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Background: Gastric cancer (GC) is the fifth most frequently diagnosed malignancy,

and the third leading cause of tumor-related mortalities worldwide. Due to a high

heterogeneity in GC, its treatment and prognosis are challenging, necessitating urgent

identification of novel prognostic predictors for GC patients.

Methods: We downloaded RNA sequence data, from the Cancer Genome Atlas and

microarray data from Gene Expression Omnibus database, then identified common

differentially-expressed genes (DEGs) between GC and normal gastric tissues across

four datasets. We then used a combination of protein-protein interaction (PPI) network

and weighted gene co-expression network analysis (WGCNA) to identify key genes with

prognostic value in GC. Thereafter, we used quantitative real time polymerase chain

reaction (qRT-PCR) to validate expression of the identified key genes in the Zhejiang

University (ZJU) cohort. Finally, we evaluated the relationships between gene expression

and immune factors, including immune cells and biomarkers of immunotherapy.

Results: Among 426 common DEGs screened, 333 and 93 were upregulated and

downregulated, respectively. PPI network and WGCNA successfully identified the top

30 hub genes, among which PTPRC, TYROBP, CCR1, CYBB, LCP2, and C1QB were

common. Furthermore, TYROBP andC1QBwere negatively associatedwith prognosis of

GC patients, implying that they were key GC predictors. Interestingly, TYROBP andC1QB

were positively correlated with predictive biomarkers for GC immunotherapy, including

PD-L1 expression, CD8+ T cells infiltration, and EBV status.

Conclusions: TYROBP and C1QB were identified as two novel key genes with

prognostic value in GC by network analysis.

Keywords: gastric cancer, protein-protein interaction, weighted gene co-expression network analysis, biomarker,

prognosis
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INTRODUCTION

Gastric cancer (GC) is a major human health burden. According
to the GLOBOCAN, in 2018 alone, there were over 1,000,000 new
GC cases and an estimated 783,000 GC-related fatalities, making
it the fifth prevalent cancer and the third leading cause of tumor
mortality (1). Due to its high recurrence after surgery (2) and low
sensitivity to chemotherapy (3), the overall 5-year survival rate
of GC patients remains low. Therefore, it is urgent and crucial to
identify novel prognostic biomarkers for GC patients.

With the rapid development and extensive application of
high-throughput technology, vast amounts of gene expression
profiles have been produced and utilized to identify differentially
expressed genes (DEGs) by comparing tumor cells with the
adjacent mucosa (4). However, the previous conventional studies
have focused more on the individual DEGs while ignoring
the complex network with a high degree of interconnection
between the DEGs. Protein–protein interaction (PPI) networks
and weighted gene co-expression network analysis (WGCNA)
based on the microarray and RNA sequencing data have been
shown to constitute powerful systematical biology strategies for
mining the functional gene modules and identifying hub genes as
candidate biomarkers, as well as therapeutic targets (5, 6). Over
the past years, PPI and WGCNA have been extensively applied
to screen out hub genes in multiple cancers. For instance, Chen
et al. identified and validated that VCAN is associated with the
progression and prognosis of pancreatic cancer by constructing
a PPI network (7). Similarly, Yin et al. identified three novel
blood-based diagnostic biomarkers for human hepatocellular
carcinoma by WGCNA (8).

Herein, we constructed PPI and WGCNA networks based
on the common DEGs from the TCGA-STAD (9) and 3 Gene
ExpressionOmnibus (GEO) datasets [GSE65801 (10), GSE54129,
andGSE118916 (11)]. Hubmodules and hub genes were screened
from the networks. An integrated bioinformatics analysis was
performed to evaluate the function, pathway, and interrelation
of the hub modules and the hub genes. We identified the key
genes via survival analysis from the common hub genes derived
from the PPI and WGCNA network, then validated them in the
Oncomine database, ZJU cohort, and GSE15459 dataset (12). An
immune analysis was performed to investigate the association
between the key genes and the immune factors using the TCGA-
STAD and GSE51575 dataset (13).

MATERIALS AND METHODS

Study Design
The design of this study is shown as a workflow (Figure 1). We
screened the differentially expressed genes (DEGs) between the
GC and normal or adjacent mucosa tissue from the four cohort
profile datasets, i.e., TCGA-STAD (9), GSE65801 (10), GSE54129,
and GSE118916 (11). The construction of the protein–protein
interaction (PPI) network and weighted gene co-expression
network was based on the DEGs, and we identified the common
hub genes from the networks. The expression of the common
hub genes was validated in the Oncomine database and ZJU
cohort. We performed survival analyses of the common hub

genes using the TCGA-STAD dataset. Immune analyses were
performed to evaluate the correlation between the key genes
and the tumor microenvironment using the TCGA-STAD and
GSE51575 datasets (13).

Data Collection
We downloaded the RNA sequencing data and clinical
datasets of GC patients from the TCGA repository of the
National Cancer Institute (https://cancergenome.nih.gov/). The
TCGA-STAD datasets constituted 375 tumor and 32 normal
samples. Microarray data of GSE65801, GSE54129, GSE118916,
GSE15459, and GSE51575 datasets were retrieved from the Gene
Expression Omnibus (GEO) database (https://www.ncbi.nlm.
nih.gov/geo). The GSE65801 microarray data was downloaded
from the GPL14550 Platform (Agilent-028004 SurePrint G3
Human GE 8x60K Microarray, Probe Name version, Agilent
Technologies) and included 32 gastric cancer tissues and 32
paired noncancerous tissues (Submission date: Feb 10, 2015)
(10). The microarray data of GSE54129 and GSE15459 was
downloaded from the GPL570 Platform ([HG-U133_Plus_2]

FIGURE 1 | Workflow of our study for identifying key genes with prognostic

value in gastric cancer, including data preparing, processing and analysis.
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Affymetrix Human Genome U133 Plus 2.0 Array), with the
former constituting 111 gastric cancer tissues and 21 normal
gastric tissues (Submission date: Jan 16, 2014) while the
latter included 200 primary gastric cancer tissues (Submission
date: Mar 30, 2009) (12). The GSE118916 microarray data
was downloaded from the GPL15207 Platform ([PrimeView]
Affymetrix Human Gene Expression Array) and included 15
gastric cancer tissues and 15 paired adjacent mucosa tissues
(Submission date: Aug 22, 2018) (11). The GSE51575 microarray
data was downloaded from the GPL13607 Platform (Agilent-
028004 SurePrint G3 Human GE 8x60K Microarray, Feature
Number version) and included 26 adjacent mucosa tissues,
14 EBV-positive gastric cancer tissues, and 12 EBV-negative
gastric cancer tissues (Submission date: Oct 23, 2013) (13). The
GSE51575 dataset was derived from a primary study (13) and
contained some essential information for our research, including
gene expression of immune checkpoints, and EBV infection
status. The acquisition and application methods of all the data
were according to the guidelines and policies of the GEO and
TCGA databases.

Data Preprocessing and Common DEGs
Identification
The retrieved gene expression data from the GEO database
was preprocessed, including background correction and
normalization in the R version 3.6.1 software. We utilized the
Bioconductor Annotation Data software package to transform
the microarray data probes to gene symbols. When several
probes were matched to the same gene symbol, the median value
was set as the final expression value of the gene. The “limma”
and “edgeR” R packages were utilized to identify the DEGs
between the GC tissues and normal or adjacent mucosa tissues
in the GEO and TCGA datasets, respectively (14, 15). Genes with
adjusted P < 0.05 and |Fold change (FC)| > 1.5 were selected
as the DEGs. Common DEGs were defined as the overlap of
the DEGs from the TCGA-STAD, GSE65801, GSE54129, and
GSE118916. The Venn diagram was generated online (http://
bioinformatics.~psb.ugent.be/webtools/Venn/).

Functional Annotation, Pathway
Enrichment, and Interrelation Analysis
We analyzed the functional annotation and pathway enrichment
using the Database for Annotation, Visualization and Integrated
Discovery (DAVID) web portal (https://david.ncifcrf.gov/) (16,
17). After uploading the list of common DEGs, we obtained
the Gene Ontology (GO) enrichment results of the biological
process (BP), cellular component (CC), molecular function (MF),
and the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway. Interrelation analysis between pathways and hub genes
was performed using the ClueGo (Version 2.5.4), a plug-in of
Cytoscape software (18). P < 0.05 was set as the cut-off criteria.

PPI Network Construction and MCODE
Analysis
First, we utilized the STRING database (http://string-db.org)
to construct the PPI network of DEGs and interactions, with

a combined score > 0.4 considered statistically significant (6).
After that, we used the Cytoscape software (Version 3.7.2) to
visualize the PPI network (19). Subsequently, the Molecular
Complex Detection (MCODE, version 1.5.1) plug-in tool of
Cytoscape was used to screen and visualize the hub modules
in the PPI network with the MCODE score = 5, degree = 2,
Node score cut-off = 0.2, K-score = 2, and Max. Depth = 100
(20). The functional annotation for the genes in the modules was
performed using the DAVID.

WGCNA Network Construction
We utilized the WGCNA to analyze the co-expressed gene
module and identify the hub module correlated to the clinical
traits (5). In this study, we selected the common DEGs for the
WGCNA network construction using the “WGCNA” R package.
Sample clustering of the common DEGs was applied to filter the
outlier sample with a height cut-off value of 20,000. A power of β
= 4 and minimummodule size= 30 were set as per the standard
scale-free networks. The adjacencies between all the filtered
genes were conducted and converted into a topological overlap
matrix (TOM) and the corresponding dissimilarity (1-TOM).
The hierarchical clustering function was used to classify the
genes with a high absolute correlation into modules based on
the TOM-based dissimilarity for the gene dendrogram. The
dissimilarity of the module eigengenes was calculated to merge
similar modules with a height cut-off value of 0.25. Module
eigengene (ME), defined as the first principal component of a
given module, was regarded as the representative of the module.
The correlation between the ME and the clinical traits, including
age, gender, grade, and the stage, was one of the factors for
identifying the hub module. Gene significance (GS) was defined
as the log10 transformation of P-value in the linear regression
between the gene expression and the clinical traits. The module
membership (MM) was identified as the correlation between the
gene expression and the ME. The hub module was identified by
the highest correlation between the ME and the clinical traits,
as well as the most significant correlation between the MM
and the GS. Subsequently, the hub module was visualized using
the Cytoscape software. The functional annotation and pathway
enrichment for the genes in the hub module were conducted
using DAVID.

Common Hub Genes Identification and
Validation
The highly interconnected hub genes with the other nodes in a
module were regarded as functionally significant genes. Herein,
the hub modules were identified using the PPI network and
the WGCNA network. The hub genes in the hub modules were
screened using the cytoHubba (Version 0.1) tool, a plug-in of the
Cytoscape software (21). The hub genes that ranked the top 30
in the hub modules were selected as the candidates using the
Degree method, and the interrelation analysis was performed,
as described previously. The common hub genes defined as the
overlap of the hub genes from the PPI network and the WGCNA
network were identified for further analysis and validation. The
expression of the common hub genes was validated using the
Oncomine database.
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FIGURE 2 | Identification, functional annotation and pathway analysis of the common DEGs in four cohorts (TCGA-STAD, GSE65801, GSE54129, and GSE118916).

(A) Venn diagram of the up-regulated genes in the four cohorts. (B) Venn diagram of the down-regulated genes in the four cohorts. (C) Biological processes of the

common DEGs. (D) Cellular components of the common DEGs. (E) Molecular functions of the common DEGs. (F) KEGG pathway analysis of the common DEGs.
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Tissue Samples and Total RNA Isolation
We obtained 10 pairs of the GC tissues and adjacent mucosa
tissues from GC patients who underwent surgery at the
First Affiliated Hospital of Zhejiang University (ZJU cohort),
excluding those who had been exposed to pre-operative
chemotherapy or radiotherapy. The Institutional Review Board
of the First Affiliated Hospital of Zhejiang University approved
the protocol of this study. All the GC patients signed informed
consent. The total RNA from each of the 10 GC tissues and
10 paired adjacent mucosa tissues was isolated using a RNeasy
Mini Kit (Cat.no.74106, Qiagen, Germany) and quantified
using a NanoDrop One (Cat. ND-ONE-W, ThermoFisher
Scientific, USA).

Quantitative Real-Time Polymerase Chain
Reaction (qRT-PCR)
Briefly, we performed reverse transcription to synthesize the
first-strand cDNA using 1 µg total RNA isolated from
the GC tissues and paired normal mucosa tissue samples
using the PrimeScriptTM RT Master Mix (Perfect Real Time)
(Cat. #RR036A, TaKaRa, Japan). After that, qRT-PCR was
performed using the TBGreen R©Premix Ex TaqTMII (Tli RNase
H Plus) (Cat. #RR820A, TaKaRa, Japan). We utilized the
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene as
an internal control.

Survival Analysis and Key Genes
Identification
We assessed the prognostic value of the common hub genes by
evaluating the association of the gene expression and overall
survival of patients in the TCGA-STAD dataset. The key genes
with clinical significance were identified through expression
validation and survival analysis of the common hub genes.
Finally, the transcriptional expression of the key genes was
validated in the ZJU cohort.

Immune Analysis of Key Genes
As an interactive web platform, Tumor Immune Estimation
Resource (TIMER) (https://cistrome.shinyapps.io/timer/) is
utilized to estimate tumor immune infiltration across diverse
cancer types (22). In this study, we analyzed the correlation of
the expression of key genes in GC with immune infiltration
(CD8+ T Cells, CD4+ T Cells, and Macrophages) using the
“Gene” module and explored the correlation between immune
infiltration and survival using the “Survival” module in TIMER.
CIBERSORT is a deconvolution algorithm used to estimate the
immune cell type proportions with a signature matrix of 547
genes by support vector regression (23). The output includes a
P-value for the deconvolution of each sample using the Monte
Carlo sampling after running with 1,000 permutations. The
CIBERSORT P-value reflects the statistical significance of the
results, and a threshold < 0.05 is recommended. We uploaded
the gene expression profile constituting 375 tumor samples in the
TCGA-STAD to the CIBERSORT web portal (https://cibersort.
stanford.edu/). Consequently, 240 samples with CIBERSORT
P < 0.05 were included in calculating the Spearman’s correlation
between the key genes and 22 types of the infiltrating immune

cells. Besides, we evaluated the correlation between the key
genes and the immune factors, including cytolytic activity
molecules (GZMA and PRF1) and the immune checkpoints
(CD274, PDCD1, PDCD1LG2, VTCN, and LAG3) of 375
samples in the TCGA-STAD dataset. The correlation between
the key genes and the immune checkpoints was validated
using the GSE51575 data. Information about the TCGA-STAD
subtypes, including CIN, EBV, MSI, and GS, was mined from
the cBioportal database (24), an open-access resource providing
data from the TCGA project (https://www.cbioportal.org/).
Epstein Barr virus (EBV) associated with gastric cancer was
classified as one of the four molecular subtypes in 2014 (9).
EBV positive status additionally was one of the biomarkers for
immunotherapy. We then evaluated the association between
the key genes and the EBV status in the TCGA-STAD and
GSE51575 datasets. The correlation between the key genes and
immune factors in the TCGA-STAD dataset was visualized
using the MeV (MultiExperiment Viewer, version 4.9.0.)
software (25).

Correlation Analysis of Key Genes
The correlation analysis of the key genes was performed using
the Gene Expression Profiling Interactive Analysis (GEPIA) (26),
a web server for analyzing gene expression from the TCGA and
GTEx samples (http://gepia2.cancer-pku.cn/).

Statistical Analysis
Statistical analyses were performed using the SPSS 21.0 software.
We used the Kaplan-Meier survival to analyze the association
between gene expression and the overall survival. The log-
rank test was used to determine significant differences in
the survival curves stratified by the gene expression level.
We calculated the median overall survival time, and the
95% confidence interval where relevant. The correlations of
the gene expression with immune cells and immune factors
were evaluated using the Spearman’s correlation and statistical
significance. The continuous variables in the two groups and
multi-subgroups were compared using the Student’s t-test
and ANOVA, respectively. A P < 0.05 was considered
statistically significant.

RESULTS

Identification, Functional Annotation, and
Pathway Analysis of Common DEGs
The common DEGs between the GC tumor and normal
or adjacent mucosa tissues were screened from the GEO
datasets (GSE65801, GSE54129, and GSE118916), and the
TCGA-STAD dataset. Consequently, 426 common DEGs
were identified, of which 333 were upregulated, and 93
were downregulated (Figures 2A,B; Table S1). After that,
we performed Go analyses by uploading the identified 426
common DEGs to the DAVID web portal. The DEGs were
enriched as per the four subontologies: BP, CC, MF, and
the KEGG pathway. For BP (Figure 2C), the DEGs were
primarily enriched in signal transduction, cell adhesion,
and immune response. The other biological processes were
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FIGURE 3 | Identification, enrichment and interrelation analysis of the hub modules and the hub genes in PPI network. (A) Identification of the top 3 hub modules in

the PPI network. (B) GO term enrichment analysis of the hub modules. (C) Interrelation analysis in the biological process pathways of the hub genes.
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associated with the tumor microenvironment constituted
the extracellular matrix organization, collagen catabolic
process, collagen fibril organization, inflammatory response,
leukocyte migration, angiogenesis, chemotaxis, and cell-cell
signaling. For MF (Figure 2D), enrichment of the DEGs
was primarily in protein binding and calcium ion binding.
The other molecular functions were mainly enriched in
receptor activity included integrin binding, heparin binding,
collagen binding, platelet-derived growth factor binding,
cytokine activity, identical protein binding, extracellular matrix
binding, protease binding, glycosaminoglycan binding, indanol
dehydrogenase activity, and the N-formyl peptide receptor
activity. For CC (Figure 2E), the DEGs were mainly involved
in the plasma membrane, extracellular space, and exosome.
The other cellular components included extracellular region,
extracellular matrix, proteinaceous extracellular matrix, collagen
trimer, integral component of the plasma membrane, cell
surface, endoplasmic reticulum lumen, plasma membrane,
external side of the plasma membrane, basement membrane,
membrane, membrane raft, podosome, and the cell projection.
For the KEGG pathway (Figure 2F), the DEGs were mainly
enriched in the PI3K-Akt signaling pathway, cytokine-cytokine
receptor interaction, and focal adhesion. The other pathways
were mainly enriched in immune signaling, including the
TNF signaling pathway, staphylococcus aureus infection,
rheumatoid arthritis, leukocyte transendothelial migration, and
chemical carcinogenesis.

Identification, Enrichment, and
Interrelation Analysis of Hub Modules and
Hub Genes in the PPI Network
The PPI network was constructed using the STRING online
database, and the top 3 significant modules were screened using
the MCODE (Figure 3A). Module 1 contained 36 genes, with
35 upregulated and 1 down regulated in the tumor tissues vs.
the normal tissues. Module 2 consisted of 38 genes, which were
upregulated in the tumor tissues. Module 3 constituted 28 genes,
with 27 upregulated and 1 downregulated in the tumor tissues.
We performed function annotation of themodules using DAVID,
as described previously. The GO analysis results (Figure 3B;
Table S2) disclosed that module 1 was primarily enriched in the
extracellular matrix organization, extracellular matrix structural
constituent, and the extracellular region. Module 2, on the
other hand, was primarily enriched in signal transduction,
protein binding, and extracellular space, whereas module 3
was mainly involved in the inflammatory response, protein
binding, and the plasma membrane. In addition, the top 30 hub
genes with a high degree of connectivity in the PPI network
were identified using cytoHubba (Supplementary Figure 1;
Tables S3, S4). We performed an interrelation analysis between
the pathways in the BPs of the hub genes using ClueGo
to evaluate the pathway enrichment of the hub genes and
the crosstalk between pathways. Consequently, the hub genes
were primarily enriched in positive regulation of the response
to macrophage colony-stimulating factor, positive regulation
of the tumor necrosis factor biosynthetic process, negative

regulation of the myeloid cell apoptotic process, and fibrillar
collagen trimer (Figure 3C; Supplementary Figure 2). Based on
the results above, we observed an enrichment of the hub modules
and hub genes in the inflammatory response and extracellular
matrix organization.

Identification of the Hub Module and Hub
Genes in WGCNA Network
We constructed the WGCNA network using the “WGCNA”
R package. The expression patterns of the genes in the
same module were similar and relevant by the average
linkage clustering. We included 315 samples with clinical
traits to filter the outlier samples via sample clustering of
the common DEGs, and 17 samples were excluded with the
height of 20,000 (Supplementary Figure 3A). A soft threshold
(β)= 4 was set to ensure a scale-free network (R2 = 0.94;
Supplementary Figures 3B–E). Similar modules with a height
cut-off value of 0.25 were merged (Figure 4A), and 3 modules
marked in blue, turquoise, and gray were identified (Figure 4B).
The blue module contained 112 genes and the turquoise
module 188 genes. Besides, 126 genes not included in any
module were put into the gray module. The gray module
was identified as not co-expressed and would be excluded
in subsequent analyses. The interaction of the modules was
visualized as the network heatmap (Figure 4C), which indicated
that genes in the same module had a highly co-expressed
relationship with each other. Then, the correlation between the
GS and MM in the turquoise and blue modules was calculated,
respectively. The correlation was significant in the blue module
(R = 0.81, P < 0.001; Figure 4D) and not in the turquoise
module (R = 0.14, P = 0.054; Figure 4E). Furthermore, the
relationship between the modules and the clinical traits was
evaluated to identify the hub module. The result showed that
the blue module was significantly associated with the GC
grade (R= 0.31, P < 0.001; Figure 4F). The top 30 hub genes
in the blue module were screened using cytoHubba via the
Degree method (Supplementary Figure 4; Table S5, Table S6).
Consequently, the blue module was identified as the hub module
in the WGCNA network and the top 30 hub genes in the
blue module.

Function Annotation, Pathway Enrichment,
and Interrelation Analysis of the Blue
Module and the Hub Genes in the WGCNA
Network
Function annotation and pathway enrichment of the blue
module in the WGCNA network were performed in DAVID,
as previously described. It was mainly enriched in the immune
response and cell adhesion for BP, plasma membrane for
CC, and protein binding for MF (Figure 5A). The KEGG
pathway enrichment analysis identified the cytokine-cytokine
receptor interaction as the most significantly enriched pathway,
and the other pathways included the chemokine signaling
pathway, tuberculosis, phagosome, and osteoclast differentiation
(Figure 5B). Furthermore, an interrelation analysis between the
pathways in the BPs of the hub genes was performed, as
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FIGURE 4 | Construction and identification of the WGCNA co-expression modules associated with the clinical traits, based on the common DEGs expression data of

TCGA-STAD. (A) Cluster dendrogram of the module eigengenes. The dissimilarity of module eigengenes is calculated to merge some similar modules with a height

(Continued)
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FIGURE 4 | cut-off value of 0.25. (B) Cluster dendrogram of the DEGs. Highly similar modules are identified by clustering and then merged dynamically. (C) Network

heatmap plot of the common DEGs. The branch in the hierarchical clustering dendrograms corresponds to each module. Color bars beneath and toward the right of

the dendrograms show the color-coded module membership. The more saturated yellow and red indicate the higher co-expression interconnectedness in the

heatmap. (D) Scatter plot of the GS for the grade vs. the MM in the blue module. (E) Scatter plot of the GS for the grade vs. the MM in the turquoise module. (F)

Heatmap of the correlation between the module eigengenes and the clinical traits of gastric cancer. The blue module is the most positively correlated with the grade

and identified as the hub module. GS, gene significance; MM, module membership.

previously described. The hub genes were primarily involved
in positive macrophage activation, regulation of tumor necrosis
factor production, and regulation of tolerance induction
(Figure 5C; Supplementary Figures 5A,B).

Identification, Validation, and Survival
Analysis of the Key Genes
The top 30 hub genes in the PPI and WGCNA networks were
overlapped to identify the common hub genes, including PTPRC,
TYROBP, CCR1, C1QB, CYBB, and LCP2 (Figure 6A). We
then conducted a literature review to investigate the association
between the hub genes in the networks and the tumors.
Consequently, among the common hub genes, 50.0% (3/6) genes
have been shown to promote tumor progression in gastric
cancer. Among the other hub genes in the PPI and WGCNA
networks, 70.8% (17/24) and 29.2% (7/24) have been reported
in gastric cancer-associated studies, respectively (Table S7). We
next focused on the common hub genes that might play a vital
role in gastric cancer, considering the strong connection between
the common hub genes and the other hub genes in the PPI and
WGCNAnetworks. Based on the Oncomine database, using Data
type = mRNA, P-value < 0.05, |FC| > 1.5 and gene rank =

“all” as the threshold, the expression levels of the common hub
genes were significantly higher in the GC tumor tissues compared
with the normal or adjacent mucosa tissues (Figure 6B). Then,
survival analyses of the common hub genes were performed using
the TCGA-STAD dataset. The results showed that TRYOBP and
C1QB were negatively associated with the overall survival of
the GC patients (PTYROBP = 0.029, PC1QB = 0.030; Figure 6C),
which was validated using the GSE15459 dataset (PTYROBP =

0.001, PC1QB = 0.001; Supplementary Figures 6A,B). However,
CCR1, CYBB, LCP2, and PTPRC were not associated with the
overall survival (PCCR1 = 0.412, PLCP2 = 0.148, PPTPRC = 0.132,
PCYBB = 0.189; Supplementary Figures 7A–D). Based on these
results, we further identified TYROBP and C1QB as the two
key genes with prognostic value in gastric cancer. In addition,
the high expression of TYROBP and C1QB were also validated
in the GC tumor tissues compared with the adjacent mucosa
tissues using the ZJU cohort (PTYROBP = 0.045, PC1QB = 0.031;
Figure 6D). Besides, we explored the expression location of
TYROBP and C1QB using the Human Protein Atlas database.
As shown in the Supplementary Figure 8, TYROBP and C1QB
were mainly located in tumor cells, which needed further
validation in the experiments. Furthermore, we investigated the
prognostic value of the other hub genes (the PPI or WGCNA
network contained 24 genes) via univariate Cox analysis. We
identified 50% (12/24) of the hub genes in the PPI network
and 16.7% (4/24) of the hub genes in the WGCNA network

that were negatively associated with the overall survival in GC
patients (Table S8).

The Correlation Between TYROBP, C1QB,
and Immune Factors, Including Immune
Cells and Biomarkers for Immunotherapy
As mentioned, we found that TYROBP and C1QB could be
involved in the immune response via the function annotation,
pathway enrichment, and interrelation analysis. Therefore, we
evaluated the correlation between TYROBP, C1QB, and immune
factors, respectively. The TIMER database analysis results
revealed a significantly positive correlation of both genes with
the CD8+ T cells, CD4+ T cells, and macrophages (Figure 7A).
Survival analyses of the immune cells were also performed
using the TIMER database, and the results indicated that
macrophages were negatively associated with the survival time
of GC patients (P = 0.004; Figure 7B). Furthermore, using
the CIBERSORT algorithm, we estimated the proportion of
the infiltrating immune cells in the tumor microenvironment.
Consequently, we found that the infiltrating immune cells mainly
consisted of the CD8+ T cells, CD4+ T cells, and macrophages.
TYROBP and C1QB were negatively correlated with resting
memory CD4+ T cells (R1 = −0.27, R2 = −0.25; Figure 7C;
Table S9) and positively correlated with the CD8+ T cells (R1
= 0.21, R2 = 0.26; Figure 7C; Table S9), activated memory
CD4+ T cells (R1 = 0.26, R2 = 0.37; Figure 7C; Table S9), and
macrophage M2 (R1 = 0.46, R2 = 0.47; Figure 7C; Table S9).
We performed correlation analyses for TYROBP and C1QB
with differential markers of macrophages to further investigate
the association of TYROBP and C1QB with the macrophages.
As shown in the Supplementary Figure 9, the correlation of
CD11b and CD206 (M2) was stronger compared with the CD68
(M0) and CCR7 (M1). Furthermore, we performed univariate
and multivariate Cox regression for TYROBP, C1QB, and
macrophages, respectively. As shown in Table S10, TYROBP
(HR = 1.455, P =0.029), C1QB (HR = 1.474, P =0.030),
and macrophage M2 (HR = 1.494, P =0.024) were identified
as the significant risk factors, while macrophage M1 (HR =

1.182, P = 0.374) was not associated with the overall survival
via the univariate Cox regression analysis. Notably, in the
multivariate Cox regression model, both TYROBP (HR = 1.399,
P =0.073) and C1QB (HR = 1.428, P = 0.067) were not
significantly correlated with the overall survival when adjusted
by macrophage M2. However, TYROBP (HR= 1.518, P= 0.023)
and C1QB (HR = 1.550, P = 0.024) were still significantly
associated with poor outcomes when adjusted by macrophage
M1. These findings suggested that macrophage M2 is involved
in TYROBP/C1QB-mediated progression and poor survival
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FIGURE 5 | Function annotation and pathway enrichment of the hub module and hub genes in the WGCNA network. (A) GO analysis of the hub module in the

WGCNA network. (B) KEGG pathway analysis of the hub module in the WGCNA network. (C) Interrelation analysis in the biological process pathways of the hub

genes.
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FIGURE 6 | Identification, validation and survival analysis of key genes. (A) Identification of the common hub genes between the PPI network and the WGCNA

network. (B) Validation of the common hub genes in ONCOMINE database. Red color represents relatively higher expression of the common hub genes in tumors

than normal tissues. Numbers represented the number of studies. (C) Survival analysis of the key genes in TCGA-STAD dataset. (D) Validation of the key genes at the

transcriptional level in ZJU cohort. *P < 0.05.

outcomes in GC. Then, the cytolytic activity of the immune cells
was estimated using the average expression of GZMA and PRF1
(27). The results showed that TYROBP andC1QBwere negatively
correlated with the cytolytic activity (R1=−0.30, R2 = −0.28;
Figure 7D; Table S9), which revealed the immunosuppressive
microenvironment in tumors. Furthermore, the correlation
between TYROBP,C1QB, and immune checkpoints was assessed,
respectively. Consequently, TYROBP and C1QB were positively
correlated with CD274, PDCD1, PDCD1LG2, and LAG3 but
negatively correlated with VTCN1 in the TCGA-STAD dataset
(Figure 7E; Table S9) and GSE51575 dataset (Figure 7F). In
addition, we evaluated the expression of TYROBP and C1QB
in the TCGA subtypes. Compared with the other subtypes, the
expression of TYROBP and C1QB in the EBV positive subtype
was significantly higher (PTYROBP < 0.0001, PC1QB < 0.0001;
Figure 7G). These results were validated using the GSE51575
dataset (PTYROBP < 0.0001, PC1QB = 0.0002; Figure 7H). In
summary, we established that the expression of TYROBP and

C1QB was positively correlated with the PD-L1 expression,
CD8+ T cell infiltration, and the EBV status; three predictive
biomarkers for immunotherapy.

DISCUSSION

GC is the third leading cause of global cancer-related deaths.
However, to date, effective treatments have not yet been
developed, owing to a limited understanding of the molecular
mechanisms underlying GC development. Over the past years,
the applications of PD-1/PD-L1 checkpoint blockades in
cancer have revolutionized oncology (28, 29). Particularly,
these approaches have guided immunotherapy strategies against
multiple cancers, such as melanoma (30), lung cancer (31),
glioblastoma (32) and liver cancer (33). However, the efficacy
and responsiveness of immunotherapeutic agents significantly
varies across GC patients, largely due to high tumor heterogeneity
and molecular complexity (34). Thus, it is crucial to unravel
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FIGURE 7 | Correlation analysis between TYROBP, C1QB, and immune factors, including immune cells and biomarkers for immunotherapy. (A) Correlation between

TYROBP, C1QB, and the immune cells in the TIMER database. (B) Survival analysis of the immune cells in the TIMER database. (C) Correlation between TYROBP,

(Continued)

Frontiers in Oncology | www.frontiersin.org 12 September 2020 | Volume 10 | Article 1765

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Jiang et al. Key Genes in Gastric Cancer

FIGURE 7 | C1QB, and the immune cells in the TCGA-STAD dataset. (D) Correlation between TYROBP, C1QB, and the immune cytolytic activity in the TCGA-STAD

dataset. (E) Correlation between TYROBP, C1QB, and the immune checkpoints in the TCGA-STAD dataset. (F) Correlation between TYROBP, C1QB and the

immune checkpoints in the GSE51575 dataset. (G) Relative expression of TYROBP and C1QB in the four molecular subtypes in the TCGA-STAD dataset. (H) Relative

expression of TYROBP and C1QB in normal tissues, EBV negative (–) and positive (+) GC tissues in the GSE51575 dataset. R1, the correlation coefficient between

TYROBP and the immune factors; R2, the correlation coefficient between C1QB and the immune factors; GC, gastric cancer. The data marked red color is statistically

significant. ***P < 0.001, ****P < 0.0001.

the underlying molecular mechanisms of GC tumorigenesis and
progression and identify potential prognostic and therapeutic
targets. In the present study, analysis of four gene expression
profiles revealed common DEGs, mainly enriched in signal
transduction, cell adhesion and immune response. Previous
studies have shown that extracellular matrix remodeling and
abnormal immune microenvironment play important roles in
tumorigenesis and tumor progression. In the past decade,
studies have demonstrated that the interaction between tumor
microenvironment and tumor cells is essential for tumor
biological behavior (35–38). In the present study, PPI and
WGCNA networks revealed 6 common hub genes, including
PTPRC, TYROBP, CCR1, C1QB, CYBB, and LCP2. According
to Wang et al. (39), CYBB is associated with invasion and
prognosis of human gastric cancer, whereas PTPRC, also known
as CD45, has been previously used to assess the extent of immune
cell infiltration in intestinal-type Japanese gastric cancer (40).
On the other hand, Chen et al. (41) previously reported that
CCR1 was associated with CD4+CD25+ Tregs of regional lymph
nodes in forestomach carcinoma. Interestingly, TYROBP and
C1QB were both correlated with immune infiltration levels,
suggesting a potential key role in prognosis of GC patients. These
factors have previously been positively associated with three
predictive biomarkers for immunotherapy in GC, including PD-
L1 expression (42, 43), CD8+ T cells infiltration (44) and EBV
status (45, 46).

Previous studies have shown that TYROBP, also known
as DAP12, is overexpressed and related to tumor progression
in multiple cancers. Functionally, its encoded protein, a
transmembrane signaling polypeptide on the surface of a variety
of immune cells, mediates signaling transductions (47, 48). For
example, Shabo et al. (49) reported an association between high
TYROBP expression with skeletal and liver metastases as well
as poor survival of breast cancer patients. Similarly, Cheray
et al. (50) implicated TYROBP in glioblastoma tumorigenesis and
aggressiveness. In the present study, TYROBP overexpression
was associated with poor survival of GC patients. In addition,
results from interrelation analysis showed that TYROBP was
associated with positive macrophage activation, regulation of
tumor necrosis factor production and regulation of tolerance
induction. This is consistent with a previous study that found
a positive association between TYROBP with macrophage M2,
as well as the immunosuppressive and pro-tumorigenic subtype
of macrophage in the tumor microenvironment (51). Similarly,
Takamiya et al. (52) found that TYROBP was involved in the
interaction between lung cancer cell and macrophage M2 to
enhance TGF-β secretion in vitro. Our results further revealed
a positive correlation between TYROBP and CD8+ T cells,
but a negative association with cytolytic activity. In addition,

we found a positive association between TYROBP with most
checkpoints, including CD274, PDCD1, PDCD1LG2, and LAG3.
Taken together, these results indicated that TYROBP might
be playing an immunosuppressive role on CD8+ T cells and
macrophages to promote tumor immune escape in gastric
cancer. Coincidentally, Yoshida et al. (53) reported that TYROBP
deficiency in liver allografts resulted in activation of graft-
infiltrating CD8+ T cells and production of pro-inflammatory
cytokine, whereas Kovats et al. (54) found that loss of TYROBP
and FcRγ promoted IL-12 production and CD8+ T cell response
by CCR2+ Mo-DCs. Thus, TYROBP might be a negative factor
in anti-tumor immune response. Furthermore, we found a
significantly higher TYROBP expression in EBV positive patients
relative to those with other subtypes. To date, EBV status is
one of the validated predictive biomarkers for immunotherapy
(45, 46). These results suggest that TYROBP might be associated
with the multiple biomarkers for immunotherapy in gastric
cancer, although further validation using large clinical cohorts
is required.

In the present study, we found significantly higher expression
of C1QB, that encodes the C1qB chain, in tumor than adjacent
normal GC tissues. In addition, C1QB was negatively associated
with prognosis of GC patients. Previous studies have shown
that C1q, the first recognition subcomponent of the complement
classical pathway, comprises three chains (C1qA, C1qB, and
C1qC) and exerts complex effects on tumorigenesis of multiple
tumors, including prostate (55), and ovarian cancer (56) as well
as gliomas (57). Yamada et al. (58) reported that high C1QB
expression was significantly related to poor prognosis in renal
cell carcinoma. On the other hand, Linnartz-Gerlach et al. (59)
found that C1qB was downregulated in the brain of triggering
receptor expressed on myeloid cells-2 (TREM2) knock-out mice.
Interestingly, TREM2 has been reported to transmit intracellular
signals through the associated transmembrane adapter TYROBP
(60). In the present study, we found a strong correlation
between TYROBP and C1QB expression in GC patients (R
= 0.92, P < 0.001; Supplementary Figure 10). Studies have
shown that a dysregulation of this signaling pathway leads
to a wide range of pathophysiological changes and diseases,
such as aging (59), bone cysts (61) and Alzheimer’s disease
(62). In our study, we also found an association between
C1QB with PD-L1 expression, CD8+ T cells infiltration and
EBV status, which was very similar to the TYROBP pattern.
However, in vitro and in vivo studies are needed to validate
the observed relationship between TYROBP and C1QB in
GC patients.

This study had some limitations. Firstly, our results will be
more convincing and interesting through additional validation
of TYROBP and C1QB in vivo in vitro experiment. For
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example, immunofluorescent detection is more precise than
immunohistochemistry for analyzing co-localization of TYROBP
and C1QB. Secondly, although our integrated network analysis
indicated the prognosis value of TYROBP and C1QB in
gastric cancer, further validation is needed using more clinical
cohorts. Importantly, our bioinformatics findings indicated
that macrophage M2 might be involved in TYROBP/C1QB-
mediated progression and poor survival outcomes in GC.
Further experimental studies are needed to unravel the role of
macrophage M2 in GC.

In conclusion, we used integrated network analysis, PPI and
WGCNA, to reveal overexpression of TYROBP and C1QB, and
affirm their prognostic value in GC patients. To our knowledge,
this is the first report associating TYROBP and C1QB with GC
progression and prognosis. Our findings lay a foundation for
future research aiming to elucidate the role of these genes in GC
tumorigenesis and progression.
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