and are employed
by the community for biological analyses, including Gene Ontology enrichment [74], QTL
mapping and gene identification [81], quantitative disease resistance estimation [82] and
the identification of homologous genomic features in related species [83]. A list of online
soybean databases is given in Table 1. Across the different databases, users can find tools to
explore and visualize genetic maps, soybean mutant lines, gene families and characterize
differential gene expression.

Table 1. Available database resources for soybean genome investigation and computational tools.

Data Type Database Description Website

Genome and
genetic data

SFGD—Soybean
Functional Genomics
Database

Integration-friendly
genome, transcriptome and
protein data for the
functional characterization
of soybean pathways. Has
a dataset, focused on
soybean acyl–lipid
pathways

http://bioinformatics.cau.
edu.cn/SFGD/, accessed
on 15 October 2021

[84]

Plant-Impute DB

Database for genotype
imputation using
high-quality reference
panels

https://gong_lab.hzau.
edu.cn/Plant_imputeDB/,
accessed on 15 October
2021

[85]

http://bioinformatics.cau.edu.cn/SFGD/
http://bioinformatics.cau.edu.cn/SFGD/
https://gong_lab.hzau.edu.cn/Plant_imputeDB/
https://gong_lab.hzau.edu.cn/Plant_imputeDB/
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Table 1. Cont.

Data Type Database Description Website

GmHapMap—Haplotype
Map

Haplotype map
constructed using genome
sequence data from 1007
soybean accessions, with
4.3 M SNPs identified

https:
//soybase.org/projects/
SoyBase.C2020.01.php,
accessed on 15 October
2021

[30]

SoyKB—Soybean
knowledge base

Soybean data hub with
genomic and genetic
information linked to
external datasets

https://soykb.org/,
accessed on 15 October
2021

[79]

SGMD—Soybean genomics
and microarray database

Integrated view of the
interaction of soybean with
the soybean cyst nematode
and contains genomic, EST
and microarray data with
embedded analytical tools,
allowing the correlation of
soybean ESTs with their
gene expression profiles

https://www.hsls.pitt.
edu/obrc/index.php?
page=URL1096997457,
accessed on 15 October
2021

[86]

SoyTEdb—Soybean
Transposable Element
database

Database of transposable
elements identified by
genetic and physical maps
based on the Glyma1.01
assembly

https://www.soybase.
org/soytedb/, accessed on
15 October 2021

[87]

DAIZUbase

Genome visualization and
data mining tools
(Gbrownse, Unifiedmap,
Geneviewer and BLAST)

https://daizubase.daizu.
dna.affrc.go.jp/, accessed
on 15 October 2021

[88]

LegumeIP V3

Translational genomics,
offering tools to analyze
gene expression data and
pathway analysis

https://www.zhaolab.
org/LegumeIP/gdp/,
accessed on 15 October
2021

[89]

SoyBase

Integrates genetic and
genomic data, including
QTLs and GWAS for
several hybrid lines.
Facilitates BLAST using
soybean pangenome of all
cultivars within the
database

https:
//soybase.org/soyseq/,
accessed on 15 October
2021

[80,90]

Legume Federation

Visualization of genotype
comparison, genome
context viewer, gene
annotation and
visualiz+ation, synteny,
QTLS and genetic markers
search. SNPs and GWAS
results available

https:
//www.legumefederation.
org/en/tools/, accessed on
15 October 2021

Phytozome

Up-to-date repository of
genome assemblies and
annotation. Useful BLAST
functionality between
species

http://www.phytozome.
net/soybean, accessed on
15 October 2021

[91]

https://soybase.org/projects/SoyBase.C2020.01.php
https://soybase.org/projects/SoyBase.C2020.01.php
https://soybase.org/projects/SoyBase.C2020.01.php
https://soykb.org/
https://www.hsls.pitt.edu/obrc/index.php?page=URL1096997457
https://www.hsls.pitt.edu/obrc/index.php?page=URL1096997457
https://www.hsls.pitt.edu/obrc/index.php?page=URL1096997457
https://www.soybase.org/soytedb/
https://www.soybase.org/soytedb/
https://daizubase.daizu.dna.affrc.go.jp/
https://daizubase.daizu.dna.affrc.go.jp/
https://www.zhaolab.org/LegumeIP/gdp/
https://www.zhaolab.org/LegumeIP/gdp/
https://soybase.org/soyseq/
https://soybase.org/soyseq/
https://www.legumefederation.org/en/tools/
https://www.legumefederation.org/en/tools/
https://www.legumefederation.org/en/tools/
http://www.phytozome.net/soybean
http://www.phytozome.net/soybean
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Table 1. Cont.

Data Type Database Description Website

PlantGSAD v2

Numerous gene set
annotations, including
metabolic pathways and
customized SEA
annotations and integrated
visualization features

http://systemsbiology.cau.
edu.cn/PlantGSEAv2/,
accessed on 15 October
2021

[92]

PlantGDB
Soybean genome and
annotation tools for
comparative genomics

https://www.plantgdb.
org/GmGDB/, accessed on
15 October 2021

[93]

SoyTB—Transporter

Comparative analysis of
transporter genes in 47
plant genomes and
transcriptomes

http://artemis.cyverse.
org/soykb_dev/SoyTD/,
accessed on 15 October
2021

[94]

PCMDB—Plant cell
markers database

Cell markers from 6 plant
species to label 263 cell
types across 22 tissues

www.tobaccodb.org/
pcmdb/, accessed on 15
October 2021

[95]

SoyVCF 2 Genomes

Compares the
user-supplied genomic
data in the database for the
identification of the closest
soybean relative in a 222
germplasm collection

http://pgl.gnu.ac.kr/soy_
vcf2genome/, accessed on
15 October 2021

[96]

SNPViz v2.0

Web-based tool for the
visualization of large-scale
haplotype blocks with
detailed SNPs and indels
grouped by their
chromosomal coordinates,
along with their
overlapping gene models,
phenotype to genotype
accuracies, Gene Ontology
(GO) annotations, protein
families (Pfam)
annotations, genomic
variant annotations and
their functional effects

http:
//soykb.org/SNPViz2/,
accessed on 15 October
2021

[97]

Functional networks,
and co-expression data

SoyFN—Soybean
Functional Networks

Gene and miRNA
interaction database built
into functional networks,
with KEGG pathways and
Gene Ontology annotations

https:
//nclab.hit.edu.cn/SoyFN,
accessed on 15 October
2021

[98]

SoyNet

Searchable network of
soybean genes for
network-based functional
predictions

https://www.inetbio.org/
soynet/, accessed on 15
October 2021

[99]

SoyCSN—context-specific
network

Computational pipeline to
analyze, annotate, retrieve
and visualize
context-specific network at
the transcriptome and
interactome levels—based
on the Soybean Gene Atlas
project

http:
//soykb.org/SoyCSN,
accessed on 15 October
2021

[100]

http://systemsbiology.cau.edu.cn/PlantGSEAv2/
http://systemsbiology.cau.edu.cn/PlantGSEAv2/
https://www.plantgdb.org/GmGDB/
https://www.plantgdb.org/GmGDB/
http://artemis.cyverse.org/soykb_dev/SoyTD/
http://artemis.cyverse.org/soykb_dev/SoyTD/
www.tobaccodb.org/pcmdb/
www.tobaccodb.org/pcmdb/
http://pgl.gnu.ac.kr/soy_vcf2genome/
http://pgl.gnu.ac.kr/soy_vcf2genome/
http://soykb.org/SNPViz2/
http://soykb.org/SNPViz2/
https://nclab.hit.edu.cn/SoyFN
https://nclab.hit.edu.cn/SoyFN
https://www.inetbio.org/soynet/
https://www.inetbio.org/soynet/
http://soykb.org/SoyCSN
http://soykb.org/SoyCSN
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Table 1. Cont.

Data Type Database Description Website

PlaNet

Platform of web-based
tools for the visualization
of whole-genome
co-expression networks in
multiple species, including
soybean

http://aranet.mpimp-
golm.mpg.de/, accessed on
15 October 2021

[101]

Protein-related data

SoyProDB—Soybean Seed
Protein Database

Identification of soybean
seed proteins from
2D-PAGE gels

http://bioinformatics.
towson.edu/Soybean_
Seed_Proteins_2D_Gel_
DB/Home.aspx, accessed
on 15 October 2021

[102]

PlantEAR
Database of EAR
motif-containing proteins
across 71 species

http://structuralbiology.
cau.edu.cn/plantEAR/,
accessed on 15 October
2021

[103]

Expressed sequence tag
(EST)

HarvEST
EST data filtered using the
soybean genome assembly
Glyma1

https://harvest.ucr.edu/,
accessed on 15 October
2021

[104]

OcsESTdb—oil crop seed
EST database

EST libraries of four
oilseed species with
annotated sequences

http://ocri-genomics.org/
ocsESTdb/, accessed on 15
October 2021

[105]

Soybean Marker database
Linkage map of soybean
genome and genetic
markers

http://marker.kazusa.or.
jp/Soybean/, accessed on
15 October 2021

[106]

Rsoy—Riken Soybean
cDNA sequences for the
functional analysis of
genomic features

http://spectra.psc.riken.
jp/menta.cgi/rsoy/index,
accessed on 15 October
2021

[107]

Manual and image
phenotype

RhizoVision Crown

Crown root images and
phenotypic measurements
of 187 soybean lines.
Additionally, it offers a tool
for root phenotyping

https:
//zenodo.org/record/51
21845#.YYzkYJvmiV4,
accessed on 15 October
2021

[108,109]

SoyNAM

Phenotype and genotype
data from 5555 SoyNAM
lines, available through the
R package NAM

https://CRAN.R-project.
org/package=NAM,
accessed on 15 October
2021

[110]

The value of genetic and genomic data is limited without associated phenotypic data.
Phenotypic data have allowed breeders to identify QTLs and SVs associated with soybean
yield and performance under abiotic stresses [111]. Several phenotypic datasets are hosted
in the databases described in Table 1. The use of information-dense phenotype datasets
can improve the association of genetic markers with crop traits [112]. For example, a multi-
environment trial using 393 individuals from the SoyNAM (www.soynam.org, accessed on
15 October 2021) population used high throughput drone images to estimate above ground
biomass. The derived phenotype data were used to identify genetic loci associated with
biomass production at different times during crop growth [113]. Another study used image
data from 5555 soybean SoyNAM lines in a GWAS, uncovering QTLs on chromosome
19 associated with average canopy coverage and increased yield [110]. With the expansion
of genetic and genomic datasets, combined with high throughput phenotypic analysis, we
can expect to gain a greater understanding of how genomic diversity in this crop species
underpins trait diversity, information that is valuable for applied crop improvement.

http://aranet.mpimp-golm.mpg.de/
http://aranet.mpimp-golm.mpg.de/
http://bioinformatics.towson.edu/Soybean_Seed_Proteins_2D_Gel_DB/Home.aspx
http://bioinformatics.towson.edu/Soybean_Seed_Proteins_2D_Gel_DB/Home.aspx
http://bioinformatics.towson.edu/Soybean_Seed_Proteins_2D_Gel_DB/Home.aspx
http://bioinformatics.towson.edu/Soybean_Seed_Proteins_2D_Gel_DB/Home.aspx
http://structuralbiology.cau.edu.cn/plantEAR/
http://structuralbiology.cau.edu.cn/plantEAR/
https://harvest.ucr.edu/
http://ocri-genomics.org/ocsESTdb/
http://ocri-genomics.org/ocsESTdb/
http://marker.kazusa.or.jp/Soybean/
http://marker.kazusa.or.jp/Soybean/
http://spectra.psc.riken.jp/menta.cgi/rsoy/index
http://spectra.psc.riken.jp/menta.cgi/rsoy/index
https://zenodo.org/record/5121845#.YYzkYJvmiV4
https://zenodo.org/record/5121845#.YYzkYJvmiV4
https://zenodo.org/record/5121845#.YYzkYJvmiV4
https://CRAN.R-project.org/package=NAM
https://CRAN.R-project.org/package=NAM
www.soynam.org
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The increase in genomic and phenotypic datasets for soybean and the diversity of
databases provides a challenge for integrative soybean analysis as datasets are often scat-
tered across multiple repositories, making it hard for researchers to find all the relevant
information that could be used for analysis. Although SoyBase and SoyKB offer central
hubs to retrieve genotypic and genetic information across multiple varieties, other ‘omics’
datasets (e.g., proteomics, metabolomics and phenomics) are not so easily found. Many
published datasets have relatively poor metadata, limiting detailed analysis. The Planteome
and other plant ontology references serve as standards to assist semantic integration among
different datasets [114,115]. For plant phenotyping, the MIAPPE guidelines have forms
suggesting the minimal information that is necessary to describe in the metadata to enable
other researchers to benefit from the data [116]. Adhering to data sharing guidelines and
structures will enable researchers to explore previously published data more effectively,
and leverage soybean genetic diversity for crop improvement.

3. Conclusions and Future Perspectives in Breeding

Finding novel sources for environmental adaptation is fundamental to support breed-
ing approaches. Genome-environment association (GEA) in conjunction with GWAS have
been used to predict drought [117,118] and heat tolerance [119,120] in closely related
legumes, such as the common bean, which has been proposed as a diploid model for soy-
bean [121]. Enabled by the availability of a wealth soybean marker datasets, GEA will also
be an excellent option to study soybean environment adaptation in the future. Furthermore,
the availability of genomic datasets and connected phenotypic and marker databases also
builds a foundation for next-generation breeding technologies, such as genomic predic-
tion [122], genome-wide scans of selection signatures [123], machine learning [124] and
speed breeding [125]. The high-quality datasets available for soybean also enable the use
of genomic-assisted backcrossing and replace marker-assisted backcrossing, which will
accelerate future soybean breeding.

New technologies, such as long-read sequencing, have been used to generate modern
high-quality reference genomes and to de novo assembly of more than 20 accessions in
pangenomes. We believe that long-read sequencing is poised to replace WGRS as the gold
standard for high-fidelity variation mapping across populations, with the construction
of larger and larger de novo assembled pangenomes. Pangenomes are on the verge of
expanding into the higher level taxon, which has been demonstrated by Zhuang, Wang,
Li, Hu, Fan, Landis, Cannon, Grimwood, Schmutz, Jackson, Doyle, Zhang, Zhang and
Ma [78], and will soon start to address questions in functional genomics to enable super-
pangenomics-guided breeding.

With a wealth of published soybean (pan-)genomes, genomics has firmly established
itself as one of the basic tools of soybean plant breeders’ toolkit. In this review, we gave
an overview of the available data and germplasm resources for soybean researchers and
breeders. The valuable data stored within these resources enables new approaches to
breed soybean cultivars to meet the challenges posed by a growing world population in a
warming climate.
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